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Abstract

Recently, several methods for single image super-

resolution(SISR) based on deep neural networks have ob-

tained high performance with regard to reconstruction ac-

curacy and computational performance. This paper details

the methodology and results of the New Trends in Image

Restoration and Enhancement (NTIRE) challenge. The task

of this challenge is to restore rich details (high frequencies)

in a high resolution image for a single low resolution in-

put image based on a set of prior examples with low and

corresponding high resolution images. The challenge has

two tracks. We present a super-resolution (SR) method,

which uses three losses assigned with different weights to

be regarded as optimization target. Meanwhile, the resid-

ual blocks are also used for obtaining significant improve-

ment in the evaluation. The final model consists of 9 weight

layers with four residual blocks and reconstructs the low

resolution image with three color channels simultaneously,

which shows better performance on these two tracks and

benchmark datasets.

1. Introduction

In recent years, the reconstruction of a high-resolution

(HR) image from a given low-resolution(LR) image has

been widely investigated by many researchers in digital im-

age processing. This task is called super-resolution(SR),

commonly referred to single image super-resolution (SISR),

which can be helpful in computer vision applications

among various areas such as face recognition[11], medical

imaging[24] and surveillance[37]. For super resolution, the

LR image data is always considered to be downscaled from

the corresponding original HR image with or without noise.

In general, the optimization target of SR problems is the

minimization of the mean squared error (MSE) between the

recovered SR image and the ground truth HR image. The

peak signal-to-noise ratio (PSNR) and structural similarity

index(SSIM) are two commonly accepted measurements to

evaluate and compare SR methods.

A detailed review of SISR methods can be found in [32].

The SISR algorithms can be classified into prediction-based

methods[6], classical sparse coding methods[34, 35, 33,

16, 10], edge-based methods[7, 25], and anchored neigh-

borhood regression methods[29, 30, 31].Recently, with the

rapaid development of deep learning on image process-

ing, a large number of techniques based on convlutional

neual network(CNN) have been successfully applied to

SR[4, 5, 14, 15, 23, 18, 13, 20, 22].

In this paper, we present a three-loss super resolution

network(TLSR) to address the SR problems as shown in

Fig. 1. Our network consists of four residual blocks with a

combination of three losses. A low resolution RGB image is

considered as an input to our network, and the output of the

network is three SR images from different residual blocks.

Then we compute the MSE of SR images and the corre-

sponding ground truth separately. Finally, the three losses

assigned with different weights act as our optimization tar-

get.

2. Related Work

2.1. Image Super Resolution

Prediction-based methods include bilinear interpolation,

bicubic interpolation, Lanczos resampling[6] and so on.

These filtering approaches utilize the statistical image pri-

ors and have a fast speed. However, these methods usually

make the texture of image smoother, lacking much realis-

tic texture detail. In order to solve this problem, researches

on image statistics suggest that image patches can be well

represented as a sparse linear combination of elements from

an appropriately chosen over-complete dictionary. Yang et

al.[34, 35, 33] use the coefficients of sparse representation

for each patch of the low-resolution input to generate the

high-resolution output. In [10], the authors propose a con-

volutional sparse coding based on SR method to address the

consistency of pixels in overlapped patches issues. Sun et

al. [25] put forward a gradient field transformation to con-

strain the gradient fields of the high resolution image based

on gradient profile prior. Neighborhood regression methods
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Figure 1: Architecture of the TLSR Network.

upsample a LR image patch by finding similar LR training

patches in a low dimensional manifold and combining their

corresponding HR patches for reconstruction [29, 30, 31].

