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Abstract

This paper proposes a method for the symbolisation

of temporal changes of the environments around the au-

tonomous robot in a work space using the scene flow field

for recognition of events. We first develope a two-phase

method for the accurate computation of the scene flow field.

Next, we introduce an algorithm to symbolises the motion

fields as a string of words using directional statistics. These

two operations extract a string of words of motion in front of

the robots from stereo images captured by a robot-mounted

camera system. We evaluate performance of our method us-

ing KITTI scene flow Dataset 2015. The results shows the

efficiency of the method for the extraction of events in front

of a robot.

1. Introduction

A classical motion analysis method in computer vision

is motion tracking, which establishes temporal correspon-

dences of feature points along a sequence of images. In this

paper, employing statistical analysis of the temporal scene

flow fields computed from a sequence of stereo image pairs,

we develop a method to interpret a sequence of images as

a sequence of events. Optical flow and scene flow are the

planar and spatial motion fields computed from monocu-

lar image and stereo image sequences, respectively. These

fields describe motion fields in an environment. Our method

proposing in this paper evaluates the global smoothness and

continuity of motion fields and detects collapses of smooth-

ness of the motion fields in long-time image sequences us-

ing transportation of the temporal scene flow field.

In sign language recognition, the extraction of linguis-

tic information from a sequence of images is a fundamental

process. Sounds are estimated from a sequence of images

in lip-reading. In these two applications, symbolic infor-

mation such as sounds and the meanings of words and sen-

tences are estimated from a image sequence to recognise

and understand visual information as communication pur-

poses.

In the visual navigation of robots, probes and cars, ge-

ometric information around them is used for navigation

and localisation. Structures in the robot workspace in-

ferred from motion of the robot reconstruct spatial geometry

around them. Using the tradition of geometric information

around a robot, simultaneously localisation and mapping

(SLAM) localises the position of them in an environments.

In ref. [9], using the local stationarity of visual motion, a

linear method for motion tracking was introduced. It is pos-

sible to extend the local assumption on the optical flow field

to higher-order constraints on the motion field. In this paper,

we assume that optical flow fields are locally quadratic. For

the computation of the three-dimensional scene flow from

a stereo image sequence [5, 7, 6], we are required to solve

four image-matching problems and their deformation fields.

Two of them are optical flow computations for left and right

image sequences. The other two of them are stereo match-

ing for two successive stereo pairs. The displacements be-

tween stereo pairs are at most locally affine transformations

caused by perspective projections based on the camera ge-

ometry. The displacement between a pair of successive im-

ages in left and right sequences, however, involves higher-

order transformations caused by camera motion if a pair of

cameras is mounted on a mobile vehicle. Therefore, since

we are required to adopt different-order constraints on the

optical flow computation and stereo matching for a stereo
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pair sequence, we develop a method with locally higher-

order constraints for the fast computation of the optical flow

field.

The Wasserstein distance defines a metric among proba-

bility measures [4]. In computer vision and pattern recogni-

tion, the 1-Wasserstein [10] distance is known as the earth

movers’ distance (EMD). We deal with the distribution of

scene flow vectors as directional statistics [1] on the sphere.

Then, using the Wasserstein distance for spherical distribu-

tions [3], we evaluate the temporal total transportation be-

tween a pair of successive scene flow fields.

2. Histogram-based Metric of Vector Field

Setting u(x) = (u(x), v(x), w(x))⊤ for x ∈ R
3 to

be a vector field in three-dimensional Euclidean space, the

directional histogram of u is integration of the magnitude

of u with respect to the direction of u, that is,

s(n) =
1

|Ω|

∫

Ω u
|u|

=n
|u(x)|dx, (1)

where Ω and |Ω| are the region of interest and its area mea-

sure, respectively. Since a histogram is a probabilistic dis-

tribution, we define the pointwise distance between a pair

of histograms defined by eq. (1) as

d(u1,u2)
2

= min
c

∫

S2

∫

S2

|s1(m)− s2(n)|
2

×c(m,n)dmdn. (2)

If we consider the rotation of histogram, which is achieved

by a rotation matrix R, the metric becomes

dR(u1,u2)
2

= min
c,R

∫

Sn−1

∫

Sn−1

|s1(m)− s2(Rn)|2

×c(m,n)dmdn. (3)

Equation (2) is the 2-Wasserstein distance for distributions

on the unit sphere S2.

