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Abstract

Deep neural networks are powerful and popular learning
models that achieve state-of-the-art pattern recognition per-
formance on many computer vision, speech, and language
processing tasks. However, these networks have also been
shown susceptible to crafted adversarial perturbations which
force misclassification of the inputs. Adversarial examples
enable adversaries to subvert the expected system behavior
leading to undesired consequences and could pose a security
risk when these systems are deployed in the real world.

In this work, we focus on deep convolutional neural net-
works and demonstrate that adversaries can easily craft
adversarial examples even without any internal knowledge
of the target network. Our attacks treat the network as an
oracle (black-box) and only assume that the output of the
network can be observed on the probed inputs. Our attacks
utilize a novel local-search based technique to construct
numerical approximation to the network gradient, which
is then carefully used to construct a small set of pixels in
an image to perturb. We demonstrate how this underlying
idea can be adapted to achieve several strong notions of
misclassification. The simplicity and effectiveness of our
proposed schemes mean that they could serve as a litmus
test for designing robust networks.

1. Introduction

Convolutional neural networks (CNNs) are among the
most popular techniques employed for computer vision tasks,
including but not limited to image recognition, localiza-
tion, video tracking, and image and video segmentation [8]].
Though these deep networks have exhibited good perfor-
mances for these tasks, they have recently been shown to be
particularly susceptible to adversarial perturbations to the
input images [26}, [9] [10L29]]. Vulnerability of
these networks to adversarial attacks can lead to undesirable
consequences in many practical applications utilizing these
networks. For example, adversarial attacks can be used to
subvert fraud detection, malware detection, or mislead au-
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tonomous navigation systems [21 [T0] and poses a serious
security risk (e.g., consider an adversary that can fool an
autonomous driving system into not following posted traffic
signs). Further strengthening these results is a recent ob-
servation by who showed that a significant fraction of
adversarial images crafted using the original network are mis-
classified even when fed to the classifier through a physical
world system (such as a camera).

(a) (b) (@

Table 1: The top row shows the original images and the bot-
tom row shows the perturbed images. The misclassification
is as follows: (a) a stingray misclassified as a sea lion, (b) an
ostrich misclassified as a goose, (c) a jay misclassified as a
junco, and (d) a water ouzel misclassified as a redshank.

In this paper, we investigate the robustness of state-of-the-
art convolutional neural networks (CNNs) with images as
inputs to simple black-box adversarial attacks. The rough
goal of adversarial attacks in this setting is as follows: Given
an image [ that is correctly classified by a convolutional neu-
ral network, construct a transformation of I (say, by adding
a small perturbation to some or all the pixels) that now leads
to incorrect classification by the network. The nature of the
incorrectness is based on the adversarial objective. More
often than not, in these attacks, the modification done to the
image is so subtle that the changes are imperceptible to a
human eye. Our proposed attacks also share this property, in
addition to being practical and simplistic, thus highlighting
a worrying aspect about lack of robustness prevalent in these
modern deep learning based vision techniques.



There are two main research directions in the literature on
adversarial attacks based on different assumptions about the
adversarial knowledge of the target network. The first and
the most common line of work assumes that the adversary
has detailed knowledge of the network architecture and the
parameters resulting from training (or access to the labeled
training set) [26} 9 [18} [21]]. Using this information, an ad-
versary constructs a perturbation for a given image. The
most effective methods are gradient-based: a small pertur-
bation is constructed based on the gradient of the network
loss function w.r.t. the input image. Often, adding this small
perturbation to the original image leads to a misclassification.
In the second line of work an adversary has restricted knowl-
edge about the network from being able to only observe the
network’s output on some probed inputs [20, |16]. Our work
falls into this category. While this black-box model is a much
more realistic and applicable threat model, it is also more
challenging because it considers weak adversaries without
knowledge of the network architecture, parameters, or train-
ing data. Surprisingly, our results suggest that this level
of access and a small number of queries provide sufficient
information to construct an adversarial image.

Papernot et al. [20] were the first to discuss a black-box
attack against deep learning systems. Their attack crucially
relies on the observation that there is a transferability (gener-
alization) property in adversarial examples, i.e., adversarial
examples from one model transfers to another. Our proposed
attacks on the other hand is much more simple and direct,
does not require this transferability property, and hence is
more effective in constructing adversarial images, in addi-
tion to having some other computational advantages. We
demonstrate that our method is capable of constructing ad-
versarial images for several network architectures trained on
different datasets. In particular in this paper, we consider
the CIFAR10, MNIST, SVHN, STL10, and ImageNet1000
datasets, and two popular network architectures, Network-
in-Network [[15] and VGG [23]). In Table [T} we show four
images from the ImageNet1000 dataset. The original images
are in the upper row. The bottom row shows the correspond-
ing perturbed images produced by our algorithm which are
misclassified by a VGG CNN-S network [4].

Our Contributions. In this work, we demonstrate the ease
of generating adversarial images for modern deep CNNs
without knowledge of either the network architecture or its
parameters. Our attack strategy is based the idea of greedy
local search, an iterative search procedure, where in each
round a local neighborhood is used to refine the current
image and in process optimizing some objective function
that depends on the network output. As we operate in a
black-box setting, it is not possible to obtain the true gradient
of the network loss function, hence we rely on numerical
approximations of the gradient. In each round, the local
search procedure generates an implicit approximation to the

gradient of the network loss function w.r.t. the current image
by observing changes in output by changing a few pixels
in the current image. This approximate gradient provides a
partial understanding of the influential pixels in the current
image for the output, which is then used to update this image.