2.2. Deep Learning Networks

In recent years, deep learning networks have reached

an extreme high accuarcy in various computer vision

fields including image classification[17, 28, 12], image

segmentation[19], object detection[9, 21, 8], and face

recognition[26, 27]. Due to its outstanding performance,

methods concerning deep learning networks have been pro-

posed in super resolution. Dong et al.[4] firstly propose an

approach, termed SRCNN, to learn a mapping from LR to

HR in an end-to-end manner by investiagting the connec-

tion between sparse-coding-based methods with CNN. Mo-

tivated by the fact that SRCNN achieves state-of-the-art per-

formance with only three layers in the SR problem, many

researchers attempted to prepare deeper models to recover

the LR to HR. Kim et al.[14] present a highly accurate SR

method based on a very deep convolutional network with

twenty weight layers. Also, in [15], the authors formulate

a recursive CNN and achieve an awesome results. How-

ever, all of the above methods increase the resolution of LR

image using interpolation methods such as bicubic interpo-

lation before transformed into convolution neural network.

Then the input image is much larger than the original LR

image, raising the computational complexity for neural net-

works. In order to eliminate this problem, Shi et al.[23]

introduce an efficient sub-pixel convolution layer learning

an array of upscaling filters, to upscale the final LR fea-

ture maps into the HR output. Dong et al.[5] introduce a

deconvolution layer at the end of the network and learn an

end-to-end mapping between the original LR and HR im-

ages with no pre-processing. As He et al. [12] demonstrate

that residual blocks of convolution neual network show a

higher performance, the authors of [18] bring up SRGAN, a

generative adversarial network (GAN) for image super res-

olution using a perceptual loss function which consists of

an adversarial loss and a content loss.In [20], the authors

propose a pixel recursive model to resolve the SR problem.

3. Method

As shown in Fig. 1, our deep convolutional network for

SR image reconstruction consists of convolution layers, rec-

tified linear units(relu), residual blocks, sub-pixel convolu-

tion layers and a loss network. Firstly, we use a convolu-

tion layer to extract feature from the original LR image.

Different from most SR methods in which only Y chan-

nel splited from YCbCr images that are converted from the

corresponding RGB ones has been used, we utilize all the

channels information of the LR image. Thus, the input im-

age can be considered as a tensor with the size of C×H×W,

where C refers to the colour channels and H, W refer to

the height and width of the image respectively. The fisrt

conv layer has 64 fiters of spatial size 5×5 and the padding

number is set to 2 in order not to change the size of image.

Except the fisrt conv layer, other conv layers have 64 filters

of the spatial size 3×3 with the padding number (1,1). After

each convolution layer, the relu is followed as the activation

function. The conv out layers are in the same type: C×r×r

filters of the spatial size 3×3, where r is referred as to the

upscale factor.

3.1. Residual network architecture

Inspired by [12], He et al. use residual connections to

train very deep networks for image classification. In our

network, we use four residual blocks, each of which con-

tains two convolution and relu layers. Different from Kim

et al.[14], we replace the original LR image with the output

of effect several convolutional neural networks. By doing

this, we can enhance each image after convolutional net-
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work instead of only improving the final output image. We

denote the input LR image as ILR, the output of residual

block as Orb, the output of conv out layer as Iout, the SR

image obtaining from the network as ISR and the ground

truth high resolution image as IHR. The mapping between

functions of convolution layer can be describled as follows:

g1(x) = max(W1 ∗ x+ b1, 0) (1)

gn(x) = max(Wn ∗ gn−1(x) + bn, 0) (2)

where Wn is the weight value of the conv layer, bn is the bias

of the conv layer, and n is the number of the conv layers.

In our network, W1 is in the shape of 3×64×5×5 while

the Wn (n = 2. . . 9) is in the same size of 64×64×3×3, bn
(n = 1. . . 9) is a vector of length 64.The ReLU activation

function is max().

The fisrt residual block in our network can be expressed

as below:

Orb1 = g3(ILR) + g1(ILR) (3)

where Orb1 is the output of the first residual block. In

the left of formula (3), we use a three-conv-relu layer to

learn feature maps from the LR image like SRCNN[4] or

ESPCN[23]. Instead of using these feature maps to recon-

struct the ISR simply, we add another three residual blocks

to recover the final ISR.