Setting T to be the icosahedral-triangle grid on the unit

sphere, the centroid of each triangular face is vi. From di-

rectional data h(n) for n ∈ S2, the voting to the triangular

bin i whose centroid is vi is computed as the summation

s(i) =
∑

vi=argmink ∠(vk,n)

s(n). (4)

The Wasserstein distance between two histograms on T is

computed by

D(s1, s2) = min
cij

∑

vi∈V

∑

vj∈V

|s1(i)− s2(j)|
2cij (5)

as a discretisation of the Wasserstein distance for a spheri-

cal distribution. Figure 1 shows discretisation of spherical

histogram based on eq. (4).

The discrete problem is solved by minimising D,

D =

n
∑

i,j=1

aijxij (6)

w.r.t.

n
∑

i=1

cij = s1(j),

n
∑

j=1

xij = s2(i),

xij ≥ 0, (7)

setting aij = |s1(i) − s2(j)|
2. We solve this minimisation

problem using interior point method.

(a) (b)

u
xy

(c)

Figure 1. Generation of spherical histogram. (a) Geodesic grid

generated from an icosahedron. (b) The centroid of a face of the

geodesic grid. (c) Voting process based on inner products.

3. Local Optical Flow Computation

3.1. Local Optical Flow Field

Since point correspondences between a pair of stereo

images are expressed by an affine transform, we assume

that local correspondences between points are affine. On

the other hand, we assume that the optical flow field on

each image sequence of a stereo image sequence are locally

quadratic, since the trajectories of autonomous vehicles are

locally smooth and differentiable.

For f(x, y, t), the optical flow vector [8] u = ẋ =
(ẋ, ẏ)⊤, where ẋ = u = u(x, y) and ẏ = v = v(x, y),
of each point x = (x, y)⊤ is the solution of the singular

equation

fxu+ fyv + ft = ∇f⊤u+ ft = 0. (8)

In Ω(c) = {x| |x − c|∞ ≤ k}, for a positive integer k,

where |x|∞ is the l∞ norm on the plane R2, setting x̄ =
x− c, we assume that

u1(x) = Dx̄+ d. (9)

The matrix D and the vector d in eq. (9) minimise the

criterion

E1 =
1

2
·

1

|Ω(x)|

∫

Ω(c)
|∇f⊤(Dx + d) + ft|

2dx (10)
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is the local affine optical flow. The local affine optical flow

is the solution of the system of linear equations

A(1)v(1) + b(1) = 0 (11)

for

A(1) =

(

G, x⊤ ⊗G

x⊗G, (xx⊤)⊗G

)

, (12)

v(1) =

(

d

vecD

)

, b(1) =

(

a

x⊗ a

)

,

where

G =
1

|Ω(c)|

∫

Ω(x)

∇f∇f⊤dx, (13)

and

a =
1

|Ω(c)|

∫

Ω(x)

ft∇fdx. (14)

Next, we assume that

u2(x) =

(

x⊤Px

x⊤Qx

)

+Dx+ d (15)

for the piecewise-quadratic vector field, with 2 × 2 sym-

metric matrices P and Q, a 2 × 2 matrix D and a two-

dimensional vector d, where e = (1, 1)⊤.

The local quadratic optical flow is the minimiser of

E2 =
1

2|Ω(x)|

∫

Ω(x)

∣

∣∇f⊤u2(x) + ft
∣

∣

2
dy (16)

for u2 defined by eq. (15).