We adapt this general strategy to achieve various notions
of misclassification with quite small perturbations. With the
simplest notion of misclassification, the goal is to alter the
input such that the network output is now different from the
true class label of the input (e.g., given an image of a cat,
alter the image such that the network now fails to identify
it as cat). While this is the most commonly used notion of
misclassification in the literature [26), 9], many modern com-
puter vision systems (e.g., ImageNet competition entrants)
are routinely evaluated based on their top-k predictions. This
motivates us to consider a stronger notion of misclassifica-
tion, that we refer to as k-misclassification (Definition ,
where the goal is to alter the input such that the network
fails to identify the true label even when relying on top-k
predictions (e.g., given an image of a cat, alter the image
such that even the top-k predictions of the network does not
capture it as cat). We also consider the notion of rargeted
misclassification, where the goal is to take an input and alter
it so as to have the network classify it as any chosen target
class label that is distinct from the true class label (e.g., given
an image of a cat and target class as dog, alter the image
such that the network now identifies it as dog).

We perform extensive experimental evaluations on mul-
tiple image datasets, and show that our local-search based
approach reliably generates adversarial images with little per-
turbation (even when compared to a recent elegant white-box
adversarial attack proposed by Goodfellow et al. [[9] which
needs perfect knowledge of the network). Another feature
of our attack is that, by design, our approach only perturbs a
very small fraction of the pixels during the adversarial image
generation process (e.g., on ImageNet1000 we on average
perturb only about 0.5% of the pixels per image). Most
previous attacks [26} 9, |18]] require the ability to perturb all
the pixels in the image. Therefore, interestingly, our results
also demonstrate that altering a small fraction of carefully
selected pixels suffices to generate adversarial images.

2. Related Work

Starting with the seminal paper by Szegedy et al. [26],
which showed that the state-of-the-art neural networks are
vulnerable to adversarial attacks, there has been significant
attention focused on this problem. The research has led
to investigation of different adversarial threat models and
scenarios [21} 20, 110} [13} [7]], computationally efficient at-
tacks [9]], perturbation efficient attacks [18]], etc.

Szegedy et al. [26] used a box-constrained L-BFGS tech-
nique to generate adversarial examples. They also showed
a transferability (or generalization) property for adversarial



examples, in that adversarial examples generated for one
network might also be misclassified by a related network
with possibly different hyper-parameters (number of layers,
initial weights, etc.). However, the need for a solving a series
of costly penalized optimization problems make this tech-
nique computationally expensive for generating adversarial
examples. This issue was fixed by [9] who motivated by
the underlying linearity of the components used to build a
network proposed an elegant scheme based on adding per-
turbation proportional to sign of the network’s cost function
gradient. Recently, Moosavi et al. [18] used an iterative lin-
earization procedure to generate adversarial examples with
lesser perturbation. Papernot ef al. [21] used a notion of
adversarial saliency maps (based on the saliency maps intro-
duced by [24]) to select the most sensitive input components
for perturbation. This attack has been adapted by Grosse et
al. [10] for generating adversarial samples for neural net-
works used as malware classifiers. However, all these above
described attacks require perfect knowledge of the target
network’s architecture and parameters which limits their ap-
plicability to strong adversaries with the capability of gaining
insider knowledge of the target system.

Our focus in this paper is the setting of black-box attacks,
where we assume that an adversary has only the ability to use
the network as an oracle. The adversary can obtain output
from supplied inputs, and use the observed input-output
relationship to craft adversarial images In the context of
deep neural networks, a black-box attack was first proposed
by Papernot et al. [20] with the motivation of constructing an
attack on a remotely hosted systemE] Their general idea is to
first approximate the target network by querying it for output
labels, which is used to train a substitute network, which
is then used to craft adversarial examples for the original
network. The success of the attack crucially depends on
the transferability property to hold between the original and
the substitute network. While empirical evidence exists
for the transferability assumption, it usually results in a
degradation in the effectiveness of the attacks, and in some
cases this degradation can be upwards of 30% [20]. A very
recent result by Liu ez al. [16] has also highlighted that this
assumption should be treated carefully. Our black-box attack
is more direct, and completely avoids the transferability
assumption, making it far more applicable. We also avoid the
overhead of gathering data and training a substitute network.

A complementary line of work has focused on building
defenses against adversarial attacks. Although designing
defenses is beyond scope of this paper, it is possible that
adapting the previous suggested defense solutions such as
Jacobian-based regularization [11] and distillation [22] can

!These kind of attacks are also known as differential attacks motivated
by the use of the term in differential cryptanalysis [3].

2Papernot et al. [19]] have recently extended this attack beyond deep
neural networks to other classes of machine learning techniques.

reduce the efficacy of our proposed attacks. Moreover, the
recently proposed technique of differentially private train-
ing [1] can also prove beneficial here.

