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Abstract

Light field imaging is limited in its computational pro-

cessing demands of high sampling for both spatial and an-

gular dimensions. Single-shot light field cameras sacri-

fice spatial resolution to sample angular viewpoints, typi-

cally by multiplexing incoming rays onto a 2D sensor ar-

ray. While this resolution can be recovered using compres-

sive sensing, these iterative solutions are slow in processing

a light field. We present a deep learning approach using a

new, two branch network architecture, consisting jointly of

an autoencoder and a 4D CNN, to recover a high resolution

4D light field from a single coded 2D image. This network

decreases reconstruction time significantly while achieving

average PSNR values of 26-32 dB on a variety of light fields.

In particular, reconstruction time is decreased from 35 min-

utes to 6.7 minutes as compared to the dictionary method

for equivalent visual quality. These reconstructions are per-

formed at small sampling/compression ratios as low as 8%,

allowing for cheaper coded light field cameras. We test

our network reconstructions on synthetic light fields, simu-

lated coded measurements of real light fields captured from

a Lytro Illum camera, and real coded images from a cus-

tom CMOS diffractive light field camera. The combination

of compressive light field capture with deep learning allows

the potential for real-time light field video acquisition sys-

tems in the future.

1. Introduction

Light fields, 4D representations of light rays in unoc-

cluded space, are ubiquitous in computer graphics and vi-

sion. Light fields have been used for novel view synthe-

sis [24], synthesizing virtual apertures for images post-

capture [26], and 3D depth mapping and shape estima-

tion [35]. Recent research has used light fields as the raw

input for visual recognition algorithms such as identifying

materials [40]. Finally, biomedical microscopy has em-
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ployed light field techniques to improve issues concerning

aperture and depth focusing [28].

While the algorithmic development for light fields has

yielded promising results, capturing high resolution 4D

light fields at video rates is difficult. For dense sam-

pling of the angular views, bulky optical setups involving

gantries, mechanical arms, or camera arrays have been in-

troduced [44, 37]. However, these systems either cannot

operate in real-time or must process large amounts of data,

preventing deployment on embedded vision platforms with

tight energy budgets. In addition, small form factor, single-

shot light field cameras such as pinhole or microlens arrays

above image sensors sacrifice spatial resolution for angular

resolution in a fixed trade-off [36, 32]. Even the Lytro Illum,

the highest resolution consumer light field camera available,

does not output video at 30 fps or higher. There is a clear

need for a small form-factor, low data rate, cheap light field

camera that can process light field video data efficiently.

To reduce the curse of dimensionality when sampling

light fields, we turn to compressive sensing (CS). CS states

that it is possible to reconstruct a signal perfectly from small

number of linear measurements, provided the number of

measurements is sufficiently large, and the signal is sparse

in a transform domain. Thus CS provides a principled way

to reduce the amount of data that is sensed and transmitted

through a communication channel. Moreover, the number

of sensor elements also reduces significantly, paving a way

for cheaper imaging. Recently, researchers introduced com-

pressive light field photography to reconstruct light fields

captured from coded aperture/mask based cameras at high

resolution [30]. The key idea was to use dictionary-based

learning for local light field atoms (or patches) coupled with

sparsity-constrained optimization to recover the missing in-

formation. However, this technique required extensive com-

putational processing on the order of hours for each light

field.

In this paper, we present a new class of solutions for the

recovery of compressive light fields at a fraction of the time-

complexity of the current state-of-the-art, while delivering

comparable (and sometimes even better) PSNR. We lever-
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age hybrid deep neural network architectures that draw in-

spiration from simpler architectures in 2D inverse problems,

but are redesigned for 4D light fields. We propose a new

network architecture consisting of a traditional autoencoder

and a 4D CNN which can invert several types of compres-

sive light field measurements including those obtained from

coded masks [36] and Angle Sensitive Pixels [39, 15]. We

benchmark our network reconstructions on simulated light

fields, simulated compressive capture from real Lytro Illum

light fields provided by Kalantari et al. [18], and real images

from a prototype ASP camera [15]. We achieve processing

times on the order of a few minutes, which is an order of

magnitude faster than the dictionary-based method. This

work can help bring real-time light field video at high spa-

tial resolution closer to reality.