The local quadratic optical flow is the solution of the the

system of linear equation

A(2)v(2) + b(2) = 0 (17)

at each point x where

A(2) =





a1

a2

a3



 (18)

for

a1 = (G,x⊤ ⊗G,x⊤
⊗ ⊗GX⊤

⊗),

a2 = (x⊗G, (xx⊤)⊗G, (xx⊤
⊗)⊗GX⊤

⊗),

a3 = (x⊗ ⊗X⊗G, (x⊗x
⊤)⊗X⊗G,

(x⊗x
⊤
⊗)⊗X⊗GX⊤

⊗)

and

v(2) =





d

vecD

vecC



 , (19)

b(2) =





a

x⊗ a

((xx⊤
⊗)⊗X)a



 , (20)

where

C = Diag(P ,Q), (21)

x⊗ = e⊗ x, (22)

X⊗ = I ⊗ x (23)

for the 2 × 2 identity matrix I . We call the optical flow

computation by minimizing E2 the quadratic KLT (QKLT).

Setting fL and fR to be left and right image sequences,

respectively, for optical flow vector u = (u, v)⊤ = (ẋ, ẏ)⊤

on the left image and disparities of the pair of stereo images

d and d′ for time t and t+ 1, respectively, the relations

fL(x+ d, y, t) = fR(x, y, t),

fR(x+ u+ d′, y + v, t+ 1) = fR(x, y, t), (24)

fL(x+ u, y + v, t+ 1) = fL(x, y, t),

are satisfied. From the solutions of eq. (24), the scene flow

vector (X ′, Y ′, Z ′)⊤ at the time t is computed as

Ẋ =





X ′

Y ′

Z ′





= b







(x+u)
d+d′ − x

d
(y+v)
d+d′ − y

d
f
d
− f

d+d′






, (25)

where b is the base-length between stereo pairs.

3.2. l22l2 Optimisation

For the computation of the local optical flow field, we

deal with the minimisation of the functional

J2221(x) =
1

2
|Ax+ b|22 + λ|x|2, (26)

where we set A := G(1)\G(2), x := v(1)\v(2) and

b := b(1)\b(2). Since the functional derivative of J2221
with respect to x is

δJ2221(x)

δx
= A⊤(Ax+ b) + λ

x

|x|2
, (27)

the minimiser of eq. (26) is the solution of

(A⊤A+
λ

|x|2
I)x = A⊤b. (28)

We compute the solution of eq. (28) using the iteration form

A⊤Ax(n) = b(n), b(n) = A⊤b−
λ

|x(n−1)|2
x(n−1) (29)

until |x(n+1) − x(n)|2 < ǫ, where

x(n) = (A⊤A− λ(n)I)−1A⊤b, λ(n) =
λ

|x(n−1)|
. (30)
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This procedure is performed in Algorithm 1. In this algo-

rithm, x(i) expresses the ith element of vector x.

Algorithm 1: l22 − l2 Minimisation

Data: x0 := 1, k := 0, 0 ≤ δ ≪ 1, 0 < ǫ

Result: minimiser of 1
2 |Ax− b|22 + λ|x|2

while |x(k) − x(k−1)|2 > δ do

λ(k−1) := λ
|x(k−1)|2

;

solve (A⊤A+ λ(k)I)x(k) = A⊤b ;

if x(k)(i) = 0 then

x(k)(i) := x(k)(i) + ǫ;
end

k := k + 1
end

We call this method of the optical flow computation the

l22 − l2 Kanade-Lucas-Tomasi tracker (2221KLT tracker).

Moreover, to ensure stable and robust computation, we

use the pyramid-transform-based [11, 12] multiresolution

method. We call the methods based on algorithms 2 and

3 the pyramid-based 2221Affine KLT (2221PAKLT) and

pyramid-based 2221Quadratic KLT (2221PQKLT) trackers,

respectively.