The study of adversarial instability have led to devel-
opment of solutions that seeks to improve training to in
return increase the robustness and classification performance
of the network. In some case, adding adversarial exam-
ples to the training (adversarial training) set can act like
a regularizer [26, 9, [18]]. The phenomenon of adversarial
instability has also been theoretically investigated for certain
families of classifiers under various models of (semi) random
noise [6, [7]. However, due to peculiar nature of adversarial
images generated by our approaches, a simple adversarial
training is only mildly effective in preventing future similar
adversarial attacks. The security of machine learning in set-
tings distinct from deep neural networks is also an area of
active research with various known attacks under different
threat models [27,|19]]. We refer the reader to a recent survey
by McDaniel et al. [17] for a review of developments there.

3. Preliminaries

Notation and Normalization. We denote by [n] the set
{1,...,n}. The dataset of images is partitioned into train
and test (or validation) subsets. An element of a dataset is a
pair (I, ¢(I)) for an image I and a ground truth label ¢(I) of
this image. We assume that the class labels are drawn from
the set {1,...,C}, i.e., we have a set of C' € N possible
labels. We assume that images have ¢ channels (in exper-
iments we use the RGB format) and are of width w € N
and height h € N. We say that (b, x,y) is a coordinate of
an image for channel b and location (x, y), and (x, z,y) is a
pixel of an image where (%, x, y) represents all the ¢ coordi-
nates corresponding to different channels at location (z, ).
I(b,z,y) € Ris the value of I at the (b, z,y) coordinate,
and similarly I(x,z,y) € R’ represents the vector of values
of I at the (x,x, y) pixel.

It is a common practice to normalize the image before
passing it to the network. Note that a normalized image have
the same dimensions as the original image, but differs in the
coordinate values. Since the normalization procedures are
generally standard, we assume that the adversary can also
carry them out. As we always work with normalized images,
in the following, a reference to image means a normalized
input image. We denote by LB and UB two constants such
that all the coordinates of all the normalized images fall
in the range [LB, UB]. Generally, LB < 0 and UB > 0.
We denote by I C R¢*®*" the space of all (valid) images
which satisfy the following property: for every I € I, for all
coordinates (b, z,y) € [f] x [w] x [h], I(b,z,y) € [LB, UB].

Network Input and Output. We denote by NN a trained
convolutional neural network (trained on some set of training
images). NN takes an image I as an input and outputs a



vector NN(I) = (o1,...,0¢), where o; denotes the prob-
ability as determined by NN that image [ belongs to class
7. The top prediction of NN on [ is the class label with
the largest probability score in NN(7). Similarly, the top-k
(for k € [C]) predictions are obtained by taking the top-
k class labels by decreasing probability scores (with ties
broken arbitrarily). We denote m(NN([), k) a function that
returns a set of top-k class labels. For example, if NN(I) =
(0.25,0.1,0.2,0.45), then 7(NN(I), 1) = {4} (correspond-
ing to the location of the entry 0.45), 7(NN(I),2) = {4, 1},
etc. Our adversarial approaches do not require access to
the complete probability vector (NN(I)), but just access to
the probability score for the class label of interest (which
depends on the notion of mis-classification used) and the
vector (used for early stopping). This is slightly different
from the adversary presented in [20] that requires access to
the class label assigned by the network.

Misclassification Notions. First, we define misclassifica-
tion for a NN. We use two different notions of misclassifica-
tion [21]]. The first one, referred to as k-misclassification for
k € [C], is defined as follows.

Definition 1 (k-misclassification) A neural network NN k-

misclassifies an image I with true label c(I) iff the output
NN(I) of the network satisfies ¢(I) ¢ 7(NN(I), k).

In other words, k-misclassification means that the net-
work ranks the true label below at least k other labels. Tra-
ditionally the literature on adversarial attacks have only
considered the case where £ = 1. Note that an adver-
sary that achieves a k-misclassification for £ > 1 is a
stronger adversary than one achieving an 1-misclassification
(k-misclassification implies &’-misclassification for all 1 <
k' < k). To the best of our knowledge, ours is the first result
about adversarial attacks on deep neural networks achieving
k-misclassification for k > 1.

We also provide adversarial attacks for a related but dis-
tinct notion of targeted misclassification that was first con-
sidered in the context of deep neural networks by Papernot et
al. [21]]. Given a target class label T', we say that a neural
network fargeted misclassifies an image I with true label
c(I) # T iff the output T' € w(NN(T), 1). Note that in gen-
eral, the targeted and k-misclassification (for &£ > 1) notions
are irreducible to one other, so one of them is not necessar-
ily stronger than the other. The flexibility of our approach
allows us to achieve either notion based on the requirements.

Adversarial Goal. In our setting, an adversary ADV is a
function that takes in image I as input and whose output is
another image ADV(I) (with same number of coordinates
as I). We define an adversarial image as one that fools
a network into misclassification (under one of the above
notions). The goal of adversarial attacks is to design this
function ADV that succeeds in fooling the network for a
large set of images. Ideally, we would like to achieve this

misclassiﬁcatiorﬂ by adding only some small perturbation
(under some distance metric) to the image.