2. Related Work

Light Fields and Capture Methods: The modern for-

mulation of light fields were first introduced independently

by Levoy and Hanrahan [27] and Gortler et al. [14]. Since

then, there has been numerous work in view synthesis,

synthetic aperture imaging, and depth mapping, see [26]

for a broad overview. For capture, gantries or camera ar-

rays [44, 37] provide dense sampling while single-shot cam-

era methods such as microlenses [32], coded apertures [25],

masks [36], diffractive pixels [15], and even diffusers [2]

and random refractive water droplets [41] have been pro-

posed. All these single-shot methods multiplex angular rays

into spatial bins, and thus need to recover that lost informa-

tion in post-processing.

Light Field Reconstruction: Several techniques have

been proposed to increase the spatial and angular resolu-

tion of captured light fields. These include using explicit

signal processing priors [24] and frequency domain meth-

ods [34]. The work closest to our own is compressive light

field photography [30] that uses learned dictionaries to re-

construct light fields, and extending that technique to Angle

Sensitive Pixels [15]. We replace their framework by us-

ing deep learning to perform both the feature extraction and

reconstruction with a neural network. Similar to our work,

researchers have recently used deep learning networks for

view synthesis [18] and spatio-angular superresolution [45].

However, all these methods start from existing 4D light

fields, and thus they do not recover light fields from com-

pressed or multiplexed measurements. Recently, Wang et

al. proposed a hybrid camera system consisting of a DSLR

camera at 30 fps with a Lytro Illum at 3fps, and used deep

learning to recover light field video at 30 fps [?]. Our work

hopes to make light field video processing cheaper by de-

creasing the spatio-angular measurements needed at capture

time.

Compressive Sensing: There have been numerous

works in compressed sensing [8] resulting in various al-

(θ,φ)
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Lytro Illum (microlenses) 

Coded Apertures/Mask 

Angle Sensitive Pixels 

4D Light Field 

Figure 1. Light Field Capture: Light field capture has been per-

formed with various types of imaging systems, but all suffer from

challenges with sampling and processing this high dimensional in-

formation.

gorithms to recover the original signal. The classical al-

gorithms [11, 7, 6] rely on the assumption that the sig-

nal is sparse or compressible in transform domains like

wavelets, DCT, or data dependent pre-trained dictionaries.

More sophisticated algorithms include model-based meth-

ods [3, 19] and message-passing algorithms [12] which im-

pose a complex image model to perform reconstruction.

However, all of these algorithms are iterative and hence

are not conducive for fast reconstruction. Similar to our

work, deep learning has been used for recovering 2D images

from compressive measurements at faster speeds than itera-

tive solvers. Researchers have proposed stacked-denoising

autoencoders to perform CS image and video reconstruc-

tion respectively [31, 16]. In contrast, Kulkarni et al. show

that CNNs, which are traditionally used for inference tasks,

can also be used for CS image reconstruction [21] . We

marry the benefits of the two types of architectures men-

tioned above and propose a novel architecture to 4D light

fields that introduce additional challenges and opportunities

for deep learning + compressive sensing.

3. Light Field Photography

In this section, we describe the image formation model

for capturing 4D light fields and how to reconstruct them.

A 4D light field is typically parameterised with either

two planes or two angles [27, 14]. We will represent light

fields l(x, y, θ, φ) with two spatial coordinates and two an-

gular coordinates. For a regular image sensor, the angular

coordinates for the light field are integrated over the main

lens, thus yielding the following equation:

i(x, y) =

∫

θ

∫

φ

l(x, y, θ, φ)dφdθ, (1)

where i(x, y) is the image and l(x, y, θ, φ) is the light field.
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Single-shot light field cameras add a modulation func-

tion Φ(x, y, θ, φ) that weights the incoming rays [43]:

i(x, y) =

∫

θ

∫

φ

Φ(x, y, θ, φ) · l(x, y, θ, φ)dφdθ. (2)

When we vectorize this equation, we get ~i = Φ~l where

the ~l is the vectorized light field, ~i is the vectorized im-

age, and Φ is the matrix discretizing the modulation func-

tion. Since light fields are 4D and images are 2D, this is in-

herently an underdetermined set of equations where Φ has

more columns than rows.

