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Abstract

Automatic person re-identification (re-id) across camera

boundaries is a challenging problem. Approaches have to

be robust against many factors which influence the visual

appearance of a person but are not relevant to the person’s

identity. Examples for such factors are pose, camera angles,

and lighting conditions. Person attributes are a semantic

high level information which is invariant across many such

influences and contain information which is often highly rel-

evant to a person’s identity. In this work we develop a re-id

approach which leverages the information contained in au-

tomatically detected attributes. We train an attribute clas-

sifier on separate data and include its responses into the

training process of our person re-id model which is based

on convolutional neural networks (CNNs). This allows us to

learn a person representation which contains information

complementary to that contained within the attributes. Our

approach is able to identify attributes which perform most

reliably for re-id and focus on them accordingly. We demon-

strate the performance improvement gained through use of

the attribute information on multiple large-scale datasets

and report insights into which attributes are most relevant

for person re-id.

1. Introduction

The problem of re-identifying a person across cameras

has gained increasing research interest in recent years [36].

It facilitates multi-camera person tracking and its many

applications include surveillance of secure areas, public

events, customer analysis, or enrichment of multimedia

content, such as movies or TV series. The main challenge

of person re-id approaches is to develop a person represen-

tation which is robust to influences, such as pose, camera

characteristics and angle, or lighting, while remaining dis-

criminative enough to be able to differentiate between dif-

ferent individuals. Many works on the subject focus on ei-
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Figure 1. Examples of persons with very similar global appearance

but different attributes. Attribute information can be a decisive

clue to distinguish people in such cases.

ther learning a powerful feature representation of persons

[2, 9, 4] or a distance measure which robustly matches per-

son representations across camera views [10, 14, 18]. More-

over, in recent years, person attributes have been identified

as an additional, powerful information to aid in the re-id

task [15, 24, 11]. Attributes represent a high level semantic

description of a person and are invariant to many influences,

such as pose and camera angles. They often contain mean-

ingful information which can be very localized in the image

and is easily missed by approaches which focus on global

appearance. A number of examples in which attribute infor-

mation can help distinguish between persons whose visual

appearance is otherwise very similar is depicted in Figure 1.

Attributes can also be more easily communicated to human

security personnel and enable a broader range of applica-

tions, such as purely textual search queries. In practical ap-
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plications an important challenge is how to best make use of

automatically generated attribute classifications which con-

tain a varying degree of accuracy.

In this work, we propose a deep learning approach which

includes such attribute information into the learning pro-

cess of a CNN. Image features based on CNNs have re-

cently proven very successful for person re-id [17, 1, 3, 28].

However, the resulting features focus on global appearance

and lack interpretable semantic content which attributes can

provide. Our approach aims to leverage this complementary

information in attributes and CNN features. An overview of

the approach is depicted in Figure 2. We begin by training

an attribute model on data separate from our target re-id

datasets. The attribute predictions generated by this model

is then included into our re-id approach through a triplet

loss adapted specifically for this purpose. The loss allows

the CNN to learn a person representation which is comple-

mentary to that of the attributes. We cannot assume the at-

tribute predictions to be highly reliable due to possible bi-

ases on their training data. Furthermore, we cannot directly

measure the accuracy of attribute predictions, because we

generally do not have corresponding annotations on the tar-

get datasets. We overcome these problems by adapting our

CNN architecture to automatically learn a weight for each

attribute which controls the attribute’s impact on the re-id

task. The resulting weighting notably improves re-id ac-

curacy compared to the direct use of unweighted attributes

and allows us to draw conclusions on the reliability of our

classifier with respect to individual attributes on the target

datasets. We perform evaluations on multiple large-scale

re-id datasets. We investigate the re-id accuracy of base-

lines which rely solely on either attributes or CNNs and

show that our combined approach outperforms either one.

Our approach achieves competitive or state-of-the-art per-

formance on all evaluated datasets.

Our main contributions are summarized as follows: (1)

We propose a novel approach which integrates semantic in-

formation of attributes into the learning process of a CNN

trained for person re-id. (2) We show that attributes im-

prove re-id accuracy on multiple large-scale public datasets

and result in a strong performance of our combined model.