4. Adversarial Image Generation

In this section, we present an overview of our general
adversarial attack strategy that is based on performing a
greedy local search over the image space. Note that unlike
some of the previous adversarial attacks [26, (9, (18| 21} [10],
our threat model does not assume access to the true network
gradient factors, making any gradient (or Jacobian based)
methods not directly applicable. Instead, our attacks use a
local search technique to construct an implicit approximation
to the network gradient which is then used to guide the
generation of the perturbed image.

Local search procedure, is an incomplete search proce-
dure that is widely used for solving combinatorial prob-
lems appearing in diverse domains such as graph clustering,
scheduling, logistics, and verification [14]. For a general
optimization problem it works as follows. Consider an objec-
tive function f(z) : R™ — R where the goal is to minimize
f(z). The local-search procedure works in rounds, where
each round consists of two steps. Let z;,_; be the solution
iterate after round ¢ — 1. Consider round ¢. The first step
is to select a small subset of points Z = {Z1,...,2,}, a
so called local neighborhood, and evaluate f(z;) for every
z; € Z. Usually, the set Z consist of points that are close to
current z;_1 for some measure of distance which is domain
specific. The second step selects a new solution z; taking
into account the previous solution z;_; and the points in
Z. Hence, z; = g(f(zi—1), f(21),--., f(Zn)), where g is
some pre-defined transformation function.

Now an image I can be perturbed in multiple ways. In
this paper, we utilize a simple class of sign-preserving per-
turbation functions defined as followsE] Let PERT(I, p, z,y)
be a function that takes as input an image I, a perturbation
parameter p € R, and a location (x,y) in the image, and

outputs an image Il(fc’y) € R>wxh defined as:

defn {(I(b,u,v)ifx#uory;év

1Y) (b, u,v) =
0 ) p x sign(I(b,u,v)) otherwise

In other words, the image I,(,w’y) = PERT(I,p,z,y) has
same values as image [ at all pixels except the pixel (x, z, y).
We first describe our local-search based attack for achiev-
ing k-misclassification (Definition[I)) where an adversarial
attack ensures that the true label does not appear in the top-k
predictions of the network. The attack for achieving targeted
misclassification is quite similar and we discuss that later.

3Note that the misclassification is at test time, once the trained network
has been deployed.

4The use of this specific perturbation function is not very important for
our attack scheme and we use it for its simplicity.



Adversarial Attack for k-misclassification. We set up a
local search procedure as follows. Our optimization problem
will try to minimize the probability that the network deter-
mines an perturbed image has the class label of the original
image, and by using a local-search procedure we generate
perturbed images which differ from the original image in
only few pixels. Intuitively, in each round, our local-search
procedure computes an implicit approximation to the gradi-
ent of the current image by understanding the influence of a
few pixels on the output, which is used to update this image.

First, we need to define the cost function f. Let I be
the image (with true label ¢(/)) whose adversarial image
we want to generate for a target neural network NN. For
some input image I, we use the objective function f.p) (1 )
which equals the probability assigned by the network NN
that I belongs to class ¢(I). More formally, fc(j)(f) =
0c(1) Where NN(I) = (o1,...,
probability as determined by NN that image I belongs to
class j. Our local search aims to minimize this function.

Second, we consider how to form a neighborhood set of
images. As mentioned above, the local-search procedure
operates in rounds. Let fi,l be the image after round ¢ — 1.
Our neighborhood will consist of images that are different
in one pixel from the image I;_1. In other words, if we
measure the distance between I;_; and any image in the
neighborhood as the number of perturbed pixels, then this
distance is the same (equal to one) for all of them. There-
fore, we can define the neighborhood in terms of a set of
pixel locations. Let (Px, Py ); be a set of pixel locations.
For the first round (Px, Py )o is randomly generated. At
each subsequent round, it is formed based on a set of pixel
locations which were perturbed in the previoqus round. Let
(P%, P5)i—1 denote the pixel locations that were perturbed
in round ¢ — 1 (formally defined below). Then

oc), with o; denoting the

(Px, Py)i = U U (z,y),
{(a,b)e(P%,Py)i—1} {z€la—d,a+d],
yelb—d,b+d]}

where d is a parameter. In other words, we consider pixels
that were perturbed in the previous round, and for each
such pixel we consider all pixels in a small square with
the side length 2d centered at that pixel. This defines the
neighborhood considered in round .

Third, we describe the transformation function g of a set
of pixel locations. The function g takes as input an image I,
a set of pixel locations (Px, Py ), a parameter ¢ that defines
how many pixels will be perturbed by g, and two pertur-
bation parameters p and . In round ¢ of the local-search
procedure, Z = U, ,)e(py,Py),; {PERT(IZ 1,0, (x,9))},
where PERT is the perturbation functlon defined through (T)).
Then it computes the score of each image in Z as VI €
T : score(I) = fon(I [), and it sorts (in decreasing
order) images in Z based on the above score function to

construct sorted(Z). Pixels whose perturbation lead to a
larger decrease of f are more likely useful in constructing
an adversarial candidate. From sorted(Z), it records a set
of pixel locations (P%, P5); based on the first ¢ elements of
sorted(Z), where the parameter ¢ regulates the number of
pixels perturbed in each round. Formally, (P%, Py ); =

{(z,y) : PERT(I;_1,p, (z,y)) € sorted(Z)[1 : 1]},

where sorted(Z)[1 : t] represents the first ¢ sorted images
in sorted(Z). Finally, I; is constructed from I; ; by per-
turbing each pixel in location (z,y) € (P%, P5y); with a
perturbation value r. The perturbation is performed using
a simple cyclic rounding procedure (CYCLIC) so that we
make sure that all coordinate values in /. ; are within the valid
bounds of LB and UB. The cyclic rounding provides pixel
values that are closer (in absolute sense) to their original
values than a simple rounding scheme. Note that at the end
of every round 7, I; is a valid image from the original image
space 1.