The other three residual blocks are listed as follows:

Orb2 = g2(Orb1) + Orb1 (4)

Orb3 = g2(Orb2) + Orb2 (5)

Orb4 = g2(Orb3) + Orb3 (6)

where Orb2, Orb3, Orb4 are the output of the residual

blocks respectively. As they are in the size of 64×H×W,

the conv out layer is used for converting the 64 channels

into (rC)2 channels. Thus, we can get three tensors Iout1,

Iout1, Iout1 separately, the size of which is (rc)2×H×W. Fi-

nally, we use sub-pixel convolution layer proposed by Shi

et al.[23] to reconstruct the ISR from the outputs of the

conv out layer.

3.2. Loss network architecture

While most methods[4, 5, 23, 14] about SR use the mean

square error (MSE) as the cost function, for this pixel-wise

loss function can obtain a high PSNR. It can be calculated

as:

lSR =
1

r2CHW

C∑

k=1

rH∑

i=1

rW∑

j=1

(IHR(i, j, k)− ISR(i, j, k))

(7)

Then we adopt a combined loss function with three MSE

losses as our final optimization objective to train our net-

work in order to find optimal parameters of our model. It

can be represented as:

l
final
SR = s1 × lSR1 + s2 × lSR2 + s3 × lSR3 (8)

where l
final
SR is the final loss function to minimize, lSRi

(i∈{1,2,3}) denotes the MSE between the super resolution

image ISRi (i∈{1,2,3}) and the high resolution image IHR,

and si (i∈{1,2,3}) stands for the assigned wight value of

each lSRi.

4. Training and testing sets

In this section, we describe the data used for training and

testing our method. Meanwhile, training details and param-

eters are given. The NTIRE challenge is divided into two

tracks. Track 1: “Classic bicubic” follows the classic / stan-

dard settings from the single-image super-resolution litera-

ture, that is, the degradation operators are the downscaling

with bicubic interpolation (imresize Matlab function) of the

ground truth high resolution image. Track 2: “Unknown”

assumes that the degradation operators are unknown for the

participants under explicit form (such as blur kernel, dec-

imation, downscaling strategy). The large training set of

examples of low and corresponding high resolution images

are intended for modeling the low to high image resolution

mapping relation.

4.1. Datasets for Training and Testing

For the images used for training SR, there are many dif-

ferent training image datasets such as 91 images, 291 im-

ages and random images from ImageNet dataset. As for

our method, we use the DIV2K(DIVerse 2K) dataset[1] for

training and testing, which has 1000 RGB images in total.

The images are no larger than 2048 pixels on horizontal or

vertical direction with a large diversity of contents. The

DIV2K dataset is divided into three parts: 800 images for

training, 100 images for validation and another 100 images

for testing. The low resolution images can be categorized

of two groups:

• obtained by using the Matlab function ”imresize” with

bicubic interpolation and the desired downscaling fac-

tors: 2, 3, and 4 from the ground truth high resolution

RGB image.

• obtained by using unknown degradation operators with

the desired downscaling factors: 2, 3, and 4 from the

ground truth high resolution RGB image.

Track1, in the experiments of recovering the LR images

belonging to the first group, apart from the 800 low reso-

lution DIV2K images for training, we also adopt data aug-

mentation as in [4]. The high resolution images are aug-

mentated by being downscaled with the factor 0.6, 0,7, 0.8

and 0.9; and being rotated with the degree of 90, 180 and
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(a) GroundTruth / PSNR (b) Bicubic / 24.04dB (c) SRCNN / 27.95dB (d) TLSR / 29.56dB

Figure 2: The butterfly image from Set5 with an upscaling factor 3

(a) GroundTruth / PSNR (b) Bicubic / 26.63dB (c) SRCNN / 29.29dB (d) TLSR / 29.70dB

Figure 3: The zebra image from Set14 with an upscaling factor 3

270. After this augmentation, we will have 16000 high reso-

lution images for training. As for getting the low resolution

images, we also use the Matlab function ”imresize” with

bicubic interpolation from the corresponding high resolu-

tion images. So, we have 16000 pairs of LR images and HR

images in total to train our network.