(3) Our evaluations yield additional insights into which at-

tributes are best suited to aid in person re-id.

The remainder of this work is organized as follows. In

Section 2 we discuss related approaches on attribute classi-

fication, person re-id, and their combination. We describe

our attribute classifier in Section 3. Our own attribute-based

re-id approach is outlined in Section 4. The influences of at-

tributes on the final re-id accuracy are evaluated in Section

5 and we summarize our findings in Section 6.

2. Related Work

We focus our discussion of related work on the most rel-

evant recent approaches which rely on CNN features, at-

tributes, or a combination thereof.

Many recent re-id approaches rely on CNNs and deep

learning [30, 34, 38, 37]. [30] uses domain guided dropout

to learn a person representation across multiple datasets. In

[37] a feature embedding is learned with the help of an ad-

ditional verification loss. Zheng et al. [34] train a pose in-

variant person representation by normalizing input images

according to person pose predictions. In [38] generative ad-

versarial networks are used to generate additional training

samples.

Often, siamese or triplet loss networks are used to learn

based on comparison between matching and mismatching

person images [6, 17, 1, 3, 28, 29]. Li et al. [17] use a filter

pairing architecture to match persons in a CNN. A special

neighborhood matching layer was introduced by Ahmed et

al. [1]. In [3] Cheng et al. use a triplet loss and a simple

body part segmentation to learn a robust feature embedding.

In [28] a gated siamese network is used to focus the compar-

ison of person images on relevant regions. In a later work

[29] LSTMs are used to guide the attention of the network.

Attributes have been used in person re-id for some time

[15, 24, 11]. A few recent works focus specifically on com-

bining attribute information with CNNs. Khamis et al. [13]

use a triplet loss architecture for re-id in combination with

an attribute loss and leverage multiple data sources. In [22]

fine tune CNNs for attribute recognition and employ metric

learning for subsequent person re-id. Recently, Lin et al.

[20] used a combination of re-id and attribute classification

losses to learn a joint representation for person re-id.

3. Multiview Attribute Detection

Person attributes can be grouped into two categories.

Some attributes, such as long pants or backpack, are local-

ized and thus only visible in certain regions of an image

while others, such as age or gender, are global attributes

which cannot be assigned to a single specific image region.

Based on this observation we propose a CNN architecture

for attribute classification which combines local and global

image information. An overview is given in the left part of

Figure 2.

We base our network architecture on a GoogleNet which

is pretrained on ImageNet [27]. We use the GoogleNet to

capture global information at image level. We connect the

output of the inception 5b layer to a fully connected layer

of size 600 which yields our global person representation.

In order to include local information relevant to specific

attributes into the network we divide the conv1 7x7 layer

of GoogleNet into three equal horizontal regions. Each

of these regions represents a local view on part of the im-
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Figure 2. Overview of our approach. An attribute representation is pretrained (on PETA). Attributes are then used to support the learning of

a CNN feature through a triplet loss LACRN . An additional triplet loss Lattr learns weights for attributes in order to reduce the influence

of unreliable attributes on the re-id result.

age. For each view we train a small sub-network which can

learn region-specific information. The local view networks

(LVN) consist of two further convolutional layers followed

by two residual blocks which each perform a pooling step.

The final element of each LVN is a fully connected layer of

size 200. Both, the GoogleNet and the LVNs, employ batch

normalization [12].

The global and local information generated by the fine-

tuned GoogleNet and the LVNs are combined through a

final layer of size 2048. This combined representation of

multi view attribute information (MVA) is then used for at-

tribute classification. We employ a single multi-class cross-

entropy loss instead of one loss for each attribute. How-

ever, such a multi-label classification approach suffers from

imbalances in the training data. Some attributes are much

more frequent than others and we cannot compensate by

data sampling, because attributes co-occur and balancing

the occurrence frequency of one attribute will change that

of others. To address this we follow the approach of Yu et

al. [31, 16] of weighting the attributes in the loss:

Lwce =
L
∑

i=1

1

2wi

∗ pi ∗ log(qi)+

1

2(1− wi)
(1− pi) ∗ log(1− qi) (1)

where wi is a weight specific to attribute i which reflects

its relative frequency in the training data (i.e. its ratio of

positive to negative labels), pi is the attribute prediction and

qi is the corresponding label.