We want to point out that the function g uses two perturba-
tion parameters, p and r. The value of r is kept small in the
range [0, 2]. On the other hand, we do not put any explicit
restrictions on the value of p. The best choice of p will be
one that facilitates the identification of the “best” pixels to
perturb in each round. In our experiments, we adjust the
value of p automatically during the search. We defer this
discussion to the experimental section.

Algorithm LOCSEARCHADV presents the complete pseu-
docode of our local-search procedure. At a high level, the
algorithm takes an image as input, and in each round, finds
some pixel locations to perturb using the above defined ob-
jective function and then applies the above defined transfor-
mation function to these selected pixels to construct a new
(perturbed) image. It terminates if it succeeds to push the
true label below the kth place in the confidence score vector
at any round. Otherwise, it proceeds to the next round (for
a maximum of R rounds). Note that the number of pixels
in an image perturbed by Algorithm LOCSEARCHADYV is
at most ¢ x R and in practice (see Tables[2] 3] and d]in Sec-
tion [3)) it is much less. This is in stark contrast with most
existing adversarial attack schemes [26} 19, |[18]] that operate
by applying the same perturbation on each individual pixel.

In Section [5] we demonstrate the efficacy of Algo-
rithm LOCSEARCHADV in constructing adversarial images.

Adversarial Attack for Targeted Misclassification. It is
straightforward to change Algorithm LOCSEARCHADV to
achieve targeted misclassification, where we want a network
to (incorrectly) have its top prediction as a given target label
T € [Cland T # c¢([). In fact, we only need to change the
cost function in LOCSEARCHADYV, so that we maximize the
probability that an image I belongs to target class. Namely,
we define a cost function fC(I)(f) = op with NN(I) =
(01,...,0¢c) and we now sort the generated scores in an

10



Algorithm 1 CYCLIC (r, b, x,y)

Assumptions: Perturbation parameter r € [0,2] and LB < 0 < UB
Output: Perturbed image value at the coordinate (b, z,y) are in
[LB,UB]

1: ifrI(b,z,y) < LB then

2:  returnrI(b,z,y) + (UB — LB)
3: elseif rI(b,z,y) > UB then

4: returnrl(b,z,y) — (UB — LB)
5: else

6: returnrl(b,z,y)

7: end if

Algorithm 2 LOCSEARCHADYV (NN)

Input: Image I with true label ¢(I) € {1,...,C}, two perturbation
parameters p € R and r € [0, 2], and four other parameters: the
half side length of the neighborhood square d € N, the number of
pixels perturbed at each round ¢ € N, the threshold £ € N for k-
misclassification, and an upper bound on the number of rounds R € N.
Output: Success/Failure depending on whether the algorithm finds an
adversarial image or not

ILlp=1i=1

. Pick 10% of pixel locations from I at random to form (P, Py )o

: while 7 < R do

{Computing the function g using the neighborhood }
1+ U(J’fﬁy)e(PX7PY>i—l {PERT(Li—1,p,2,y)}
Compute score(]) = fc(])(f) foreach T € T
sorted(Z) <« images in Z sorted by descending order of score
(P, Py)i < {(z,y) : PERT(fi_l,p, z,y) € sorted(Z)[1 :

t]} (with ties broken arbitrarily)

{Generation of the perturbed image I;}
for (z,y) € (P%, Py ) and each channel b do

: fi(b,:):,y) « CycLic (r, b, z,y)

10:  end for

{Check whether the perturbed image I; is an adversarial image}
11:  ifc(I) ¢ m(NN(I;), k) then
12: return Success
13:  endif

{Update a neighborhood of pixel locations for the next round }
14: (Px,Py)i + U{(a,b)g(P)*(,P}*/)ifl} Utzela—d,a+d, (%,Y)

y€Elb—d,b+d]}

W N

AN A

15: i+ i+1
16: end while
17: return Failure

increasing order. The remaining pieces of the local search
procedure remains as in Algorithm LOCSEARCHADV.