The matrix Φ represents the linear transform of the opti-

cal element placed in the camera body. This is a decimation

matrix for lenslets, comprised of random rows for coded

aperture masks, or Gabor wavelets for Angle Sensitive Pix-

els (ASPs).

3.1. Reconstruction

To invert the equation, we can use a pseudo-inverse
~l = Φ†~i, but this solution does not recover light fields ad-

equately and is sensitive to noise [43]. Linear methods do

exist to invert this equation, but sacrifice spatial resolution

by stacking image pixels to gain enough measurements so

that Φ is a square matrix.

To recover the light field at the high spatial image reso-

lution, compressive light field photography [30] formulates

the following ℓ1 minimization problem:

min
α

||~i− ΦDα||2
2
+ λ||α||1 (3)

where the light field can be recovered by performing l =
Dα. Typically the light fields were split into small patches

of 9 × 9 × 5 × 5 (x, y, θ, φ) or equivalently sized atoms to

be processed by the optimization algorithm. Note that this

formulation enforces a sparsity constraint on the number of

columns used in dictionary D for the reconstruction. The

dictionary D was learned using a set of million light field

patches captured by a light field camera and trained using a

K-SVD algorithm [1]. To solve this optimization problem,

solvers such as ADMM [4] were employed. Reconstruc-

tion times ranged from several minutes for non-overlapping

patch reconstructions to several hours for overlapping patch

reconstructions.

4. Deep Learning for Light Field Reconstruc-

tion

We first discuss the datasets of light fields we use for

simulating coded light field capture along with our training

strategy before discussing our network architecture.

Extract	4D	

Patches	from	

Light	Field	

Simulate	Coded	

Capture	
Network	

Rearrange	

Patches	to	form	

Reconstructed	

LF	

Φ(x, y,θ,φ)

Figure 2. Pipeline: An overview of our pipeline for light field

reconstruction.

4.1. Light Field Simulation and Training

One of the main difficulties for using deep learning for

light field reconstructions is the scarcity of available data

for training, and the difficulty of getting ground truth, es-

pecially for compressive light field measurements. We em-

ploy a mixture of simulation and real data to overcome these

challenges in our framework.

Synthetic Light Field Archive: We use synthetic light

fields from the Synthetic Light Field Archive [42] which

have resolution (x, y, θ, φ) = (593, 840, 5, 5). Since the

number of parameters for our fully-connected layers would

be prohibitively large with the full light field, we split the

light fields into (9, 9, 5, 5) patches and reconstruct each lo-

cal patch. We then stitch the light field back together using

overlapping patches to minimize edge effects. This how-

ever does limit the ability of our network to use contextual

light field information from outside this (9, 9, 5, 5) patch for

reconstruction. However, as GPU memory improves with

technology, we anticipate that larger patches can be used in

the future with improved performance.

Our training procedure is outlined in Figure 2. We pick

50,000 random patches from four synthetic light fields, and

simulate coded capture by multiplying by Φ to form images.

We then train the network on these images with the labels

being the true light field patches. Our training/validation

split was 85:15. We finally test our network on a brand

new light field never seen before, and report the PSNR as

well as visually inspect the quality of the data. In particular,

we want to recover parallax in the scenes, i.e. the depth-

dependent shift in pixels away from the focal plane as the

angular view changes.