We train the network on the PETA dataset [5] collection.

The GoogleNet is fine-tuned for attribute classification us-

ing an initial learning rate of 10−4 which is decreased step-

wise by a factor of 0.1. The weights of the LVNs are ini-

tialized randomly and their learning rate is set to a higher

value. For training we use a batchsize of 64.

4. Attribute-Complementary Re-id Net

In this section we detail the architecture and training pro-

cess of our attribute-complementary re-id net (ACRN).

Based on recent developments of CNN architectures [26]

we base our network on a combination of inception layers

and residual connections. Our input image size is 160× 64.

We start by a basic feature extraction through 4 convolu-

tional layers of size 3× 3 and pooling. This is followed by

a normal inception v3 layer to increase the channel count for

subsequent residual connections. The network then consists

of eight inception layers. Layers 2, 4 and 8 of those perform

a pooling step. The others are bridged by residual connec-

tions. After the final pooling we attach a fully connected

layer of size 512 which serves as our feature representation

for re-id.

We use a triplet network architecture. Training samples

are served to the network in sets of three: one anchor image,

one match to the anchor (positive) and one mismatch (neg-

ative). Such architectures are trained with a classic triplet

loss:

Ltriplet =
1

N

N
∑

i=1

d
fp

i − d
fn

i +m

d
fp

i = ‖fa
i − f

p
i ‖

2

2
(2)

d
fn

i = ‖fa
i − fn

i ‖
2

2
.

The term d
fp

i denotes the feature distance from the anchor

to the positive and d
fn

i the distance from the anchor to the

negative. The loss encourages the feature distances between
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images of different persons to be large and distances for

matching persons to be small. The margin m controls the

severity of the separation.

We incorporate the attribute information generated by

our attribute net into the triplet training process at loss level.

This is achieved by adding the attribute distances of the an-

chor sample to the positive and negative samples in an anal-

ogous manner:

LACRN =
1

N

N
∑

i=1

d
fp

i − d
fn

i +m+ γ(datt
p

i − datt
n

i )

datt
p

i = ‖attai − att
p
i ‖

2

2
(3)

datt
n

i = ‖attai − attni ‖
2

2

where datt
p

i and datt
n

i mark the distances of the samples in

triplet i based on their attribute representations. The ad-

dition of this attribute information has no direct impact on

the triplet losses’ gradient formulas. Take, for example, the

gradient for the positive sample in the triplet:

∂Li

∂f
p
i

=

{

2(fa
i − f

p
i ), if d

fn

i − d
fp

i ≤ m̃

0, otherwise
(4)

m̃ = m+ γ(da
i

p − da
i

n ).

Instead, the attribute distance in combination with the mar-

gin m influence the cases in which the gradient is passed

through the ACRN (i.e. when it is non-zero). If, for exam-

ple, the attributes fail to produce a distance datt
p

i < datt
n

i ,

then the attribute part of the loss adds to the margin, the loss

becomes more strict, and the gradient of the ACRN is more

likely to be non-zero for this sample. Conversely, if the at-

tribute information already achieves datt
p

i < datt
n

i , then the

gradient is more likely to be zero. This allows the ACRN

to focus on cases where the attribute information does not

suffice for a successful re-id. In a sense the net learns to

re-rank a basic ranking generated by the attributes. The ap-

proach is motivated by the assumption that this might be a

simpler task than re-id without attribute information. We

use a parameter γ to control the degree of influence of the

attribute information on the ARCN loss. We empirically set

γ to 0.5 which strikes a good balance between maintaining

attribute information and not overpowering the base margin

of the loss.

Because our attribute representation is learned on sepa-

rate data, we can expect some of the attributes to be much

less reliably predicted than others on our target re-id dataset.

Inaccurate attributes will lead to more cases in which the at-

tribute portion of our loss is incorrect. If those cases become

too frequent, the ACRN net will have a more difficult task

to solve than plain re-id. We thus introduce an additional

layer for weighting the attributes on our target dataset. The

weight layer simply performs an elementwise multiplica-

tion of our attributes with a learned weight. This weight

layer is not connected to the input of the net and thus learns

global weights for the whole dataset. We train these weights

by an additional triplet loss Lattr which tries to separate the

triplet samples based solely on weighted attribute informa-

tion and ensures that attributes which are beneficial for re-id

are weighted more strongly.