Track 2, in the experiments of recovering the LR images

which belong to the second group, due to unknown degra-

dation operators to obtain the LR images, we just use the

given 800 pairs as training images.

We mainly use the 100 LR images of validation data via

validation sever to validate our methods, for the groundtruth

can’t be obtained by us. And in the end, we run our methods

on the 100 testing data and get the results from the challenge

organizers.

4.2. Implementation details

To prepare the training data, we have attempted two

strategies. The first one is to crop the LR training images

into a set of 64×64-pixel sub-images with a stride 64. At the

same time, the corresponding HR sub-images in the shape

of (r×64)×(r×64) are also cropped from the ground truth

images with a stride r×64. The second one is to crop the LR

training images from the center of the images with a large

scale. For ×2, ×3, ×4, the size of LR/HR sub-images are

set to be 3242/(324×2)2, 1282/(128×3)2 and 962/(96×4)2

respectively. As we find using the large scale images to train

our network can achieve better performance than using the

small scale images, so all of our models are trained based

on the second strategy.

For weight initialization, we use the the orthogonal ma-

trixs and for the assigned weight value of our loss structure,

we set s1, s2 and s3 to 0.5, 0.5 and 1.0 separately. All net-

works are trained on a NVIDIA GTX-1080 GPU. The relu

is chosen as activation function for the final model while

Adaptive Moment Estimation(Adam) is utilized as optimiz-

ing method. The training batches are set to 64 and the train-

ing stops after 500 epochs. Initial learning rate is set to

0.001 while the final learning rate is set to 0.0001. We use

the PSNR and SSIM as the performance metric to evaluate

our models.

5. Image super-resolution results

For benchmark, we follow the 5-3-3 ESPCN [23] frame-

work. Several experiments have been done before we de-

cide on the best model. Also, in order to demonstrate the

performance of our proposed method, we compare it with

the existing state-of-art SR methods on several benchmark

datasets such as Set5[2], Set14[36].

5.1. Y channel vs RGB channels

Many methods on SR have evaluated their methods only

on y channels, for the reason of human is more sensitive to

it. Based on this, initially , we convert the RGB image into

YCbCr image and then split the YCbCr image into Y, Cb, Cr

channels separately. And we reconstruct the Y channel by

using ESPCN network while the Cb channel and Cr channel

are reconstructed using the Matlab “imresize” function with
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bicubic interpolation. Comparing to the above method, we

do another experiment. This way, we don’t convert the RGB

image into YCbCr image. We use the RGB image as an

input to ESPCN network directly to obtain the SR image.

The PSNR and SSIM of using three channels to reconstruct

the LR image to SR image are much more better than just

using Y channel. The results can be seen in Tab. 1.

Dataset Scale
Y

PSNR/SSIM

RGB

PSNR/SSIM

DIV2K 2 32.25/0.9156 33.33/0.9259

Table 1: The PSNR and SSIM of using three channels to

reconstruct the LR image to SR image are much more better

than just using Y channel. Where the DIV2K denotes for

the bicubic downscaling validation dataset.

5.2. One loss vs Combined loss

Meanwhile, in Tab. 2, we compare the network with a

simple loss and a combined loss trained using same images

and validate on the the DIV2K dataset. For simple loss, we

set s1, s2 and s3 to 0.0, 0.0 and 1.0 separately while for the

combined loss, we design the weight value of s1, s2 and s3
to 0.5, 0.5 and 1.0. The three SR images ISRi (i∈{1,2,3})

are obtained via 5,7,9 conv layers. As we believe that the

image restored from the deeper layers has richer details.

So we assign the last MSE loss lSR3 with highest weight

value than another two. The other parameter settings of si
(i∈{1,2,3}) are investiagted in future work. From the re-

sults we can see, a combined loss improve 0.01 in PSNR

and 0.0003 in SSIM.

