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Abstract

Land-cover classification (LCC) is one of the central prob-

lems in earth observation and was extensively investigated

over recent decades. In many cases, existing approaches

concentrate on single-time and multi- or hyper-spectral re-

flectance measurements observed by spaceborne and air-

borne sensors. However, land-cover classes, such as crops,

change their reflective characteristics over time, thus com-

plicating a classification at one particular observation time.

Opposed to that, these characteristics change in a system-

atic and predictive manner, which should be utilized in a

multi-temporal approach.

We employ long short-term memory (LSTM) networks

to extract temporal characteristics from a sequence of SEN-

TINEL 2A observations. We compared the performance of

LSTM networks with other architectures and a support vec-

tor machine (SVM) baseline and show the effectiveness of

dynamic temporal feature extraction. For our experiments,

a large study area together with rich ground truth annota-

tions provided by public authorities was used for training

and evaluation. Our rather straightforward LSTM variant

achieved state-of-the art classification performance, thus

opening promising potential for further research.

1. Introduction

In remote sensing and earth observation, land cover clas-

sification (LCC) is one of the key challenges due to its wide-

ranging applicability. For instance, the European Union

calculates the amount of agricultural subsidies based on re-

ports of farmers about their cultivated crop, which could

possibly be controlled via earth observation methods. Be-

sides, more and more work has been carried out in detection

of illegal crops based on air- and spaceborne imagery during

the last decades, but most applications still rely on tedious

visual inspection by experts.

In general, LCC systems from the domain of earth obser-
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Figure 1. Sequence of observations along the growth season 2016.

Observed fields change in a systematic and predictive manner based

on crop phenology, which can be utilized for classification.

vation solely examine multi-spectral sensor data at individual

ground positions or their surrounding regions acquired at a

specific point in time and excluding cloud-covered obser-

vations. The spectral reflectances of crops change along

the growth season due to their individual crops phenology,

machining agriculture, and environmental conditions (cf.

Figure 1). For these reasons, spaceborne sensors with high

temporal resolution (i.e., one day), such as MODIS, have

been used in large-scale land cover classification [1, 2] for

many years. Although their ground resolution of 250 m at

nadir is not detailed enough for small scale LCC, these sen-

sors have been used widely in regional and global monitoring

tasks.

Thus, we believe that—especially in such settings—

additional temporal modelling is called for and may perform

superior to mono-temporal modelling schemes [3]. While

this idea used to be hard to realize due to rather limited ac-

cess to eligible data, SENTINEL2-A/B and LANDSAT-7/8

satellites now deliver medium-resolution multi-spectral re-

mote sensing data at high temporal resolution, i.e., with a

revisit time of five days.

On the downside, due to these increased data stocks, intel-

ligent methods for handling large amounts of data efficiently

are in high demand. In addition, manual model design of nat-
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ural vegetation processes is tedious or even impossible due

to complex relations of internal biochemical processes, the

inherent relations between environmental variables, and the

unclear crop behaviour. Hence, considering the success of

recent deep learning techniques and challenges of per-plot

classification, we propose to employ end-to-end learning

principles to model the crop vegetation cycle. By doing so,

we can turn the big data drawback into an asset.

Thus, as main the contributions of this paper, we

i) present a concept for processing temporal information,

as provided by SENTINEL 2 and LANDSAT-7/8 satel-

lites, in Section 3,

ii) evaluate different data partitioning schemes in training

and evaluation datasets in the context of spatial correla-

tion in the data in Section 4.2.1, and

iii) examine the influence of temporal links between ob-

servations by monitoring classification accuracies of

temporal and non-temporal models in Section 4.2.2.

2. Related Work

While vegetation analysis with continuous monitoring

over the growth season dates back many decades [4], only

recently spaceborne sensors provide sufficient ground sam-

pling distance and temporal resolution for single-plot field

classification. Thus, classical approaches for land-cover clas-

sification usually do not take temporal information into con-

sideration. These systems are most commonly composed of

sequential building blocks—e.g., data preprocessing, feature

extraction, classification, and post-processing—as compre-

hensively summarized by Ünsalan and Boyer [5].

