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Abstract

Human action recognition from skeletal data is a hot

research topic and important in many open domain appli-

cations of computer vision, thanks to recently introduced

3D sensors. In the literature, naive methods simply trans-

fer off-the-shelf techniques from video to the skeletal rep-

resentation. However, the current state-of-the-art is con-

tended between to different paradigms: kernel-based meth-

ods and feature learning with (recurrent) neural networks.

Both approaches show strong performances, yet they exhibit

heavy, but complementary, drawbacks. Motivated by this

fact, our work aims at combining together the best of the

two paradigms, by proposing an approach where a shallow

network is fed with a covariance representation. Our intu-

ition is that, as long as the dynamics is effectively modeled,

there is no need for the classification network to be deep

nor recurrent in order to score favorably. We validate this

hypothesis in a broad experimental analysis over 6 publicly

available datasets.

1. Introduction

Human action recognition is a paramount domain in

many applicative fields, such as crowd analysis and surveil-

lance, elderly care and autonomous driving vehicles, to

name a few.

Despite the wide interest in video-based approaches, this

type of data is intrinsically affected by several issues, e.g.

privacy, occlusions, light variations and background noise.

An effective alternative to deal with these challenges is rep-

resented by skeletal based representation. This paradigm

relies on theoretical guarantees concerning motion percep-

tion. It has in fact been proved by Johansson [17] that the

displacement of light sources located on keypoints on the

Figure 1. Overview of the proposed Log-COV-Net. Starting from

a time series of skeletal representations (top), we process the input

data (1) with a covariance matrix (2) which is then log-projected

(4). A (separately trained) fully connected layer provides the final

representation for the classification stage.

humans’ skeleton are enough for the visual system to rec-

ognizing the displayed action (such as walking, Fig. 1, top).

Grounding on that, the evolution of systems which can
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acquire the skeletal joints nowadays guarantees a reliable
estimate of 3D body posture - motion capture, e.g. VICON
- and a cheap price - depth sensors, e.g. Kinect. Addition-
ally, replacing videos with skeletal data does not change
the overall general pipeline of action classification: learn-
ing/engineering feature representation from trimmed se-
quences, in order to train a classifier. In practice, for a gen-
eral action a, skeletal data is acquired in the form of the
following multi-dimensional time-series.
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where columns correspond to timestamps (from t = 1 to

t = T ) and triplets of rows [xi(t), yi(t), zi(t)]
⊤ correspond

to 3D spatial coordinates of the i-th joint, i = 1, . . . , J .

Related work

In principle, if each frame in a video was vectorized, we

could gather a data matrix very similar to (1). This is why,

especially in the past year, many algorithms, originally de-

vised for video-based action recognition, have been just

brought to the skeletal data paradigm upon minor modifica-

tions. Among others, we can mention histogram based rep-

resentations to perform temporal pooling [42, 41, 6], extrac-

tion of local spatio-temporal features from the data [4, 30],

also applying bag-of-words or Fisher vector approaches to

aggregate the raw joint representation in a unique action de-

scriptor [6, 1].

However, the performance of transferring a video-based

approach to skeletal data has been proved to be subopti-

mal with respect to more principled method which endows

Pa with some kind of structure which can be exploited in

the classification stage. We call this structured representa-

tion a kernel. Among the many proposed kernels, we can

recall the representation of each joint trajectory as a roto-

translation matrix [35, 36, 15], which leads to exploit the

Lie group and Lie algebra properties of the Special Eu-

clidean group. Alternatively, Hankel matrices [22, 43] have

been attested to be extremely effective in the field of action

recognition from skeletal data, either being paired with Hid-

den Markov Models [22] or with a prototype-based nearest

neighbor classification on the Riemannian manifold [43].

Actually, in both cases of roto-translations and Hankel ma-

trix, countermeasures (such as warping [35, 36]) needs to

be taken against the following issue: in (1), while J is fixed

(being an intrinsic parameter of the device used for skele-

ton’s acquisition), T is not, and can in fact changes from ac-

tion to action (and even among repetition of the same action

performed by the same person). Therefore, a pre-processing

step (such as warping [35, 36]) needs to be applied in order

to fix T across instances, since standard methods only deal

with fixed-length inputs.