At test time we first use the attribute net to generate a set

of attribute predictions. The ACRN is then used to compute

our complementary deep re-id feature. Two person images

can then be compared by simple addition of the ACRN fea-

ture distance and the weighted attribute distance.

We train our network on each target dataset an initial 10

epochs for person ID classification in order to establish a

basic feature representation. We then switch to the ACRN

setup and continue training using the triplet loss. Our initial

learning rate is set to 0.01 and reduced by a factor of 0.8

after two epochs. We use a batchsize of 64 for the initial

training and 40 for ACRN training.

5. Evaluation

We first evaluate the performance of our attribute classi-

fier on its source dataset. Then we investigate the usefulness

of these attribute predictions for re-id on a number of target

datasets.

5.1. Attribute Net

Method mA

ACN [25] 81.15%

DeepMAR [16] 82.89%

WPAL-GoogleNet-GMP [31] 85.50%

MVA (Ours) 84.61%

Table 1. Results of our approach for attribute recognition on PETA

in mean accuracy.

We evaluate our attribute classification approach on the

PETA pedestrian attribute dataset [5]. PETA is an attribute-

labeled collection of pre-existing pedestrian datasets and

contains 19,000 images. The images are annotated with 61

binary attributes and 4 multi-class attributes. For evalua-

tion of our attribute net we follow the established protocol

and use 11,600 images for training and validation as well

as 7,600 images for testing. The images are randomly cho-

sen. For comparison to related work we further focus on

the 35 attributes which have a ratio of positive to negative

labels of more than 5%. As evaluation metric we use the

mean accuracy (mA) which is computed as the mean of the

accuracy among positive samples and the accuracy among

negative samples. We compare our approach to three recent

works: ACN [25], DeepMAR [16], and WPAL-GoogleNet-

GMP [31]. Results are shown in Table 1. Our attribute net

has competitive accuracy but does not outperform the cur-
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rent state-of-the-art [31]. In Table 2 we show some of our

most and least reliably detected attributes on PETA.

Attribute mA Attribute mA

AgeAbove61 92.8% Hat 89.4%

Male 92.3% Muffler 89.3%

Long Hair 90.5% Short Sleeve 88.3%

Stripes 76.4% Sandals 66.1%

Carry Other 76.1% Sunglasses 65.3%

Logo 72.1% V-neck 63.5%

Table 2. Attributes with the highest (top) and lowest (bottom)

recognition rates of our approach on PETA.

5.2. ReId

We evaluate our ACRN approach to attribute based per-

son re-identification on three large-scale public datasets.

CUHK3 The CUHK3 dataset [33] was recorded in a cam-

pus setting and consists of 5 pairs of camera views. The

dataset contains 1,467 persons and more than 14,000 per-

son images. CUHK3 does not contain any distractors (i.e.

persons which appear only in the gallery). The bounding

boxes are partly manually annotated and partly generated

by the DPM detector [7]. We follow the provided evalua-

tion protocol and set aside 100 persons for our test set while

the remaining are used for training. We evaluate in a single-

shot setting by randomly selecting one sample of each per-

son as probe and another random sample from the opposite

camera as gallery. Our CNN models are trained using the

entire training set including the two camera pairs that are

not present in the test data. At train time both labeled and

detected data is used to train each model. We evaluate sep-

arately for both settings on the test set.

Market-1501 The Market-1501 dataset [35] provides

32,668 images of 1,501 persons. 751 persons are used for

training. For testing a set of 3,368 query images is avail-

able. The gallery size of the Market-1501 dataset is 19,734

and contains 2,793 distractors.

DukeMTMC-reID The DukeMTMC-reID dataset [38]

consists of persons cropped out of the DukeMTMC tracking

dataset [23] which is recorded by 8 cameras. The dataset

consists of 1,812 different persons of which 1,404 appear

in more than one camera. 702 persons are set aside for the

training set and the remaining 1,110 are used for testing.

This results in a training set of 16,522 images, a probe set

of 2,228 images and a gallery set of 17,661 images.