In terms of crop identification, Foerster et al. [3] pro-

pose to extract spatio-temporal profiles comprising normal-

ized difference vegetation index (NDVI) information from

LANDSAT-ETM satellite data for maximum-likelihood (ML)

classification. In their experiments, the authors were able

to classify twelve individual crop classes distributed over

a 14 000 km2 large study area in north-east Germany. In a

comparable manner, Matton et al. [6] identify crops by sta-

tistical features derived from NDVI values and classify them

by K-means and ML classifiers. They utilized LANDSAT-7

and SPOT-4 observations acquired from eight test regions

distributed over the entire world. Similarly, Valero et al. [7]

use randomized decision forests (RDF) on statistical features

derived from several spectral indices from SENTINEL 2A

data.

While these aforementioned approaches do not retain

the sequential consistency of multi-temporal observations,

hidden Markov models (HMM) or conditional random

fields (CRF)—as, for instance, proposed by Siachalou et al.

[8], and Hoberg et al. [9], respectively—can, to some extent,

model the temporal order of sequential data inputs. Both

approaches use a combination of very high resolution (VHR)

and moderate resolution satellite images on a short temporal

series of observations. While Siachalou et al. [8] concen-

trated on eight crop classes in a relatively small area of

interest, Hoberg et al. [9] classified four more broadly de-

fined land cover classes in their experiments, with crops

being condensed to the class cropland.

Kernel-based methods have also been evaluated for multi-

temporal classification, with Camps-Valls et al. [10] intro-

ducing a family of kernels to utilize temporal contextual and

multisensor information. The proposed kernels were tested

both on real optical LANDSAT 7 and synthetic data. The

cross-information kernel was found to be best in general, but

a simple summation kernel performed similar, as pointed out

by Mountrakis et al. [11].

Along with the great success of deep learning methods,

convolutional neural networks (CNN) came into the focus

of the LCC research community. Nevertheless, to date most

approaches do not follow the end-to-end training paradigm,

which is inherent to deep learning, but rather resort to net-

works pre-trained to different computer vision problems and

fine-tune them to specific LCC application scenarios. Most

commonly, authors propose to rely on CaffeNet [12] (as an

extension of AlexNet [13]), GoogLeNet [14], or ResNet [15]

architectures to extract features to be categorized into crop

classes by support vector machine (SVM) or softmax clas-

sifiers [16–18]. Castelluccio et al. [16], for instance, re-

ported experimental results showing that training CNNs en-

tirely from scratch using remote sensing data—i.e., the UC

Merced [19] database—resulted in worse performance com-

pared to fine-tuning or reusing of pre-trained features. This

is most likely due to a limited amount of annotated data

available for optimizing the millions of parameters involved.

Methodically most similar to our approach, Lyu et al. [20]

recently proposed to use recurrent neural networks (RNNs)

[21] and long short-term memory (LSTM) networks [22]

to analyze remote sensing imagery but, in contrast to our

scenario, for the sake of binary and multi-class change de-

tection.

3. Approach

As previously set out, we aim to model the sequential

change of crop phenology during the growth season to assist

further land cover classification. Inspired by recent advances

in machine learning and computer vision, we propose to

employ long short-term memory (LSTM) networks [22] to

learn vegetation grammar patterns based on sequential ob-

servations. In our experiments, we rely on SENTINEL 2A

satellite data acquired over the entire growth period in form

of bottom-of-atmosphere reflection information.

3.1. Neural Network Architectures

The impressive success of recent deep learning systems

was predominantly achieved by feed-forward neural network
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Figure 2. By augmenting standard recurrent neural networks

(RNNs) by forget gates ft, input gates it, modulation gates gt,

and output gates ot, long short-term memory (LSTM) networks

are capable of controlling the amount of stored information from

previous observations x0,...,t−1. (Figure adapted from colah.

github.io/posts/2015-08-Understanding-LSTMs)

architectures with strict sequential data propagation

h = σ(Wdata · x+ b) (1)

from input data vectors x ∈ R
n to hidden state vec-

tors h ∈ R
m as a combination of affine transformations

W ∈ R
n×m, biases b ∈ R

m, and non-linear activation

functions σ : R
m 7→ R

m, e.g. sigmoid and hyperbolic

tangent functions or rectified linear units (ReLU). While

this design is favorable for processing individual uncorre-

lated data items x ∈ R
n, the use of time-dependent data

xt ∈ R
n, 0 ≤ t < T, requires the network to perform

context-sensitive data processing.