In this respect, the covariance representation is a very

straightforward workaround. Formally, the covariance ma-

trix Xa related to (1) is defined as

Xa =
1

T − 1
Pa

(

1

T
IT − 1T

)

P
⊤

a
(2)

where IT is the identity matrix and 1T is the T × T matrix

whose all entries are equal to 1. By definition (2), Xa is a

3J × 3J SPD (symmetric and positive definite) matrix: we

have therefore a fixed-dimensional representation, no mat-

ter which is the length T of the time series (1). In fact the

index t is saturated by the summations related to the row-

by-column matrix products in (2).

In addition to the remarkable property of being invariant

with respect to sequence length T , the covariance represen-

tation was proved to be an effective tool for action classifi-

cation [16, 11, 37, 10, 3]. The reason for this lies in the sta-

tistical computation of second order temporal momentum

of Pa, the latter being very discriminative in recognizing

human actions [16, 37, 3].

Recently, with the introduction of the first big dataset for

action recognition with skeletal representation [32], kernel

methods are frequently difficult to scale up. This is due

the prohibitive dimension of the training/testing Gram ma-

trices, which compute the (kernel) pairwise similarity for

every couple of instances in the dataset. Thus, they have

a quadratic cost as a function of the number of examples.

Therefore, their big size make them simply intractable un-

der a computational perspective. In order to circumvent

such problem, deep learning is an alternative class of state-

of-the-art approaches. In [5, 15, 32, 21] hierarchical fea-

ture representations are learnt from the data itself, provid-

ing an end-to-end trainable encoding & scalable classifica-

tion pipeline. However, the reason for their success depends

on the big number of free parameters to optimize, being

the latter step complicated (the optimization is non-convex,

overfitting is a real issue [24]) and computationally intense

(GPU acceleration is fundamental).

In light of the dichotomy kernels vs. deep nets, many

works have attempted to interconnect the two opposed

paradigms. Namely, implementing kernel methods as neu-

ral networks (e.g. deformable part models [9], multiple ker-

nel learning [29]) or kernelizing existing neural network ar-

chitectures (e.g. convolutional kernel networks [23], SVM

neural networks [33]). Recently, neural networks have been

tailored to be fed with structured matrices (covariance ma-
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trices [14] and rotation matrices [15]). Indeed, classical op-

erations have been re-formulated to accommodate for the

different type of input data adopted: for instance, max pool-

ing is performed on the eigenvalues only [33].

With respect to [9, 29, 23, 33] we notice that, in some

cases, the connections between the two classes are weak

in the sense that one of them impose its own formalism

on the other (e.g. using backpropagation in multiple ker-

nel learning [29]). Also, sometimes the connections are

just a re-interpretation of existing paradigms [9], which is

theoretically interesting but not advantageous in terms of

learning better models. Last, but not least, in all works

[5, 32, 38, 21, 19, 14, 15] the network adopted are deep,

which actually makes the overall pipeline difficult to train,

since overfitting must be controlled, the problem of local

minima and saddle points must be faced, massive training

data is required, as well as expensive hardware resources.

Paper Contributions

Within the previous context, our paper proposes the follow-

ing main contribution.

1. Within the existing literature of data-driven representa-

tion from structured input matrix [5, 32, 38, 21, 19, 14,

15], we propose a novel network architecture, fed by

covariance representation which ultimately intertwines

hand-crafted kernel methods with data-driven feature

learning.

2. We posit that when action’s kinematics is properly en-

coded through a kernel, there is no need to train deep

architectures. Shallow networks are indeed effective.

3. We confirm the previous intuition within a broad

experimental evaluation over 6 publicly available

datasets in 3D action recognition scoring a favorable

performance in terms of improvement over state-of-

the-art classification methods.

4. We can recover from the scalability issue of kernel

methods and mitigate the training issues of neural net-

works. Therefore, we achieve a strong performance

and training/inference efficiency on CPU, ultimately

devising an effective action recognition system for the

open domain.

Paper outline.

In Section 2, we describe the proposed approach, called

Log-COV-Net, for 3D action recognition from skeletal data.

Section 3 presents a broad experimental evaluation, while

Section 4 provides a comprehensive discussion of them.

Finally, Section 5 draws conclusions, highlights limitation

and profiles future work.

2. Log-COV-Net: Log-Covariance Network

Covariance-based representations for action recognition

from skeletal joints have attested a superior performance

[16, 11, 37, 10, 3]. However, in order to fully exploit the

structure which is induced by the covariance representa-

tion, classifiers have to be kernelized in order to fully ex-

ploit Riemannian geometry when learning decision bound-

aries to discriminate across different actions. Despite this

being mathematically fine, some computational drawbacks

arise. Indeed, training such a classifier often requires the

computation of Gram matrices, whose quadratic complex-

ity in terms of data instances makes the whole procedure

intractable in the big data regime.