Lytro Illum Light Field Dataset: In addition to syn-

thetic light fields, we utilize real light field captured from

a Lytro Illum camera [18]. To simulate coded capture, we

use the same Φ models for each type of camera and for-

ward model the image capture process, resulting in simu-

lated images that resemble what the cameras would output

if they captured that light field. There are a total of 100

light fields, each of size (364, 540, 14, 14). For our sim-

ulation purposes, we use only views [6, 10] in both θ and

φ, to generate 5x5 angular viewpoints. We extract 500,000

patches from these light fields of size (9, 9, 5, 5), simulate
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coded capture, and use a training/validation split of 85:15.

4.2. Network Architecture

Our network architecture consists of a two branch net-

work, which one can see in Figure 3. In the upper branch,

the 2D input patch is vectorized to one dimension, then fed

to a series of fully connected layers that form a stacked au-

toencoder (i.e. alternating contracting and expanding lay-

ers). This is followed by a 4D convolutional layer. The

lower branch is a 4D CNN which uses a fixed interpolation

step of multiplying the input image by ΦT to recover a 4D

spatio-angular volume, and then fed through a series of 4D

convolutional layers with ReLU nonlinearities. Finally the

outputs of the two branches are combined with weights of

0.5 to estimate the light field.

There are several reasons why we converged on this par-

ticular network architecture. Autoencoders are useful at ex-

tracting meaningful information by compressing inputs to

hidden states [38], and our autoencoder branch helped to ex-

tract parallax (angular views) in the light field. In contrast,

our 4D CNN branch utilizes information from the linear re-

construction by interpolating with ΦT and then cleaning the

result with a series of 4D convolutional layers for improved

spatial resolution. Combining the two branches thus gave

us good angular recovery along with high spatial resolution

(please view the supplemental video to visualize the effect

of the two branches). Our approach here was guided by a

high-level empirical understanding of the behavior of these

network streams, and thus, it is likely to be one of several

architecture choices that could lead to similar results. In

Figure ??, we show the results of using solely the upper or

lower branch of the network versus our two stream architec-

ture, which helped influence our design decisions. To com-

bine the two branches, we chose to use simple averaging of

the two branch outputs. While there may be more intelli-

gent ways to combine these outputs, we found that this suf-

ficed to give us a 1-2 dB PSNR improvement as compared

to the autoencoder or 4D CNN alone, and one can observe

the sharper visual detail in the inlets of the figure.

For the loss function, we observed that the regular ℓ2
loss function gives decent reconstructions, but the amount

of parallax and spatial quality recovered in the network at

the extreme angular viewpoints were lacking. We note this

effect in Figure 4. To remedy this, we employ the follow-

ing weighted ℓ2 loss function which penalizes errors at the

extreme angular viewpoints of the light field more heavily:

L(l, l̂) =
∑

θ,φ

W (θ, φ) · ||l(x, y, θ, φ)− l̂(x, y, θ, φ)||2
2
, (4)

where W (θ, φ) are weights that increase for higher values

of θ, φ. The weight values were picked heuristically for

large weights away from the center viewpoint with the fol-

lowing values: W (θ, φ) =


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. This loss function gave an average improvement of 0.5dB

in PSNR as compared to ℓ2.

4.2.1 Training Details

All of our networks were trained using Caffe [17] and us-

ing a NVIDIA Titan X GPU. Learning rates were set to

λ = .00001, we used the ADAM solver [20], and mod-

els were trained for about 60 epochs for 7 hours or so. We

also finetuned models trained on different Φ matrices, so

that switching the structure of a Φ matrix did not require

training from scratch, but only an additional few hours of

finetuning.

For training, we found the best performance was

achieved when we trained each branch separately on the

data, and then combined the branches and jointly finetuned

the model further on the data. Training from scratch the en-

tire two branch network led to suboptimal performance of

2-3 dB in PSNR, most likely because of local minima in the

loss function as opposed to training each branch separately

and then finetuning the combination.

5. Experimental Results

In this section, we show experimental results on both

simulated light fields, real light fields with simulated cap-

ture, and finally real data taken from a prototype ASP cam-

era [15]. We compare both visual quality and reconstruction

time for our reconstructions, and compare against baselines

for each dataset.