A specialization of these fully-connected or convolutional

neural networks are recurrent neural networks (RNNs) [21].

RNNs are capable of storing information and intermediate

results in order to influence the processing of future obser-

vations while being able to process data with unlimited se-

quence lengths. This functionality is realized by augmenting

the layer-wise non-linear mapping

ht = σ(Wdata · xt +Wstate · ht−1 + b) (2)

by the state vector ht−1 derived from previous data xt−1.

Similar to the research field of natural language processing

(NLP), where RNNs yielded broad success, remote sensing

handles data with evident spatio-temporal dependencies.

Inducing a further level of complexity, LSTM net-

works [22], as visualized in Figure 2, are able to regulate the

amount of intermediate data to be stored by adding several

controls, i.e.

ft = σf

(

W
f
dataxt +W

f
stateht−1 + bf

)

(forget gate),

it = σi

(

W i
dataxt +W i

stateht−1 + bi
)

(input gate),

gt = σg(W
g
datagt +W

g
stateht−1 + bg) (modulation gate),

ot = σo(W
o
dataxt +W o

stateht−1 + bo) (output gate).

(3)

These gates influence the ability of LSTM cell to discard

old information, to gain new information, and to use that

information to create an output vector, respectively. The cell

state vector

ct = ft ⊙ ct−1 + it ⊙ gt (4)

storing the internal memory is then updated using the

Hadamard operator ⊙, which performs element-wise multi-

plication, while the layer-wise hidden state vector

ht = ot ⊙ σh(ct) (5)

is further derived from the LSTM output gate vector ot.

With these considerations in mind, the use of (convolu-

tional) neural networks in general and RNNs and LSTM

units in particular comes with manifold advantages for the

motivating LCC scenario:

i) Neural networks are capable of learning complex rela-

tions solely based on presented input data and corre-

sponding labels (i.e., end-to-end learning), superseding

manual process modelling.

ii) Due to information propagation along the observation

sequence, RNNs and LSTMs are capable of learning

temporal relationships between the data items.

iii) At each point in time, classification decisions are based

on relevant information from the entirety of all previous

observations, extracted and stored in a globally optimal

manner.

iv) The classification process itself is robust to high-

frequent temporal coverage—e.g., by clouds, snow,

etc.—, as long as these perturbations are adequately

represented in the corpus of training data.

3.2. LSTM Networks for Temporal Vegetation
Modelling

To address the original land cover classification problem,

we propose a training and classification pipeline, as shown

in Figure 3, to predict class probabilities based on a temporal

sequence of observations. Each observation is expressed as

an input vector x consisting of

i) the day of observation, encoded as a time stamp tt ∈
R

+ normalized to the length of the year and
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Figure 3. Information flow diagram of our proposed classification network based on LSTM modules during training and testing. Classification

is performed at each timestep aided by information of previous observations, thus empowering LSTM networks to utilize temporal features.

ii) ns-spectral reflection data ρt ∈ R
(k×k)·ns in an

k × k px neighbourhood around the point of interest

(POI) to be classified.

A cascade of l LSTM layers with r cells per layer processes

information based on the input of the current and of all pre-

vious observations. A final softmax layer transforms the

LSTM output activation to class probabilities. At each train-

ing step, the cross entropy loss is calculated with respect to

predicted and ground truth class probabilities. The calcu-

lated loss is backpropagated through the network layers as

gradients, which in turn are utilized by Adam optimizer [23]

to adjust the model weights.