On the other side, feature learning approaches via neural

networks fully benefit from a gigantic amount of training

examples to optimize the huge number (millions, billions)

of parameters present in a deep network. At the same time,

this is the main reason for the astonishing results scored

by data-representations and the source of difficulty in ef-

fectively training such networks. Indeed, the optimization

problem is non-convex, prone to overfitting, requiring ac-

celeration through parallel GPU computation.

Therefore, despite the strong performance provided by

either covariance-based or feature learning paradigms, each

of them has its own drawbacks (scalability versus difficult

training, respectively). To this end, in this work we aim at

intertwining covariance-based and feature approaches in or-

der to combine their pros and get rid of the cons. Namely,

our unifying approach will achieve state-of-the-art classifi-

cation, guaranteeing scalability to the big data regime and

allowing easy and fast training/inference on CPU. This is

possible by leveraging our intuition that, since exploiting

the powerful covariance representation to encode action dy-

namics, there is no need for the network to be deep. In fact,

shallow architectures are just enough in mining discrimina-

tive patterns for action classification.

In the rest of this Section, we present the proposed ap-

proach called Log-Covariance Network, which is sketched

in Fig. 1, and we provide and intuition for it.

Log-Covariance Network. For each action instance a,

acquired in the form of the multi-dimensional time series

(1), we compute a covariance matrix a according to formula

(2). Then, we project Xa by a logarithm mapping log. By

exploiting the eigendecomposition

Xa = U











λ1 0 . . . 0
0 λ2 . . . 0

. . .

0 0 . . . λ3J











U
⊤ (3)

35



for Xa, logXa is trivial to compute in as follows

logXa = U











log λ1 0 . . . 0
0 log λ2 . . . 0

. . .

0 0 . . . log λ3J











U
⊤, (4)

since all λi are strictly positive. Formally, this is interpreted

as a projection over the tangent space [13, 12, 11], which is

locally Euclidean, naturally inducing a vectorization which

does not corrupt the geometry. Precisely, we define va to be

the vectorization of all diagonal and lower-diagonal entries1

of logXa: as similarly done in [16, 37, 3] such intermediate

representation is fully able to provide and Euclidean (vec-

torial) representation which keeps the powerfulness of the

Riemannian encoding as SPD matrix [13, 11, 12]. Finally,

the vector va is fed into a fully connected (FC) layer, fol-

lowed by a sigmoid linearity, which is in turn fed into a

classification layer where a hinge loss is exploited. We call

our network Log-COV-Net.

Implementation details. Despite all matrices Xa are pos-

itive definite in theory, due to numerical issues, the com-

puted eigenvalues are not always positive: before applying

the log mapping, we replace λi with λ′

i
= λi + 10−4. With

respect to Fig. 1, note that the “covariance” and “logarithm”

layers (which implement equation (2) and (4), respectively)

are parameter-free. The only parameter to be trained are the

weights W of the fully connected layer and, of course, the

ones of the final classification layer. In our experimental

setup, we found that if we jointly train W and the clas-

sifier’s parameters, we are highly sensitive to the size of

the FC layer. Differently, we achieve more stability by pre-

training the FC weights with a cross-entropy loss, also ex-

ploiting the powerfulness of supervision. For doing that, we

use conjugate gradient descent for all experiments except

the ones on NTU-RGB+D [32] dataset (Section 3.6) where

we exploit ADAM optimizer with mini-batches of 1024 el-

ements. As a final step, we separately train the hinge-loss

classification layer (using libLINEAR [7]).

3. Experiments

We present here the classification accuracies registered

by the proposed Log-COV-Net in a broad comparison with

several state-of-the-art methods on a plethora of benchmark

datasets. Namely, we evaluated on MSR-Action3D [20],

MSR-Action-Pairs (MSR-pairs) [27], Gaming-3D (G3D)

[2], Florence3D [31], UTKinect [40], MSRC-Kinect12 [8],

HDM-05 [25] and NTU RGB+D [32]. In all cases, we fol-

lowed the respective recommended training/testing proto-

cols.