Algorithm 2: Affine-Optical-Flow Computation with

Gaussian Pyramid

Data: uL+1 := 0, L ≥ 0, l := L

Data: fL
k · · · f0

k

Data: fL
k+1 · · · f

0
k+1

Result: optical flow u0
k

while l ≥ 0 do

f l
k+1 := f l

k+1(·+ E(ul+1
k ), k + 1) ;

compute Dl
k and dl

k ;

ul
k := Dl

kx
l + dl

k ;

l := l − 1
end

Algorithm 3: Quadric-Optical-Flow Computation

with Gaussian Pyramid

Data: uL+1 := 0, L ≥ 0, l := L

Data: fL
k · · · f0

k

Data: fL
k+1 · · · f

0
k+1

Result: optical flow u0
k

while l ≥ 0 do

f l
k+1 := f l

k+1(·+ E(ul+1
k ), k + 1) ;

compute Cl
k, Dl

k and dl
k ;

ul
k := xl⊤

1 Cl
kx

l
1 +Dl

kx
l + dl

k ;

l := l − 1
end

4. Transportation and Symbolisation of Mo-

tion

We define the coherency of motion along the time axis

and in a scene. Then, we introduce a measure for the evalu-

ation of the coherency of motion in an image sequence.

Definition 1 If a vector field on an image generated by the

motion of a scene and moving objects is spatially and tem-

porally smooth, we call this property of the field motion co-

herency.

Therefore, rapid changes in the spatial direction of motion

cause a collapse of motion coherency on the imaging plane,

even if the spatial motion of the object is smooth. the sud-

den halting of a moving object destroys motion smoothness

and causes the collapse of the motion coherency.

Setting ht and htt to be the first and second deriva-

tives, respectively, of the histogram h, we define the in-

terval Ii = [ti, ti+1] along the time axis t using a pair of

successive points for extremals htt = 0. Using the l1 linear

approximation of h such that

h̄(t) = ait+ bi, (31)

which minimises the criterion

J(ai, bi) =

n
∑

i=1

n(i)
∑

j=1

|h(ti(j))− (aiti(j) + bi)|, (32)

where ti(j) ∈ Ii, we allocate signs for spatial motion.

x
s

x
1

x
2

x
3

x
4

x
5

x
f

Figure 2. Example of l1-approximation. {xi}
5

i=1 are extremals

of the interpolated piecewise-linear curve. The procedure detects

extremals as knots of a piecewise linear-approximation.

We derive an on-line method for the piecewise interpo-

lation of sample points. Setting {xi}
k
i=1 to be the sample

points of y = h(x), the l1 approximation of the string of

points using the following procedure.

1. For the smallest endpoint xs, detect extremal (x, y)
which minimises |xs − y|.

2. On [xs, y], compute l1 approximation line, and set it l.

3. If d(xi, l) ≥ ǫ, then xs := xi.

4. go to step 2.
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On the interval [xi, xi+1], we compute ai and bi which min-

imise

T =

n
∑

i=1

wi (33)

w.r.t. −wi ≤ yi − (axi + b) ≤ wi,

wi ≥ 0. (34)

This procedure detects extremals as knots of a piecewise-

linear approximation.

From the sign of ai, we define the symbols of motion in

the interval Ii as {ր,→,ց}, where

S(h) =







ր if ai > 0 if t ∈ Ii,

→ if ai = 0 if t ∈ Ii,

ց if ai < 0 if t ∈ Ii.

(35)

Table 1 lists the environments around an autonomous

driving car on the streets in a city and a suburban area.

Equation (35) transforms the descriptions in Table 1 to a

sequence of words using linear approximation of h(t).
If the motion is smooth in all directions, the time trajec-

tory of the inter-frame Wasserstein distance is constant. If a

robot or car is turning, the vector field of scene flow changes

the mean direction of the field. Therefore, the transporta-

tion of the vector field of scene flow first decreases and

second increases. This property of temporal transportation

of the vector field appears as a V-shaped variations in the

temporal trajectory of the inter-frame Wasserstein distance.

Therefore, using a piecewise-linear approximation of the

inter-frame Wasserstein distance, it is possible to define the

motion geometry from a sequence of images captured by a

vehicle-mounted camera.

Since the motion field vectors are small for the estima-

tion of scene flow field in background scene, points in the

background are segmented from moving parts using the

lengths of the optical flow vectors on each plane of the

stereo image sequence. In this step, the motion fields of

both left and right image sequences using the KLT. The op-

tical flow vector uK of each point computed by the KLT,

we set

u1 =

{

uK , if |uK | ≤ 0.4,

0, otherwise,
(36)

as the results of the first step. Then, in the second step, we

compute scene flow for the region R1, such that

R1 = {(x, y)⊤|u1 6= 0}. (37)

Figure 3(a) shows processes in this two-step method.