Dataset Scale
One loss

PSNR/SSIM

Combined loss

PSNR/SSIM

DIV2K 2 33.76/0.9295 33.77/0.9298

Table 2: The results of using a combined loss to train net-

work is better than using a simple loss.

5.3. ESPCN vs Ours

Due to the fact that using three channels to reconstruct

low resolution image can get a sharp gain in PSNR and

SSIM, we use the RGB images as our input to networks and

compare our method with ESPCN on the DIV2K Dataset.

Both networks are trained with the same images. The re-

sults for ×2, ×3, ×4 are shown in Tab. 3

5.4. Evaluation on DIV2K testing dataset

By using the residual blocks structure with a combina-

tion of three loss, we test our methods on DIV2K testing

Dataset Scale
ESPCN

PSNR/SSIM

TLSR

PSNR/SSIM

DIV2K 2 33.33/0.9259 33.77/0.9298

DIV2K 3 29.31/0.8409 30.12/0.8590

DIV2K 4 27.60/0.7805 28.19/0.7996

Table 3: The results of bicubic interpolation, ESPCN and

TLSR on DIV2K validation dataset for diffrent scale: ×2,

×3, ×4. Where ESPCN denotes for the ESPCN 5-3-3

network[23] trained on the 16000 pairs of images of DIV2K

dataset.

data. As we mentioned above, for the bicubic downscaling

test, we train our models using the data augmentation with

16000 pair of images. But for the unknown downscaling

test, we only have the 800 pairs of images, so we fintune

our model on these training images to get the best results.

All the results are shown in Tab. 4. Also, we compute the

time between the input of the netowrk and the output of the

network in Tab. 5, and the time for recovering a LR im-

age to SR image is obout 0.009 seconds via the NVIDIA

GTX-1080 without I/O times.

Challenge Scale
Bicubic

PSNR/SSIM

TLSR

PSNR/SSIM

Track 1 3 28.22/0.822 30.07/0.869

Track 1 4 26.65/0.761 27.99/0.805

Track 2 3 25.81/0.736 29.87/0.862

Track 2 4 21.84/0.583 26.84/0.762

Table 4: The results on the DIV2K test of our

method and bicubic interpolation method. Where the

DIV2K(bicubic) stands for the bicubic downscaling test and

the DIV2K(unknown) denotes for the unknown downscal-

ing test.

Challenge Scale TIME

Track 1 3 0.008474

Track 1 4 0.009891

Track 2 3 0.009039

Track 2 4 0.01001

Table 5: The time denotes for the image through the TLSR

network excludes I/O times.
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Dataset Scale Bicubic SRCNN TNRD ESPCN TLSR

Set5 3 30.39 32.75 33.17 33.13 33.60

Set14 3 27.54 29.30 29.46 29.49 29.66

Set5 4 28.42 30.49 30.85 30.90 31.05

Set14 4 26.00 27.50 27.68 27.73 27.81

Table 6: The results of different methods evaluated on benchmark datasets. Where SRCNN denotes for the SRCNN 9-5-5

model trained on ImageNet[4], TNRD stands for the Trainable Nonlinear Reaction Diffusion Model[3], ESPCN stands for

ImageNet model with tanh activation[23], TLSR stands for our model trained on DIV2K dataset.

5.5. Comparision on benchmark datasets with the
stateofart methods

We also evaluate our methods on benchmark datasets

like Set5[2] and Set14[36] for ×3, ×4 super resolution.

Comparing with these existing methods such as SRCNN

9-5-5 model trained on ImageNet[4], Trainable Nonlin-

ear Reaction Diffusion Model[3] and ESPCN with tanh

activation[23]. The results can be shown in Tab. 6. There

are also some visual results to better assess the performance

of this method shown in Fig. 2 and 3.

6. Conclusion

In this work, we have presented a super resolution

method using three losses assigned with different weights to

be regarded as optimization target. We have demonstrated

that our method outperforms the existing method on the

benchmark datasets. Also, with simplicity and robustness

of our network, our approach can be applicable to other im-

age restoration problems such as denoising and deblurring.
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