1Due to simmetry, the upper-diagonal elements are the same as the

lower-diagonal ones

As a common preprocessing steps, we com-

pute the relative difference of each joint’ triplets

[xi(t), yi(t), zi(t)]
⊤ with the position of the root joint

[xroot(t), yroot(t), zroot(t)]
⊤ for any t. Typically the hip

center is adopted as the root. This reduces the actual

dimension of Xa to 3(J − 1)× 3(J − 1). Also, the size of

the FC layer was cross-validated through grid search within

8, 16, 36, 64, 128, 256 and 512.

3.1. MSR­Action 3D

The dataset consists of 20 actions from 10 different sub-

jects, and is collected with a depth sensor. Each subject per-

formed every action twice or more (total 557 sequences).

The 3D locations of 20 joints are provided with the dataset.

This is a challenging dataset because many of the actions

are highly similar to each other.

Comparative analysis We benchmarked the proposed

(Log-COV-Net) against the Hankel-based approaches [22,

43], used in tandem with either a Hidden Markov

Model (HMM) or a Riemannian-nearest neighbors classi-

fier with prototypes (Hankel-NN-proto). Also, we com-

pared against the tensor representation provided by [18]

in using Sequence and Dynamics Compatibility Kernels

(SCK+DCK). For covariance based approaches, we also

included Kernelized-COV, the kernelization proposed by

[3]. We considered the kernel networks of [37] where trial-

specific Gram matrix are fed in a second-level kernel re-

sponsible for ultimate classification. Finally, we included

the LSTM-based approach of [21] where a graph represents

skeleton’s geometry.

Our experimental findings on MSR-Action-3D are re-

ported in Table 1.

Hankel-HMM [22] 89.0%

SCK + DCK [18] 94.0%

Hankel-NN-proto [43] 94.7%

graph-joint-LSTM [21] 94.8%

Kernelized-COV [3] 96.8%

Ker-RP-RBF [37] 96.9%

Log-COV-Net (proposed) 97.4%
Table 1. Evaluation on MSR-Action-3D using the protocol of [20].

3.2. Gaming 3D

The dataset includes 20 different gaming actions like

golf swing, tennis serve or bowling. 10 subjects were in-

volved in the acquisition, each of them performing each ac-

tion three or more times for a total of 663 action sequences,

represented by the displacement in time of 20 joints.

Comparative analysis We benchmarked with [26] which

combined Restricted Boltzmann machines and Hidden

Markov Models. Also, we included several Lie geometry-

based methods to encode roto-translations: the shallow ap-
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proaches Lie Group [35] and Lie Algebra [36] and the in-

tertwined Lie/deep method [15]. For the latter, we selected

LieNet-3Block which is the best performing architecture

within the ones proposed in [15].

Results are reported in Table 2.

RBM + HMM [26] 86.4%

LieNet-3Blocks [15] 89.1%

Lie Algebra [36] 90.9%

Lie Group [35] 91.1%

Log-COV-Net (proposed) 93.0%

Table 2. Evaluation on Gaming 3D using the protocol of [36].

3.3. UT Kinect

This dataset was captured using a stationary Kinect sen-

sor, the 3D locations of 20 joints are provided. 10 different

subjects perform 10 different actions (twice each). This is a

challenging dataset due to variations in the view point and

high intra-class variations.

Comparative analysis Our proposed Log-COV-Net is

compared against Lie Group representation [35], HMM fed

with Hankel matrices [22], PCA on manifold [1] and the

LSTM with graph-based encoding of human skeleton [21].

In addition, we also compared with the reformulation of

Histogramd of Oriented Gradients (HOG) features for joints

[41] and the aggregation of local spatio-temporal features

extracted from raw data [44].

Results are reported in Table 3.

Histograms of 3D joints [41] 90.9%

Spatio-temporal local features [44] 87.9%

Lie Group [35] 97.1%

Hankel-HMM [22] 86.8%

Manifold PCA [1] 94.9%

graph-joint-LSTM [21] 97.0%

Log-COV-Net (proposed) 98.3%

Table 3. Evaluation on UT Kinect using the protocol of [35].

3.4. MSRC­Kinect 12

An acquisition of six hours and 40 minutes involves 30

people performing 12 gestures. In total, 6,244 gesture in-

stances. The motion files contain Kinect estimated trajecto-

ries of 20 joints.

Comparative analysis Several covariance-based ap-

proaches are compared against the proposed Log-COV-Net.

Precisely, we considered the Bregman divergences for the

infinite dimensional operators [11], the temporal pyramid

of covariance descriptors [16] and the kernelization recently

provided by [3]. Also, we included Ker-RP-POL and Ker-

RP-RBF, the two kernel networks of [37].