4. Evaluation

In this section, we show how our approach is applied to a

body of crop data and subsequently describe the performed

experiments in Section 4.2

4.1. Data Material

For our experiments, a 102 km × 42 km study area in the

north of Munich, Germany, has been chosen as area of inter-

est (AOI), due to its homogeneous agricultural, geographical,

and climate conditions. To monitor the growth season of

2016, we compiled a raster dataset of 26 SENTINEL 2A

images acquired between 31st December, 2015 and 29th Au-

gust, 2016 from the ESA SCIENTIFIC DATA HUB. The data

is atmospherically corrected using the standard SEN2COR

software package. In order to ensure comparability to the

LANDSAT series, we selected the 10 m ground sampling dis-

tance (GSD) resolution bands (i.e., 2 blue, 3 green, 4 red,

8 near-infrared ) along with the 20 m GSD bands (i.e., 11

short-wave-infrared-1, 12 short-wave-infrared-2 ) sampled

to 10 m GSD by nearest-neighbour interpolation.

Figure 4. Area of interest (AOI) located in the north of Munich,

Germany.

As ground-truth information, class labels for 137 k in-

stances of the fields subset present in this AOI have

been provided by the Bavarian Ministry of Agriculture

(“Bayrisches Staatsministerium Ernahrung, Landwirtschaft

und Forsten”) in form of field geometry and names of cul-

tivated crops. In total, this resulted in 19 field classes with

at least 400 occurrences within the AOI selected for further

evaluation. Particularly, these encompass the classes corn,

meadow, asparagus, rape, hops, summer oats, winter spelt,

fallow, winter wheat, winter barley, winter rye, beans, winter

triticale, summer barley, peas, potatoes, soybeans, and sugar

beets. The rejection class label other has been assigned if no

field geometry was available.

Neural networks are usually trained on the body of train-

ing data in multiple epochs. Hence, it is advantageous to

initially cast the input and output data to an appropriate for-

mat to ensure fast data retrieval and to avoid bottlenecks

in data IO at training. For this reason, we derived a third

14



point dataset from the field and rastermeta-datasets.

We extracted 406 k points of interest (POI) following a reg-

ular 100 m × 100 m grid sampling scheme. Each of these

POIs incorporate information of network input x and labels

y in a 30 m × 30 m neighbourhood in the matrix dimensions

required for the network. Input data x for the network com-

prises the day of observation combined with raster reflec-

tions in a fixed 3 × 3 px neighbourhood. Label information

y was derived at the location of each pixel from the field

dataset. We avoided hard class assignments by weighting

multiple classes for POIs located at field borders. To ac-

count for coverages at single observations, covered classes—

comprising cloud, water, snow, and cloud shadow—have

been assigned based on the scene classification mask deliv-

ered by SEN2COR.

4.2. Results

We evaluated the performance of our proposed approach

in two experiment lines.

First we analyzed the effect of different data sampling

regimes on classification results, as to be reported in Sec-

tion 4.2.1. After determining the optimal partitioning regime

for our dataset, we trained multiple temporal and non-

temporal models to be described in Section 4.2.2 and com-

pared the performance in context of temporal features.

For this purpose, the network architectures were imple-

mented in TENSORFLOW. The SCIKIT-LEARN PYTHON

library was used to realize the SVM baseline and to calcu-

late the classification metrics in Table 1. Grid search was

performed within 8 hours on a NVIDIA DGX-1 server

equipped with 8 TESLA P100.

4.2.1 Dataset Partitioning

Two main assumptions for the training and testing

datasets need to be satisfied in order to evaluate the models

independently from the respective datasets.

i) Both datasets are independent from each other.

ii) The class distributions in both datasets are sufficiently

similar.

It is common practice to assign samples randomly to the

respective dataset, which ensures that class distributions are

similar, but assumes implicitly that the samples from each

dataset are independent.

In order to evaluate these sampling effects, the dataset

corpus was partitioned once into train and test datasets

following three different policies in a 5:1 ratio:

sample-wise random Each data sample was randomly as-

signed to either dataset.

block-wise random The AOI was divided into blocks of

3 km × 3 km. Each block was then randomly assigned
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Figure 5. Crop classification performance of our LSTM network

depending on the investigated training and testing partitioning

schemes. While sample-wise random assignment ( ) effected

in overestimated accuracy, the block-wise random sampling ( )

produced similar, yet more reliable results.

to the respective datasets, thus all contained POIs were

then subsequently distributed.

east-west Data samples were assigned based on a north-

south border line dividing the AOI into east and west

subsets, which have been used as test and train

datasets. Choosing such an east-west division ensures

minimal length of the partitioning boundary, thus re-

ducing spatial correlation.