We evaluate our performance primarily based on mean

average precision (mAP). mAP is computed as the mean

AP over all queries in the test set. The AP of a query cor-

responds to the average of the precision scores at each rank

where a correct result is returned. We further report Rank-

1, -5, -10 and -20 accuracies to give an impression of the

CMC. On Market-1501 and DukeMTMC-reID we use the

provided evaluation code.

5.2.1 Baselines

We define four simple baseline methods to compare ACRN

with.

ReIdCNN: This baseline trains a plain CNN model of the

same architecture as ACRN but without any attribute infor-

mation. We use the same training settings as for ACRN.

Attributes: For this baseline we evaluate the direct perfor-

mance of the attribute scores generated by our multi view

attribute net on the target re-id dataset. No learning on the

target data is involved in this method.

Attributes-KISSME: This baseline applies KISSME met-

ric learning [14] using our multi-view attribute predictions

on the target data. This baseline shows to an extent the po-

tential for re-id contained in the attribute predictions.

ReIdCNN+Attributes: In order to show the complemen-

tary nature of the information learned by ACRN we use

this baseline which performs a simple score fusion between

the ReIdCNN and Attributes baseline. Similar to ACRN

we weight the attributes scores with 0.5 (the value of γ in

ACRN).

Method mAP r1 r5 r10 r20

NullSpace [32] - 54.70 84.75 94.80 95.20

Gated Siamese [28] 51.25 61.8 80.9 88.3 -

LSTM Siamese [29] 46.3 57.3 80.1 88.3 -

MLAPG [19] - 57.96 87.09 94.74 98.00

PIE [34] 67.21 61.50 89.30 94.50 97.60

PIE+KISSME [34] 71.32 67.10 92.20 96.60 98.10

ReIdCNN 68.1 58.3 83.1 87.4 91.1

Attributes 10.3 12.5 28.9 37.6 41.1

Attributes-KISSME 21.1 34.3 45.3 53.2 59.1

ReIdCNN+Attributes 68.5 58.9 84.3 88.5 93.0

ACRN 70.2 62.63 89.69 94.72 97.12

Table 3. Results of our approach on the CUHK3 dataset (detected

setting). We outperform most recent works with the exception of

the Pose Invariant Alignment combined with metric learning.

The results of our baselines are given in Tables 3, 4, and 5

for CUHK3, Market-1501, and DukeMTMC-reID, respec-

tively. On all three datasets similar trends can be observed.

The ReIdCNN baseline performs strongly while pure at-

tribute information can only achieve a very low person re-

id accuracy. The main reasons for this are the compara-

tively low dimensionality of the attribute information and

their presumably limited reliability due to varying perfor-

mance of the attribute classifier. However, the application

of KISSME metric learning to the attribute predictions on

the target dataset shows that a higher potential for re-id is

contained in the predictions. This indicates that certain at-

tributes are helpful for re-id while others distort the result

without metric learning. Finally, the combination of the
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ReIdCNN with attribute information yields the best baseline

performance but the result is dominated by the CNN and the

overall improvement through attributes is very slight.

5.2.2 ACRN

When combining the attribute information with CNN fea-

tures through our proposed ACRN network, another sig-

nificant boost in re-id accuracy is achieved. Compared to

the ReIdCNN baseline, the use of attribute information in

ACRN can improve the resulting performance by 2.10%

mAP on CUHK3 (detected), 3.76% mAP on Market-1501

and 2.54% mAP on DukeMTMC-reID. Compared to the

ReIdCNN+Attributes baseline score fusion, the attribute in-

formation is much better used. Our ACRN net did not

have to learn the information which is already contained

in the attributes and thus could use more of its parame-

ters for learning to compensate in failure cases. The ReI-

dCNN+Attributes baseline in contrary contains redundant

information in the CNN which leads to reduced benefit of

attributes.

We compare ACRN to a number of recent approaches.