5.1. Synthetic Experiments

We first show simulation results on the Synthetic Light

Field Archive. We used as our baseline the dictionary-based

method from [30, 15] with the dictionary trained on syn-

thetic light fields, and we use the dragon scene as our test

case. We utilize three types of Φ matrices, a random Φ ma-

trix that represents the ideal 4D random projections matrix

(satisfying RIP [5]), but is not physically realizable in hard-

ware (rays are arbitrarily summed from different parts of the

image sensor array). We also simulate Φ for coded masks

placed in the body of the light field camera, a repeated bi-

nary random code that is periodically shifted in angle across

the sensor array. Finally, we use the Φ matrix for ASPs

which consists of 2D oriented sinusoidal responses to angle

as described in [15]. As can be seen in Figure 5, the ASPs
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Figure 3. Network Architecture: Our two branch architecture for light-field reconstruction. Measurements for every patch of size

(9, 9, 5, 5) are fed into two parallel paths, one autoencoder consisting of 6 fully connected followed by one 4D convolution layer, and

the other consisting of five 4D convolutional layers. The outputs of the two branches are added with equal weights to obtain the final

reconstruction for the patch. Note that the size of filters in all convolution layers is 3× 3× 3× 3.

Figure 4. Branch Comparison: We compare the results of using only the autoencoder or 4D CNN branch versus the full two branch

network. We obtain better results in terms of PSNR for the two-stream network than the two individual branches.

and the mask reconstructions perform slightly better than

the ideal random projections. It is hard to justify why ideal

projections are not the best reconstruction in practice, but it

might be because the compression ratio is too low at 8% for

random projections or because there are no theoretical guar-

antees that the network can solve the CS problem. All the

reconstructions do suffer from blurred details in the zoomed

inlets, which means that there is still spatial resolution that

is not recovered by the network.

Compression ratio is the ratio of independent coded

light field measurements to angular samples to reconstruct

in the light field for each pixel. This directly corresponds

to the number of rows in the Φ matrix which correspond to

one spatial location (x, y). We show three separate com-

pression ratios and measure the PSNR for ASP light field

cameras in Table 1 with non-overlapping patches. Not sur-

prisingly, increasing the number of measurements increased

the PSNR. We also compared for ASPs using our baseline

method based on dictionary learning. Our method achieves

a 2-4 dB improvement over the baseline method as we vary

the number of measurements.

Noise: We also tested the robustness of the networks

to additive noise in the input images for ASP reconstruc-

tion. We simulated Gaussian noise of standard deviation of

0.1 and 0.2, and record the PSNR and reconstruction time

which is display in Table 2. Note that the dictionary-based

algorithm takes longer to process noisy patches due to its it-

erative ℓ1 solver, while our network has the same flat run

15



Figure 5. Error in Angular Viewpoints: Here we visualize the

ℓ2 error for a light field reconstruction with respect to ground truth

using a standard ℓ2 loss function for training. Notice how the ex-

treme angular viewpoints contain the highest error. This helped

motivate the use of a weighted ℓ2 function for training the net-

work.

Number of Measurements Our Method (PSNR) Dictionary Method (PSNR)

N = 2 25.40 dB 22.86 dB

N = 15 26.54 dB 24.40 dB

N = 25 27.55 dB 24.80 dB

Table 1. Compression sweep: Variation of PSNR for reconstruc-

tions with the number of measurements in the dragons scene for

ASP (non-overlapping patches) using the two branch network ver-

sus the dictionary method.

Metrics Noiseless Std 0.1 Std 0.2

PSNR (Ours) [dB] 26.77 26.74 26.66

PSNR (Dictionary) [dB] 25.80 21.98 17.40

Time (Ours) [s] 242 242 242

Time (Dictionary) [s] 3786 9540 20549

Table 2. Noise: The table shows how PSNR varies for different

levels of additive Gaussian noise for ASP reconstructions. It is

clear that our method is extremely robust to high levels of noise

and provides high PSNR reconstructions, while for the dictionary

method, the quality of the reconstructions degrade with noise.