Figure 5 shows the overall accuracies on test and

train datasets of one LSTM network following these three

separation schemes. For the case of sample-wise random

separation, POIs in direct proximity to each other are likely

to be assigned to the different datasets. However, these

POIs might have been located at the same field plot and

share characteristics, such as seeding or harvest dates. Thus,

these POIs can be considered being dependent on each other,

which subsequently resulted in overestimation of perfor-

mance on testing data. Additionally, the difference be-

tween train and test data is minor, which might create

the false impression of absent overfitting.

When the dataset was divided based on east-west separa-

tion, comparatively few points were located at close proxim-

ity. Hence, we can assume that both datasets are independent,

as only few POIs at the division border can be located at the

same field plot. The large spatial distance between train

and test data, on the other hand, influenced the distribution

of classes at each dataset. This relationship is apparent in

Figure 6, where the class distributions in training and

testing partitions are shown as logarithmic histograms.

Class distributions after east-west separation can vary up

to the point that no examples are available in the training

dataset, such as the hops class in this experiment. This could

likely have been caused by different regional environmental

conditions, e.g., climate or soil quality, which encourage

farmers to cultivate different crops based on local conditions.
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Figure 6. Histogram of class frequencies at each train and test data separation and the underlying base distribution. While sample-wise

and block-wise random sampling did not change the class distributions significantly, east-west separation introduced major biases in class

distributions

Additionally, the growth cycles of crops—observed as spec-

tral signatures—could change gradually on a regional scale

due to these environmental conditions. By introducing a

large spatial distance between train and test datasets,

the assumption of similar environmental conditions could be

violated. This might have led to different growth behavior

of the same crop type and, eventually, resulted in poorer

classification performance, as one can observe in Figure 5

for the case of east-west partitioning. On the contrary, divid-

ing the data body first in blocks, which are then assigned to

the respective datasets, constitutes a compromise between

both schemes. Because the number of POIs in direct spa-

tial proximity is small due to the uniform block assignment,

one can safely assume geographical independence. Addi-

tionally a margin between these blocks can be introduced

to prevent POIs of the same fields from being assigned to

different datasets. Simultaneously, the overall class distribu-

tion remained sufficiently comparable, as can be observed

in the histogram corresponding to “blocks-wise random” in

Figure 5.

4.2.2 Influence of Temporal Features on Classifications

In order to evaluate the influence of temporal features on the

classification, multiple temporal and non-temporal models

have been compared in this experiment. To ensure indepen-

dence of weights and hyper-parameters of the models, we

partitioned the body of data into three datasets in a ratio 4:1:1.

Based on the results of the previous experiment, we decided

to partition the datasets using block-wise random sampling

with a margin of 200 m between blocks. The training

dataset was used to determine the network weights, while the

validation dataset was used to select the optimal hyper-

parameters. The training and validation datasets

have been redistributed by 8-fold cross validation to maxi-

mize trained data and to average regional influences in class

distribution. The final accuracy metrics were calculated
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Figure 7. Training progress of 120 networks for each CNN, RNN,

and LSTM architecture on the validation dataset. Realizing

multi-temporal modeling, LSTM networks and RNN outperformed

CNNs, while the influence of hyperparameters, indicated by minor

standard deviation, had less influence on performance than the

choice of architecture.

on the evaluation dataset, which remained untouched

during all experiments.

Neural Network Architectures Three neural network

architectures—i.e., LSTM networks, RNNs, and CNNs—

were evaluated by training 120 networks of each architecture

with different hyper-parameter settings θc = (lc, rc) for each

architecture c ∈ {LSTM,RNN,CNN}. Hyper-parameters

were chosen through a grid search, such that all combinations

of the number of network layers lc ∈ {2, 3, 4} and the num-

ber of cells per layer rc ∈ {110, 165, 220, 330, 440} were

tested. Even though each layer could be initialized with a

different number of cells, which might benefit classification,

we chose to keep the complexity of the grid search moderate

and apply the same number of cells to each layer. To reduce

overfitting on the presented training data, we added dropout

regularization with keep probability pkeep = 0.5.