This two-step method can be described in parallel

pipeline in 3(b) using all KLT, AKLT and quadratic QKLT.

1. Compute optical flow uK , uA and uQ by KLT, AKLT

and QKLT, respectively, for both stereo images and the

displacement dA by AKLT.

Stereo Image(Input)

t

t

1path
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 2path

Stereo flow (AKLT)

Optical flow (QKLT)

 Motion Area Detection(KLT)

Scene Flow(Output)

Left image

Right image

 Motion Area Detection(KLT)

1path

(a)

Left images

Right images

Input

Pipeline Output

 Motion Area 
 (KLT)

Scene Flow

t t+1

t t+1

Stereo flow 
 (AKLT)

Optical flow
 (QKLT)

・・・

・・・

Time

Time

(b)

Figure 3. Two methods for scene flow computation (a) Two-step

method for scene flow field computation. In the first step, the re-

gion on which the norms of optical flow vectors are sufficiently

large is selected. In the second step, the scene flow vectors on

the region selected in the first step are computed. (b) Pipeline for

scene flow field computation. The method simultaneously com-

putes all KLT methods with locally constant, affine and quadratic

constrains.

2. Accept uQ and dA on points |uK | ≥ ǫ.

3. Compute Ẋ using uQ and dA.

Figure 3(b) shows the pipeline of this two-phase method.

The spherical grids for spherical histogram are generated

from an icosahedron. Form the original 20 faces, 96 faces

are generated in our discretisation. Let {vi}
96
i=1 to be the

centroid of each face. If we have the relation,

argmin(v⊤
i

Ẋ

|Ẋ|
) = vk (38)

for the scene flow vector Ẋ , the norm |Ẋ| is voted to bin

Fk, whose centroid is vk.
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Table 1. Examples of environments in front of a driving car

Driving status of autonomous car

status of car stopping accelerating constant backing turning left turning right

oncoming car © × © × © × © × © ×

relations a car in front

inter-vehicle distance stationary increasing decreasing

Over-takes and passing conditions

passing condition next lane for passing in the same lane

oncoming car without with

5. Numerical Experiments

Table 3 shows the first frames of the image sequences

and the symbol strings yielded by our algorithm. These

sequences are from KITTI sceneflowDataset2015. Table

2 shows the driving conditions of a car and the environ-

ments around the car. Figure 4 shows examples for the first

frame of images and temporal transportations of the scene

flow fields for 15 image sequences. In graphs in right col-

umn of Figure 4, blue and red lines illustrate the trajectory

of the Wasserstein distance and linear approximation, re-

spectively. Furthermore, for comparison, the first and sec-

ond derivatives of the temporal transportations computed

as temporal trajectory of the Wasserstein distance of scene

flow fields between successive pairs of frames.

There is no sequence for over-taking and passing using

the next lane. 15 results with real image sequences yield

symbol strings with the same properties as those of syn-

thetic image sequence. These results imply that the on-line

algorithm detects the temporal transportation of scene flow

fields as symbol strings while a car with a mounted camera

is driving on streets in cities surrounded by buildings, obsta-

cles and cars and suburban areas surrounded by buildings,

trees and obstacles.

The results of our experiments clarified following prop-

erties.

1. Even if the scene flow vectors contain computational

errors and noise, the time trajectory of the Wasserstein

distance describes the temporal changes in the domi-

nant direction of the scene flow fields.

2. The single peak which appears on the profiles of time

trajectory of the Wasserstein distance corresponds to

the change in the main driving direction while a car is

driving on a curved street.

3. Our method produces the same symbol string to con-

stant foward motion for the case with and without on-

coming car in the next lane.

4. Property 3 implies that both the symbols and the scene

flow field are required for the detection of a moving

car in the next lane, when a car is moving forward with

constant speed.