5. Experimental Evaluation

We start by describing our experimental setup. We used
Caffe and Torch machine learning frameworks to train the
networks. All algorithms to generate adversarial images
were implemented in Lua within Torch 7. All experiments
were performed on a cluster of GPUs using a single GPU
for each run. We use 5 popular datasets: MNIST, CIFAR10,
SVHN, STL10, and ImageNet1000. We trained Network-
in-Network [15] and VGG [25]] for MNIST, CIFAR, SVHN,
STL10, with minor adjustments for the corresponding image
sizes. Network-in-Network is a building block of the com-
monly used GoogLeNet architecture that has demonstrated
very good performance on medium size datasets, e.g. CI-
FAR10 [28]]. VGG is another powerful network that proved

to be useful in many applications beyond image classifica-
tion, like object localization [23]]. We trained each model
in two variants: with and without batch normalization [12].
Batch normalization was placed before a ReLU layer in
all networks. For the ImageNet1000 dataset, we used pre-
trained VGG models from [5]]. All Caffe VGG models were
converted to Torch models using the loadcaffe package [30].
We use the standard top-£ error metric for evaluating the
classification performance of a network. Tables[2|and [3|(the
second column ERRTOP-1) show the top-1 (base) error for
all datasets and models that we considered. The results are
comparable with the known state-of-the-art results on these
datasets [2].
Related Techniques. There are quite a few approaches for
generating adversarial images (as discussed in Section [2).
Most of these approaches require access to the network ar-
chitecture and its parameter values [26, 9, [18| 21]], making
them not entirely suitable for a direct comparison with our
black-box approach. The general idea behind these previous
white-box attacks is based on the evaluating the network’s
sensitivity to the input components in order to determine a
perturbation that achieves the adversarial misclassification
goal. Among these approaches, the white-box attack ap-
proach (known as the “fast-gradient sign method”, FGSM
for short) suggested by [9] stands out for being able to ef-
ficiently generate adversarial images. Here we compare
the performance of our proposed black-box attack against
FGSM. Without general guidelines for setting e for FGSM,
we experimented with several values of e starting from 0.07
and increasing this number. We found that the value e = 0.2
was the smallest value where the fast-gradient sign method
started to yield competitive performance compared to our
algorithm. Smaller values of € leads to generation of fewer
adversarial images, e.g., at ¢ = 0.1, the percentage of gener-
ated adversarial images is reduced by around 10% as com-
pared to the value at ¢ = 0.2 for CIFARI10 on the NinN
model (similar on other datatsets). Larger values of e tends
to generate more adversarial images, but this comes at the
cost of an increase in the perturbation.

Implementing Algorithm LOCSEARCHADV. For each
image I, we ran Algorithm LOCSEARCHADV (LSA, for
short) for at most 150 rounds, perturbing 5 pixels at each
round, and use squares of side length 10 to form the neigh-
borhood (i.e., R = 150,¢t = 5,d = 5). With this setting
of parameters, we perturb a maximum of ¢ x R = 750
pixels in an image. The perturbation parameter p was adap-
tively adjusted during the search. Though not critical, do-
ing so helps in faster determination of the most helpful
pixels in generating the adversarial image. Let I be the
original image. For some round i of the algorithm, de-
fine 0.1y = avg(, ) {oc1) (x,y) € (P&, Py)icats
where o, is the probability assigned to class label c([)

SFor the ImageNet1000 dataset, we set e differently as discussed later.
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NNs trained with batch normalization
CIFARI10 11.65 97.63(0.47(0.04| 3.75 | 0.68 [ LSA (Ours) | NinN
CIFARIO| 70.69 [0.55|0.20 | 100.00 | 0.01 | FGSM [9] |NinN
CIFARI10 11.62 97.51(0.74(0.04| 3.16 | 0.78 [LSA (Ours) | VGG
CIFARIO| | 11.62| - | - - - | FGSM [9] | VGG
STL10 29.81 58.17(0.42(0.02| 1.20 | 7.15 [LSA (Ours) | NinN
STL10 . 54.85(0.53/0.20 | 100.00 | 0.03 | FGSM [9] |NinN
STL10 26.50 65.76 [0.470.02| 1.11 [13.90|LSA (Ours) | VGG
STL10 i 2650 — — — - FGSM [9] | VGG
SVHN 971 97.06 [0.47[0.05| 4.51 | 1.02 [LSA (Ours) | NinN
SVHN : 48.6210.49(0.20|100.00| 0.02 | FGSM [9] | NinN
SVHN 477 81.10]0.66|0.07 | 5.43 | 2.15 [LSA (Ours) | VGG
SVHN : 477 | - — — — FGSM [9] | VGG
MNIST 033 91.42(0.54(0.20| 2.24 | 0.64 [ LSA (Ours) | NinN
MNIST 7| 1.65 [0.58]0.20|100.00| 0.02 | FGSM [9] | NinN
MNIST 0.44 93.480.63(0.21| 2.20 | 0.64 |LSA (Ours) | VGG
MNIST | 044 | - - - - FGSM [9] | VGG
NN trained without batch normalization
CIFARI10 16.54 97.89(0.72(0.04| 3.24 | 0.58 [LSA (Ours) | NinN
CIFARIO| "™ 7 ]93.67 [0.93(0.20|100.00 | 0.02 | FGSM [9] | NinN
CIFARI0 1979 97.980.77{0.04| 2.99 | 0.72 |LSA (Ours) | VGG
CIFARIO| ™ 90.93(0.90|0.20 | 100.00 | 0.04 | FGSM [9] | VGG
STL10 3547 52.6510.56(0.02| 1.17 | 6.42 |LSA (Ours) | NinN
STL10 : 87.1610.94|0.20 | 100.00 | 0.04 | FGSM [9] | NinN
STL10 4391 59.38(0.52(0.01| 1.09 [19.65|LSA (Ours) | VGG
STL10 : 91.36(0.93|0.20 | 100.00 | 0.10 | FGSM [9] | VGG
SVHN 6.15 92.31(0.68[0.05| 4.34 | 1.06 [LSA (Ours) | NinN
SVHN ) 73.97(0.84|0.20 | 100.00 | 0.01 | FGSM [9] |NinN
SVHN 731 88.3410.680.05| 4.09 | 1.00 [ LSA (Ours) | VGG
SVHN ) 76.78 10.890.20 | 100.00 | 0.04 | FGSM [9] | VGG