For each investigated network architecture, Figure 7 illus-
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Table 1. Performance evaluation of our proposed LSTM-based method in comparison to standard RNNs and single-temporal baselines

based on CNNs and SVMs. As cover classes (i.e., cloud, cloud shadow, water, and snow) are usually comparatively easy to recognize, we

restricted our evaluation to unbiased performance measures with respect to the remaining field classes. The accuracy metric was weighted

by the frequency of samples in each class to avoid biases of the non-uniform class distributions.

Measure Multi-temporal models Single-temporal models

LSTM RNN CNN SVM (baseline)

all cover field all cover field all cover field all cover field

accuracy 90.6 93.6 74.3 89.8 92.9 72.9 89.2 93.7 64.3 40.9 87.4 31.1

AUC 98.1 97.5 94.9 97.8 97.0 94.1 95.1 97.0 84.7 87.1 97.6 81.6

kappa 77.6 55.6 67.4 76.1 53.0 65.6 66.2 56.3 44.0 38.2 83.4 27.3

precision 85.6 98.4 78.4 84.8 98.2 77.3 76.7 98.2 59.2 40.2 91.2 31.4

recall 84.4 92.5 74.5 83.4 91.8 73.0 76.8 92.7 57.2 40.9 87.4 31.1

f-score 84.6 95.3 75.3 83.6 94.9 74.0 76.1 95.3 56.7 40.3 88.9 31.1

trates the evolution of its mean and standard deviation of the

validation loss during training.

Hyper-parameter settings θLSTM = (4, 220), θRNN =
(4, 440), and θCNN = (3, 440) achieved best performance.

Support Vector Machine Baseline As a straight-forward

mono-temporal baseline, we trained a SVM classifier

with radial basis function (RBF) kernel κRBF(x,x
′) =

exp
(

−γ ‖x− x′‖
2
2

)

on a balanced dataset of 3,000 data

samples for each class. A grid search over the slack

penalty C ∈
{

10−2, ..., 106
}

and RBF scaling factor γ ∈
{

10−2, ..., 103
}

was performed following a 10-fold cross

validation scheme, on which the optimal hyper-parameters

θSVM = (C = 10, γ = 10) were determined.

Comparison Table 1 reports accuracy metrics of the best

network of each architecture, along with the SVM baseline.

All classifiers were capable of distinguishing covered classes

well, with the SVM classifier especially achieving good ac-

curacies. Moreover, covered classes and field classes were

evaluated separately in order to obtain unbiased performance

measures, as field classes are likely to develop character-

istic behaviors over time. In contrast to fields, instances

of covered classes, which appear based on high-frequent

weather events, can be considered independent from long-

term changes. Consequently, the multi-temporal LSTM net-

works and RNNs achieved better results on field classes

compared to their mono-temporal competitors CNNs and

SVM, as the former likely exploits the temporal changes of

individual crops as classification features.

Figure 8 illustrates the kappa measure trends obtained for

field classes of the best-performing LSTM, RNN, and CNN

networks as functions over observations sequence lengths.

While all three network architectures performed similarly in

the first observations, after day of year 100, the classifica-
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Figure 8. With increasing length of the observation series, multi-

temporal LSTM and RNN networks learned to recognize the differ-

ent crop types by means of their individual phenological vegetation

cycles, while the mono-temporal CNN network did not benefit from

these temporal characteristics.

tion accuracy of LSTM and RNN increased constantly with

length of sequence. This performance increase of the tempo-

ral models around March and April coincides with the start

of growth season in the AOI. After the winter period with

mostly bare soil on all fields, crop-characteristic temporal

changes are likely to occur with the vegetation period, which

can potentially be utilized by LSTM and RNN networks, and

thus increase the classification accuracy.