Results are reported in Table 4.

Bregman-div [11] 89.9%

Ker-RP-POL [37] 90.5%

Ker-RP-RBF [37] 92.3%

Pyramid of COV [16] 93.6%

Ker-COV [3] 95.0%

Log-COV-Net (proposed) 98.5%

Table 4. Evaluation on MSRC Kinect 12 using the protocol of [16].

3.5. HDM­05

This dataset contains more than tree hours of systemat-

ically recorded and well-documented motion capture data

using a 240Hz VICON system to acquire the gestures of 5

non-professional actors via 31 markers. Motion clips have

been manually cut out and annotated into roughly 100 dif-

ferent motion classes: on average, 10-50 realizations per

class are available. In order to be consistent with the litera-

ture, we both replicate the 14 classes evaluation [37, 3] and

report the results on the whole dataset.

14-classes all-classes

sparse-D-SPD [13] 76.1% N.A.

COV-discriminative [39] 79.8% N.A.

SPD-dim-red [12] 81.9% 40.0%

Bregman-divergence [11] 82.5% N.A.

Hankel-NN-proto [43] 86.3% N.A.

Region-COV [34] 91.5% 58.9%

Ker-RP-POL [37] 93.6% 64.3%

Ker-RP-RBF [37] 96.8% 66.2%

Log-COV-Net (proposed) 99.1% 72.0%

Table 5. Evaluation on HDM-05 using the two protocols of [37].

Comparative analysis In a broad experimental validation

of Log-COV-Net, we considered the sparse coding with dic-

tionary learning for SPD matrices of [13], the covariance

discriminative learning framework of [39], and the dimen-

sionality reduction technique of [12] for SPD matrices. In

addition to Bregman-divergence of the infinite covariance

representation [11] and the fast region covariance descrip-

tor of [34], we included the trial-specific encoding of an

action with a Gram matrix [37] reporting both Ker-RP-POL

and Ker-RP-RBF (polynomial vs. Gaussian RBF kernel).

We also compared against [43].

Resultsare reported in Table 5, adding the performance

of our Log-COV-Net to the published results of [37, Table

4.].

3.6. NTU RGB+D

This huge dataset contains 60 different action classes in-

cluding daily, mutual, and health-related actions. 40 sub-

jects where involved in the acquisition, for a total number

of about 60K instances, captured from 3 different views.
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According the suggested experimental protocols [32], we

performed a cross validation by testing the model on either

different subjects or view with respect to the ones used in

training.

Comparative analysis We compared the proposed Log-

COV-Net on the NTU-RGB+D dataset. We benchmarked

the approaches [42, 28] which rely on normal vector com-

putations, either with a temporal pooling of 3D normals

[28] or with modeling of 3D+time spatio-temporal coor-

dinates as a whole [42]. We included the generalization

of HOG for skeletal joints [41], also considering the ag-

gregation of raw joints data by means a Gaussian mixture

model and Fisher Vectors extraction. We additionally re-

ported the performance of Lie geometry representation by

either directly employing Lie Group structure [35] or the

Riemannian-training of a neural network [15].

cross-subject cross-view

Histogram of 3D Normals [28] 30.6% 7.3%

4D Normal Vectors [42] 31.8% 13.6%

Histograms of 3D joints [41] 32.4% 22.3%

Fisher Vectors [6] 38.6% 41.4%

Lie Group [35] 50.1% 52.8%

HB-RNN [5] 56.3% 64.0%

joint-RNN [32] 59.1% 64.1%

LieNet-3Blocks [15] 61.4% 67.0%

joint-LSTM [32] 60.7% 67.3%

graph-joint-LSTM [21] 69.2% 77.7%

Log-COV-Net (proposed) 60.9% 63.4%

Table 6. Evaluation on NTU RGB+D with two protocols of [32].

Actually, the release of NTU-RGB+D in 2016 promoted

a big boost in training deep architectures for action recog-

nition from skeletal joints. Within the most effective neu-

ral network approaches, Recurrent Neural Network (RNN)

play a pivotal role. Indeed, [32] trained a RNN by directly

feeding raw skeletal data. [5] performed a hierarchical de-

composition of human skeleton into arms-legs-torso, mod-

eling each of them with a network and fusing all scores in

a bottom-up fashion. Long-short term memory units boosts

RNN: [32] used them from raw joints and [21] directly en-

coded the skeletal geometry by means of a graph.