On CUHK3 (Table 3) we outperform most recent works, in-

cluding Discriminative Nullspace [32], Gated Siamese Net-

work [28], and the recent Pose Invariant Embedding (PIE)

[34]. However, a combination of the PIE model based

on ResNet50 with KISSME metric learning outperforms

ACRN. We outperform PIE on the Market-1501 dataset (Ta-

ble 4) as well as most other recent approaches. The At-

tribute Person-Recognition network (APR) outperforms our

approach at top ranks. However, APR relies on additional

training information in the form of attribute annotations (at

person ID level) on the Market-1501 dataset itself. Finally,

on the recent DukeMTMC-reID dataset we outperform all

related approaches by a margin of 1.89% in Rank-1 accu-

racy. A qualitative impression of results by ACRN on our

target datasets is given in Figure 3.

Method mAP r1 r5 r10 r20

Gated Siamese [28] 39.55 65.88 - - -

GAN [38] 55.95 79.33 - - -

PIE [34] 56.23 78.06 90.76 94.41 96.52

DeepTransfer [8] 65.5 83.7 - - -

APR [21] 64.67 84.29 93.20 95.19 97.00

ReIdCNN 58.84 79.51 90.40 92.21 96.5

Attributes 10.36 14.88 25.96 45.81 55.73

Attributes-KISSME 19.70 25.44 41.28 54.48 63.23

ReIdCNN+Attributes 59.99 81.45 91.36 93.78 96.81

ACRN 62.60 83.61 92.61 95.34 97.00

Table 4. Results of our approach on the Market-1501 dataset. Our

performance is competitive and outperforms other recent works at

higher ranks.

Method mAP r1 r5 r10 r20

LOMO+XQDA [28] 17.04 30.75 - - -

GAN [38] 47.13 67.69 - - -

APR [21] 51.88 70.69 - - -

ReIdNet 49.41 68.74 78.31 84.98 88.97

Attributes 7.23 11.34 24.42 32.31 41.24

Attributes+KISSME 12.83 21.97 42.28 50.00 60.53

ReIdCNN+Attributes 50.01 69.91 80.34 86.87 90.43

ACRN 51.96 72.58 84.79 88.87 91.52

Table 5. State-of-the-art results of our approach on the

DukeMTMC-reID dataset.

5.2.3 Attributes in Re-Id

In Table 6 we show the attributes that are most and least

strongly weighted by our approach on all three datasets.

There is a clear correlation between the attribute weight-

ing and their original accuracy on the source dataset. We

observe that many of the highly rated attributes are com-

mon across re-id datasets. Furthermore, many of them fo-

cus on description of the upper body which is usually the

largest portion of the image. Unsurprisingly, the attributes

rated lowest by ACRN include those that occur rarely and

are very specific (e.g. messenger bag). Unfortunately, it is

exactly such rarely occurring attributes which have the po-

tential to be the most distinguishing for person re-id.

CUHK3 Market-1501 DukeMTMC-reID

Male Backpack Jacket

Long Hair Skirt Casual Upper

Jacket Male Trousers

Backpack Long Hair Male

Sandals Hat Sandals

V-neck V-Neck Messenger Bag

Table 6. Attributes with the highest (top) and lowest (bottom)

weights received by ACRN. Upper body attributes receive higher

weights.

It can generally be observed that attributes which are vis-

ible only in very small portions of a person image are deter-

mined to be of less help for re-id by ACRN, even if they had

an originally high detection accuracy on the PETA dataset

(e.g. hat with 89.4%). The small amount of information

in the image which the attribute classifier needs to focus on

appears to get lost in the domain gap between source and

target datasets.

6. Conclusion

We have presented a person re-id approach which in-

cludes automatically predicted attribute information into the

training process of a CNN. This allowed the CNN to focus

on learning information for person re-id which is comple-

mentary to the information contained in the attribute pre-
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Figure 3. Qualitative results of our ACRN approach for challenging queries on the DukeMTMC-reID (top three rows) and Market-1501

(bottom three rows) datasets. The query images are highlighted in blue and the top 14 results are shown. Correct matches are highlighted

green and false matches in red. Note that false results are often semantically and visually similar to the query.

dictions. Our experiments show that the approach outper-

forms both sole attributes or CNNs and even naı̈ve fusion

of the two. Our combined approach achieves competitive

or state-of-the-art results on three public datasets.

For future work we intend to focus on making better use

of the discriminative potential contained in attributes which

are rare and thus often suffer from a low recognition accu-

racy.
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