LSTM classification accuracies on the scale of individ-

ual crops can be observed from the confusion matrix shown

in Figure 9. While some crop classes were classified with

good confidence (e.g. hops, rape), some specific crops got

confused more frequently. While a variety of reasons might

have caused these confusions, some relationships can be ex-

plained by biological relations between crops. For instance,

triticale is a hybrid of rye and wheat. These three crops are

thus likely to share phenological events, as well as spectral

appearances, which hinders distinctive classification. Other

classes—such as fallow, meadow, and other—can not dis-

tinctively be defined and thus were misclassified with various

other categories.
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Figure 9. Confusion matrix reporting class-wise precision of the

proposed LSTM-based approach. The orange-framed submatrix

comprises cover classes, which have been excluded from further

evaluation for the sake of unbiased performance assessment.

5. Discussion

Overall, as the performed experiments show, the tem-

poral LSTM and RNN networks performed better than the

non-temporal CNN and SVM models specifically on classes

which inherit temporal characteristics, such as crops. Hence,

we believe to have demonstrated that LSTM networks can

utilize the temporal characteristics in the context of earth

observation at the example of crop classes. Furthermore, our

straightforward LSTM architecture showed superior classifi-

cation accuracies on field data, in comparison to the state-

of-the art in per-plot crop identification [3, 8]. In terms of

comparability with other research, it would have been favor-

able to train our networks on datasets of different approaches

or to perform other classification techniques on our body of

data. However, we were limited to reported performance on

different datasets, due to restricted access of source code and

data. To counteract this trend in future, we release our source

code and the body data used for the training and testing of

neural networks and the SVM baseline.1

As introduced in Section 2, the approach of Siachalou

et al. [8] employing hidden Markov models (HMM) is com-

parable to our proposed method in terms of methodology.

Their approach achieved good accuracies in experiments car-

ried out on six crop classes using a combination of RAPID-

EYE and LANDSAT imagery along with better kappa metrics

compared to our LSTM network. However, the reported

results could possibly have been skewed by the smaller AOI,

which implies more homogeneous environmental conditions

and farming practices. Moreover, their six crop classes pos-

sibly share a more orthogonal characteristic than our 19

field classes and thus could have been easier to distin-

1available at www.lmf.bgu.tum.de/fieldRNN

guish. Nevertheless, Markov-based approaches [8, 9] are

strong competitors for utilization of temporal features for

classification.

In terms of data characteristics, the dataset of Foerster

et al. [3] is most comparable to ours, as their AOI is located

in north-east Germany and contains a similar set of crops.

Their more conservative classification approach is based

on NDVI profiles extracted from LANDSAT-ETM imagery

and additional agro-meteorological information. Our LSTM

model achieved better performance in terms of both general

accuracy and individual crop accuracy metrics, while still

classifying a larger number crop classes and showing more

flexibility in handling data by end-to-end learning.

After considering temporal features for the task of crop

classification, results indicate that best accuracies are ex-

pected to be achieved by dynamic and self learning tech-

niques, such as HMMs, CRFs, or deep learning, which is

contrary to traditional hand crafted methods, such as spectro-

temporal NDVI profiles.

6. Outlook and Further Work

Crop phenology changes based on environmental, and

thus regional, conditions, such that a trained network in this

vanilla form can not directly be applied to data of different re-

gions. Nevertheless, an end-to-end learning scheme provides

flexibility to introduce additional positional information, e.g.,

temperature, length of day, or elevation. We have introduced,

in a similar manner, the day of observation as input variable

in our approach. Using additional regional information is

believed to enhance the network capabilities to learn charac-

teristics of crops at different regions. Moreover, training and

evaluation at consecutive years would ensure separation and

independence, as discussed in Section 4.2.1. In this work,

we concentrated on the effects of temporal characteristics on

the classification performance. Following this reasoning, we

decided to fix the receptive field of our networks to 3 × 3 px.

Hence, we effectively restrict the end-to-end learning scheme

in terms of spatial extent. Thus, the networks have not been

able to adapt the extents of the involved perceptive field, as

usually intended when using CNNs. In order to overcome

this limitation, a CNN encoding pipeline could be attached

in front of the LSTM cascade, thus mapping the input data

in large-scale to the appropriate resolution in a non-linear

manner. Thus, CNN encoders can potentially process the

entire body of spectral data in different resolutions.
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