Table 2: Results for four datasets: CIFAR10, STL10, SVHN,
and MNIST. The entries denote by denoted by “— " are the
cases where FGSM fails to produce any adversarial image
in our experimental setup.

in NN(PERT(I;_1,p, x,y)) (here Oc(1) provides an approx-
imation of the average confidence of the network NN in
predicting the true label over perturbed images). At each
round, we increase the value of p if 0.(r) is close to one and
decrease p if Oc(I) is low, e.g., below 0.3. To avoid perturb-
ing the most sensitive pixels frequently, we make sure that
if a pixel is perturbed in a round then we exclude it from
consideration for the next 30 rounds.
Results for 1-misclassification. For ease of comparison
with FGSM [9]], we set £k = 1 and focus on achieving 1-
misclassification. Tables 2] and 3 show the results of our ex-
periments on the test sets. The first column shows the dataset
name. The second column (ERRTOP-1) presents the top-1
misclassification rate on the corresponding test dataset with-
out any perturbation (base error). ERRTOP-1 (ADV) is the
top-1 misclassification rate where each original image in the
test set was replaced with an generated perturbed image (us-
ing either our approach or the fast-gradient sign method [9]
which is denoted as FGSM)E]

In the following, we say an adversarial generation tech-

%Note that by explicitly constraining the number of pixels that can be
perturbed, as we do in our approach, it might be impossible to get to a 100%
misclassification rate on some datasets. Similarly, FGSM fails to achieve a
100% misclassification rate even with larger values of € [18].

nique ADV, given an input image I, succeeds in gener-
ating an adversarial image ADV([/) for a network NN iff
c(I) € m(NN(I),1) and ¢(I) ¢ m(NN(ADV(I)),1). The
CONF column shows the average confidence over all success-
ful adversarial images for the corresponding technique. The
PTB represents the mean absolute error between the image
and its adversarial counterpart averaged over successful ad-
versarial images. More formally, let 7 denote the test set
and Ta4, C 7T denote the set of images in 7 on which ADV
is successful. Then, PTB is defined as:

hZ|bey

bx,y

ADV(I)(b,z,y)|,
|TAd” I€Taq g

where I € R*%*" ig the original image and ADV(I) €
R>wxh g the corresponding adversarial image. Note that
the inner summation is measuring the mean absolute error
between I and ADV([). The #PTBPIXELS column shows
the average percentage of perturbed pixels in the successful
adversarial images. For Algorithm LOCSEARCHADV the
number of pixels perturbed also provides a bound on the
average number of network evaluations (oracle queries) used.
Similarly, TIME column shows the average time (in seconds)
to generate a successful adversarial image. The last column
indicates the type of network architecture.

As is quite evident from these results, Algorithm Loc-
SEARCHADYV is more effective than the fast-gradient sign
method in generating adversarial images, even without hav-
ing access to the network architecture and its parameter val-
ues. The difference is quite prominent for networks trained
with batch normalization as here we noticed that the fast-
gradient sign method has difficulties producing adversarial
images. In general, we observed that models trained with
batch normalization are somewhat more resilient to adver-
sarial perturbations probably because of the regularization
properties of batch normalization [12]. We are not aware of
any previous results in the adversarial image generation liter-
ature that have factored in the effects of batch normalization.

Another advantage with our approach is that it modifies
a very tiny fraction of pixels as compared to all the pixels
perturbed by FGSM, and also in many cases with far less
average perturbation. Putting these points together demon-
strates that Algorithm LOCSEARCHADV is successful in
generating more adversarial images than FGSM, while mod-
ifying far fewer pixels and adding less noise per image. On
the other side, FGSM takes lesser time in the generation
process and generally seems to produce higher confidence
scores for the adversarial (misclassified) images.

Table [3] shows the results for several variants of VGG
network trained on the ImageNet1000 dataset. These net-
works do not have batch normalization layers [, 30]. We
set ¢ = 1 for the fast-gradient sign method as a different
pre-processing technique was used for this network (we
converted these networks from pre-trained Caffe models).
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58.27 93.5910.29({0.29| 043 |12.72 | LSA (Ours) VGG CNN-S (Caffe)
*1185.51]0.49]1.00|100.00| 4.74 | FGSM [0] | VGG CNN-S (Caffe)
58.96 91.360.28 {0.29| 0.40 |10.01 | LSA (Ours) VGG CNN-M (Caffe)
: 87.85(0.481.00|100.00 | 4.36 | FGSM [9] VGG CNN-M (Caffe)
58.80 92.8210.29(0.30| 0.41 |11.09 | LSA (Ours) | VGG CNN-M 2048 (Caffe)
: 88.43(0.52|1.00| 100.00 | 4.42 | FGSM [9] | VGG CNN-M 2048 (Cafte)
2640 | 7207[030]054] 0.55 [73.64|LSA (Ours)| VGG ILSVRC 19 (Caffe)
: 85.05(0.52 | 1.00| 100.00 [ 23.94 | FGSM [9] | VGG ILSVRC 19 (Cafte)

Table 3: Results for the ImageNet1000 dataset using a center
crop of size 224 x 224 for each image.