Also shown is the time taken to perform the reconstruction. For

our method, the time taken is only 242 seconds and independent

of noise level whereas for dictionary learning method, it can vary

from 1 hour to nearly 7 hours.

time regardless of the noise level. This is a distinct ad-

vantage of neural network-based methods over the iterative

solvers. The network also seems resilient to noise in gen-

eral, as our PSNR remained about 26 dB.

Lytro Illum Light Fields Dataset: We show our re-

sults on this dataset in Figure 6. As a baseline, we com-

pare against the method from Kalantari et al. [18] which

utilize 4 input views from the light field and generate the

missing angular viewpoints with a neural network. Our

network model achieves higher PSNR values of 30-32 dB

on these real light fields for ASP encoding while keeping

the same compression ratio of 1

16
as Kalantari et al. While

their method achieves PSNR > 32dB on this dataset, their

starting point is 4D light field captured by the Lytro camera

and they do not have to uncompress coded measurements.

In addition, our method is slightly faster as their network

takes 147 seconds to reconstruct the full light field, while

our method reconstructs a light field in 80 seconds (both on

a Titan X GPU).

5.2. Real Experiments

Finally, to show the feasibility of our method on a real

compressive light field camera, we use data collected from

a prototype ASP camera [15]. This data was collected on

an indoors scene, and utilized three color filters to capture

color light fields.

Since we do not have training data for these scenes, we

train our two branch network on synthetic data, and then

apply a linear scaling factor to ensure the testing data has

the same mean as the training data. We also change our

Φ matrix to match the actual sensors response and measure

the angular variation in our synthetic light fields to what

we expect from the real light field. See Figure 7 and the

supplementary videos for our reconstructions. We com-

pare our reconstructions against the method from Hirsch

et al. [15] which uses dictionary-based learning to recon-

struct the light fields. For all reconstruction techniques, we

apply post-processing filtering to the image to remove pe-

riodic artifacts due to the patch-based processing and non-

uniformities in the ASP tile, as done in [15].

We first show the effects of stride for overlapping patch

reconstructions for the light fields, as shown in Figure 8.

Our network model takes a longer time to process smaller

stride, but improves the visual quality of the results. This

is a useful tradeoff between visual quality of results and re-

construction time in general.

Time complexity and quality of ASP reconstructions:

As can be seen, the visual quality of the reconstructed

scenes from the network are on-par with the dictionary-

based method, but with an order of magnitude faster re-

construction times. A full color light field with stride of 5

in overlapping patches can be reconstructed in 90 seconds,

while an improved stride of 2 in overlapping patches yields

higher quality reconstructions for 6.7 minutes of reconstruc-

tion time. The dictionary-based method in contrast takes 35

minutes for a stride of 5 to process these light fields. How-

ever, our method has some distortions in the recovered par-
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Figure 6. Different Camera Models: We compare reconstructions for the dragons scene for different encoding schemes, ASP, Mask and

Ideal Random 4D projections (CS) using the two branch network. These reconstructions were done at a low compression ratio of 8% and

with a stride of 5. At this low compression ratio, ASPs reconstruct slightly better (26.77 dB) as compared to Masks (25.96 dB) and CS

(25.51 dB), although all methods are within 1 dB of each other

32.17 dB 32.10 dB 

Our method Ground 

 Truth 

Kalantari  

et al. 

33.82 dB  30.22 dB 

32.64 dB 30.33 dB 

Figure 7. Lytro Illum Light Fields: We show reconstruction re-

sults for real Lytro Illum light fields with simulated ASP capture.

We note that our network performs subpar to Kalantari et al. [18]

since we have to deal with the additional difficulty of uncompress-

ing the coded measurements.

allax that is seen in the supplementary videos. This could

be possibly explained by several reasons. First, optical ab-

berations and mismatch between the real optical impulse

response of the system and our Φ model could cause arti-

facts in reconstruction. Secondly, the loss function used to

train the network is the l2 norm of the difference light field,

which can lead to the well-known regress-to-mean effect for

the parallax in the scene. It will be interesting to see if a l1
based loss function or specially designed loss function can

help improve the results. Thirdly, there is higher noise in

the real data as compared to synthetic data. However, de-

spite these parallax artifacts, we believe the results present

here show the potential for using deep learning to recover

4D light fields from real coded light field cameras.