Results are reported in Table 6

4. Discussion

In this Section we analyze all the results scored on the

datasets we consider (Tables 1, 2, 3, 4, 5 and 6). The discus-

sion is carried on according to the cardinality of the training

sets, as provided in Table 7.

N ∼ 102 − In the small data regime, the amount of exam-

ples available does not allow to fully benefit from the

learning from data paradigm. Nevertheless, our pro-

posed Log-COV-Net is performing on par with respect

to the best method reported hereby (0.2% negative gap

on Florence 3D), while improving all baselines in all

other cases with about 1% on average.

N ∼ 103 − Increasing by factor 10, we achieve a medium

data regime which attested to be the ideal setting for

our proposed shallow network. In such a case we reg-

ister outstanding improvements of Log-COV-Net over

the state-of-the-art: +3.5% on MSRC-Kinect 12 and

+5.8% in the all-class case for HDM-05. This is a

strong empirical evidence that the combination of a

powerful temporal encoding (through covariance) al-

lows a shallow net to achieve a top performance.

N ∼ 104 − When moving to the big data regime, we have

lots of training data and the relatively small number of

free parameters in Log-COV-Net does not fully capture

all available discriminants. Indeed, Log-COV-Net is

quite gapped by LSTM architectures2 [32, 21]. In spite

of that, we can nevertheless see that all hand-crafted

approaches [42, 28, 41, 6, 35] are greatly outperformed

in performance, but also scoring on par with respect

to alternative deep architectures (e.g. [15] on cross-

subject protocol or the hierarchical RNN on the cross-

view). Again, an effective kinematic encoding allows

a shallow net to score a strong overall performance.

One further reason for our method to be appealing for

open domain action recognition systems is the computa-

tional efficiency. Indeed, we adopt a very different per-

spective from main approaches in the literature. Indeed, we

avoid dictionary-based or general pooling aggregation tech-

niques (which slow training) or expensive computational

pre-processing such as temporal warping of sequences in

order to achieve a fixed temporal length [35, 36]. Ad-

ditionally, we can simply run our training/inference stage

on CPU: 20-30 minutes for training Log-COV-Net on NTU

RGB+D [32], with almost realtime inference. If compared

to [32, 21, 15, 5], the training time in this case is much

longer even if using GPU acceleration. Last, but not least,

we achieve a quite compact feature representation (the size

of the FC is 512 at maximum), which is much much smaller

with respect to other approaches, such as [18] or [35].

Thanks to such a compact representation, paired with an

extreme training/computational efficiency, we bring strong

evidence of the effectiveness of the proposed Log-COV-Net.

5. Conclusion, Limitations and Future Work

In this work we intertwine kernel methods and feature

learning by proposing Log-COV-Net, a shallow network

2Note that, on the small data regime, our Log-COV-Net is superior to

this architectures: e.g., Tab. 3, +1.3% on graph-joint-LSTM [21].
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MSR-Action 3D Gaming 3D UT Kinect HDM-05, 14-classes

N ∼ 102 N ∼ 102 N ∼ 102 N ∼ 102

ι = +0.5% ι = +1.9% ι = +1.3% ι = +2.3%

MSRC-Kinect12 HDM-05, all-classes NTU-RGB+D, cross-subject NTU-RGB+D, cross-view

N ∼ 103 N ∼ 103 N ∼ 104 N ∼ 104

ι = +3.5% ι = +5.8% ι = -8.3% ι = -14.3%

Table 7. Comprehensive evaluation of the proposed approach, measuring the (positive or negative) improvement ι of the proposed Log-

COV-Net with respect to the best among the reported methods. For any dataset, we also provide N , that is the order of magnitude of the

available instances.

fed with log-projected covariance representation of skele-

tal joints data for action recognition.

We empirically prove that, after a powerful structured

encoding of action dynamics, there is no actual need to train

deep networks for achieving state-of-the-art performance,

being a shallow configuration simply enough. Such find-

ing results in an extremely optimized pipeline which can be

trained on CPU very fast, performing action classification

very efficiently and also relying on a much more compact

data representation.

Despite the overall performance is good on the small data

regime (hundreds of examples) and remarkable on thou-

sands of instances, one additional order of magnitude (104)

makes our Log-COV-Net suffer with respect to the more

elaborated LSTM (which are yet more difficult to train than

our network).

Therefore, as a future work, we intend to fill this gap, still

preserving compactness of representation and efficiency for

training/inference on CPU.
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