ERRTOP-k #PTBPIXELS TIME
k| ERRTOP-k (Adv) CONF | PTB (%) (in sec) Network
1 16.54 97.89 0.72 | 0.04 3.24 0.58 NinN
2 6.88 80.81 0.89 | 0.07 6.27 1.51 NinN
3 3.58 70.23 0.90 | 0.08 6.78 1.72 NinN
4 1.84 60.00 0.90 | 0.08 7.27 1.92 NinN

Table 4: Results for k-misclassification using Algo-
rithm LOCSEARCHADYV for CIFAR10.

Target Target Classif. CONF| PTB #PTBPIXELS | TIME Network
(ADV) % (%) (in sec)

airplane 70.78 0.67 | 0.06 6.32 0.33 NinN
automobile 60.56 0.66 | 0.08 6.70 0.31 NinN
bird 71.60 0.70 | 0.06 6.14 0.34 NinN
cat 36.60 0.74 | 0.06 4.84 0.16 NinN
deer 29.48 0.73 | 0.05 4.86 0.14 NinN
dog 30.11 0.78 | 0.02 2.57 0.10 NinN
frog 2091 0.77 | 0.06 4.62 0.09 NinN
horse 27.40 0.74 | 0.05 4.32 0.11 NinN
ship 23.34 0.78 | 0.06 4.09 0.08 NinN
truck 32.61 0.75 | 0.08 5.39 0.14 NinN

Table 5: Results for targeted misclassification using lusing
Algorithm LOCSEARCHADV for CIFAR10.

Results are similar to that observed on the smaller datasets.
In most cases, our proposed local-search based approach is
more successful in generating adversarial images while on
average perturbing less than 0.55% of the pixels.

Results for k-misclassification (¢ > 1). We now con-
sider achieving k-misclassification for £ > 1 using LOC-
SEARCHADV. Table[d]shows the results as we change the
goal from 1-misclassification to 4-misclassification on CI-
FAR10. We use the same parameters as before for LocC-
SEARCHADV. As one would expect, as we increase the
value of k, the effectiveness of the attack decreases, perturba-
tion and time needed increases. But overall our local-search
procedure is still able to generate a large fraction of adver-
sarial images at even k = 4 with a small perturbation and
computation time, meaning that these images will fool even
a system that is evaluated on a top-4 classification criteria.
We are not aware of a straightforward extension of the fast-
gradient sign method [9] to achieve k-misclassification.

Results for Targeted Misclassification. Table [5]shows the
results for achieving targeted misclassification using LOC-
SEARCHADYV on CIFAR10. We choose each of the 10 labels
(first column) as individual targets, and the second column

shows the percentag of images in the dataset that when
altered subsequently leads the network to classify it as the
target label. The results show that for each target class a
large number of images can be perturbed with little noise
to get targeted misclassification, and some classes (such as
“airplane’) are particularly amenable to these attacks.

Even Weaker Adversarial Models. We also consider a
weaker model where the adversary does not even have a
black-box (oracle) access to the network (NN) of interest,
and has to rely on a black-box access to somewhat of a
“similar” (proxy) network as NN. For example, the adversary
might want to evade a spam filter A, but might have to
develop adversarial images by utilizing the output of a spam
filter B, which might share properties similar to A.

We trained several modifications of NinN model for
CIFARI10, varying the initial value of the learning rate,
the size of filters, and the number of layers in the net-
work. We observed that between 25% to 43% of adver-
sarial 1-misclassified images generated by Algorithm LoC-
SEARCHADV using the original network were also 1-
misclassified by these modified networks. This observation
demonstrates the wider applicability of our attack scheme.

6. Conclusion

We investigate the inherent vulnerabilities in modern
CNNss to practical black-box adversarial attacks. We present
approaches that can efficiently locate a small set of pixels,
without knowing any parameter information about the net-
work, which when perturbed lead to misclassification by a
deep neural network. Our extensive experimental results,
somewhat surprisingly, demonstrates the effectiveness of our
simple approaches in generating adversarial examples.

Defenses against these attacks is an interesting research
direction. However, we note that here that by limiting the
perturbation to some pixels (being localized) the adversarial
images generated by our local-search based approach do not
represent the distribution of the original data. This means for
these adversarial images, the use of adversarial training, a
technique of training (or fine-tuning) networks on adversarial
images to build more robust classifiers, is not very effective.
In fact, even with adversarial training we noticed that the
networks ability to resist new local-search based adversarial
attack improves only marginally (on average between 1-2%).
On the other hand, we suspect that one possible counter-
measure to these localized adversarial attacks could be based
on performing a careful analysis of the oracle queries to
thwart the attempts to generate an adversarial image.

Finally, we believe that our local-search approach can also
be used for attacks against other machine learning systems
and can serve as an useful tool in measuring the robustness
of these systems.

7CIFARI0 is a balanced dataset with each class occupying 10% of the
test set. We only consider images that are not already in the target class.
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