6. Discussion

In this paper, we have presented a deep learning method

for the recovery of compressive light fields that is signif-

cantly faster than the dictionary-based method, while deliv-

ering comparable visual quality. The two branch structure

of a traditional autoencoder and a 4D CNN lead to supe-

rior performance, and we benchmark our results on both

synthetic and real light fields, achieving good visual quality

while reducing reconstruction time to minutes.

6.1. Limitations

Since acquiring ground truth for coded light field cam-

eras is difficult, there is no possibility of fine tuning our

model for improved performance. In addition, it is hard to

determine exactly the Φ matrix without careful optical cali-

bration, and this response is dependent on the lens and aper-

ture settings during capture time. All of this information is

hard to feed into a neural network to adaptively learn, and

leads to a mismatch between the statistics of training and

testing data.

6.2. Future Directions

There are several future avenues for research. On the net-

work architecture side, we can explore the use of generative

adversarial networks [13] which have been shown to work

well in image generation and synthesis problems [33, 23].

In addition, the network could jointly learn optimal codes

for capturing light fields with the reconstruction technique,

similar to the work by Chakrabarti [9] and Mousavi et
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Dictionary-
Method 

Time: 35 
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Our Method  
(stride = 5) 

Time: 94 
secs 

Our Method  
(stride = 2) 

Time: 6.7 
mins 

Figure 8. Real ASP Data: We show the reconstructions for the real data from the ASP measurements using our method (for stride 5 and

stride 2) and dictionary method (for stride 5), and the corresponding time taken. It is clear that the spatial resolution for our method is

comparable as that using the dictionary learning method, and the time taken for our method (94 seconds) is an order less than that for the

dictionary learning method (35 minutes).

Time:   13 seconds   90 seconds 6.7 minutes   

Figure 9. Overlapping Patches: Comparison of non-overlapping

patches and overlapping patches with strides of 11 (non-

overlapping), 5, and 2 for light field reconstructions.

al. [31], helping design new types of coded light field cam-

eras. Finally, we could explore the recent unified network

architecture presented by Chang et al. [10] that applies to all

inverse problems of the form y = Ax. While our work has

focused on processing single frames of light field video ef-

ficiently, we could explore performing coding jointly in the

spatio-angular domain and temporal domain. This would

help improve the compression ratio for these sensors, and

potentially lead to light field video that is captured at inter-

active (1-15 FPS) frame rates. Finally, it would be interest-

ing to perform inference on compressed light field measure-

ments directly (similar to the work for inference on 2D com-

pressed images [29, 22]) that aims to extract meaningful se-

mantic information. All of these future directions point to

a convergence between compressive sensing, deep learning,

and computational cameras for enhanced light field imag-

ing.
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M. B. Hullin. Light field imaging through household optics.

In D. Bommes, T. Ritschel, and T. Schultz, editors, Vision,

Modeling & Visualization, pages 159–166. The Eurograph-

ics Association, 2015.

[42] G. Wetzstein. Synthetic light field archive.

http://web.media.mit.edu/ gordonw/SyntheticLightFields/,.

[43] G. Wetzstein, I. Ihrke, and W. Heidrich. On Plenoptic Mul-

tiplexing and Reconstruction. IJCV, 101:384–400, 2013.

[44] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,

A. Barth, A. Adams, M. Horowitz, and M. Levoy. High per-

formance imaging using large camera arrays. ACM Trans.

Graph. (SIGGRAPH), 24(3):765–776, 2005.

[45] Y. Yoon, H.-G. Jeon, D. Yoo, J.-Y. Lee, and I. So Kweon.

Learning a deep convolutional network for light-field image

super-resolution. In Proceedings of the IEEE International

Conference on Computer Vision Workshops, pages 24–32,

2015.

20