Experiments using real image sequences show that

our motion symbolisation algorithms yield symbol strings,

which correspond to the motion state of driving cars in var-

ious environments.

The combination of the street geometry in digital maps

and driving conditions allow an on-board machine in a car

to generate symbol strings of the motion situation. These

inferred symbol strings are stored in a dictionary. If images

captured by a car-mounted camera yield a symbol string

with perturbations to entries in the dictionary, the machine

infers abnormalities in the environment around the car.

The machine controls the car to avoid incidents corre-

sponding to detected abnormalities using symbol strings.

This inference of abnormalities by the on-board machine

is achieved by string matching. Therefore, the symbolisa-

tion of temporal scene flow fields is suitable as a procedure

for dictionary generation and for inference by entries of the

dictionary, using string-matching algorithms.

6. Conclusions

In this paper, we have proposed a method for the sym-

bolisation of temporal changes of the environments around

the autonomous robot in work space using the scene flow

field for recognition of events. Our method extracts words

of motion in front of the robots from images captured by a

robot-mounted stereo camera system.

We have also extended the KLT tracker to use piecewise-

linear and locally quadratic constrains for optical flow us-

ing a model-fitting scheme. For scene flow computation,

we have used all the original KLT and our extensions. The

KLT was used for the segmentation of moving region from

background. The KLT with piecewise-linear and locally

quadratic constrains were used for the computation of stereo

disparities between stereo pair images and optical flow be-

tween frames in each image sequence.

This research was supported by the Grants-in-Aid for

Scientific Research funded by the Japan Society for the Pro-

motion of Science.
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Table 2. Statuses of 15 sequences from KITTI sceneflowDataset2015.

No. motion of car front car inter-vehicle dist. oncoming car additional conditions

#1 straight without with shadow on the lane

# 2 straight with constant without parking in both sides

#3 straight without two cars approaching to a cross

#4 straight with increasing without approaching to a cross

#5 straight with constant with

#6 straight with constant with with the centre lane

#7 accelerating with increasing without

#8 turning right with outside of screen with

in the first frame

#9 stop with without approaching

after braking to crossing

#10 turning left with constant without

#11 right curve with constant without

#12 over-taking with without the left car is

passing the right car

#13 straight with without

after over-taking

#14 turning left without with truing a crossing

after braking in city

#15 changing lanes with increasing without shadow on lanes

Table 3. Symbols of 15 sequences from KITTI sceneflowDataset2015. Images are the first frames of sequences.

#1(000) #2(005) #3(008)

ց→→→ →→→→ →ր→ց→
#4(116) #5(106) #6(121)

ցց→→ →→→→ →→→→
#7(122) #8(133) #9(016)

ր→ր→ր րցր→→ ցցցց
#10(170) #11(174) #12(196)

→րցր→→ →→→→ →→→→
#13(197) #14(086) #15(021)

→→→→ րցր→→ →ցր→→

References

[1] Fisher, N. I., Statistical Analysis of Circular Data, Cam-

bridge University Press, 1993.

[2] Chaudhry, R., Ravichandran, A., Hager, G. D., Vidal, R.,

Histograms of oriented optical flow and binet-cauchy kernels

7 53



(a) # 1 image

2 4 6 8 10

10
−1

Frame

W
D

 

 

WD

Line DT

(b) # 1 linear transporta-

tion

(c) # 2 image

2 4 6 8 10

10
−1

Frame

W
D

 

 

WD

Line DT

(d) # 2 linear transporta-

tion

(e) # 3 image

2 4 6 8 10

10
−1

Frame

W
D

 

 

WD

Line DT

(f) # 3 linear transportation

(g) # 4 image

2 4 6 8 10

10
−1

Frame

W
D

 

 

WD

Line DT

(h) # 4 linear transporta-

tion

(i) # 5 image

2 4 6 8 10

10
−1

Frame

W
D

 

 

WD

Line DT

(j) # 5 linear transportation

Figure 4. Results of KITTIsceneflow2015 for sequences 000, 005,

008, 116 and 106.The blue and red lines illustrate the trajectory of

the Wasserstein distance and linear approximation, respectively.
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