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Abstract

In this paper, we propose a framework to register im-

ages with very large scale differences by utilizing the point

spread function (PSF), and apply it to register hyperspec-

tral and hi-resolution color images. The algorithm mini-

mizes a least-squares (LSQ) objective function with an in-

corporated spectral response function (SRF), a nonrigid

freeform deformation applied on the hyperspectral image

and a rigid transformation on the color image. The opti-

mization problem is solved by updating the two transfor-

mations and the two physical functions in an alternating

fashion. We executed the framework on a simulated Pavia

University dataset and a real Salton Sea dataset, by com-

paring the proposed algorithm with its rigid variation, and

two mutual information-based algorithms. The results indi-

cate that the LSQ freeform version has the best performance

for the nonrigid simulation and real datasets, with less than

0.15 pixel error given 1 pixel nonrigid distortion in the hy-

perspectral domain.

1. Introduction

Hyperspectral images have important applications in

agriculture, forestry, geosciences, and astronomy, as the

sensor can capture the reflectance at hundreds of wave-

lengths ranging from visible to shortwave infrared. How-

ever, due to limited amount of incident energy, it also suf-

fers from a low spatial resolution. For example, the Hype-

rion system onboard the Earth Observing 1 (EO-1) satel-

lite launched in 2000 acquires data covering wavelength

0.4µm to 2.5µm with a 30m spatial resolution [18] while

the AVIRIS sensor covers the same spectral range in a flight

with a 18m spatial resolution [19]. On the other hand, mul-

tispectral (e.g. color) or panchromatic (black and white)

images are recorded with very few bands, but they can have

a much better spatial resolution. The commercial satellite

QuickBird (launched in 2001) can collect panchromatic im-

agery at 61 centimeter spatial resolution and multispectral

imagery at 2.5m.

Combining these two types of images can be used to pro-

duce a both spatially and spectrally high-resolution image,

a.k.a. pansharpening or image fusion [28, 7, 4, 25, 23, 10].

Also, a high resolution color image can guide finding the

subpixel objects that contribute to a hyperspectral pixel,

a.k.a. spectral unmixing [28, 25, 27, 26]. Before these ap-

plications, we require an efficient registration process that

registers these images at subpixel accuracy such that we

know which region in the (spatially) high resolution image

corresponds to the hyperspectral pixel.

Despite a plethora of works in the pansharpening com-

munity, very few works have delved into this registration

process [28, 7, 4, 25, 18, 23, 10, 22]. According to the re-

view in [10], various techniques including component sub-

stitution, Bayesian methods, and matrix factorization, are

proposed for image fusion. However, most of them are val-

idated on simulated or semi-realistic datasets, where pixel

correspondence is known in advance (for example, they val-

idated their model on images obtained from spatially and

spectrally degradation of an existing hyperspectral dataset).

As for those works that mention the registration, they are

usually aimed at small scale differences, e.g. two (a pixel

corresponds to 4 pixels) in [2], or lack fine scale accuracy

[24]. For example, in [24] the authors found control points

with correspondence by correlation coefficients from pix-

els with prominent features (e.g. lakes, rivers), and applied

interpolation for the remaining pixels.

If we move to the image registration community, few

works are proposed to handle significant scale difference,

though remote sensing is a major application area of im-

age registration [29]. Among the many registration meth-

ods, they can be mainly categorized as intensity-based and

feature-based. The intensity-based method calculates a met-

ric based on the intensities of the images, e.g. least-squares

[12] or mutual information (MI) [17, 20, 16]. Also, the

intensities can be transformed to the frequency domain, in

which case a direct solution can be obtained by phase cor-
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relation [15, 6], though it only applies to simple transfor-

mations. The feature-based approach is more common in

remote sensing as the images are usually very large, reg-

istering a number of feature points is more efficient than

comparing the intensities of all the pixels. These methods

usually select some control points through a scale-invariant

Fourier transform [11] or Harris corner detector [8], and

approximate the nonrigid transform through the thin-plate

spline [3] or Gaussian radial basis function [14]. For ex-

ample, in [13], a constraint from local linear embedding

on the feature points is used in the objective function for

registering various airborne images. In [1], the authors se-

lected control points in the reference image by edge de-

tection, found the corresponding points in the test image

by template matching, and used the thin-plate spline to ap-

proximate the warping for nonrigid registration of satellite

images. In [5], the Harris corner detector selected feature

points are used in the MI objective for registering airborne

infrared images. The problems they are trying to solve have

one point in common: the remote sensing images are of

similar spatial scales.

In the context of spectral unmixing or pansharpening, the

following physical assumptions are usually used while ig-

nored in the previous registration research:

1. The scale difference between two images can be so

large that a point spread function (PSF) should be spec-

ified in the registration problem. For example, a pixel

in the hyperspectral image may correspond to hun-

dreds of pixels in the color image.

2. The spectral difference is also large such that we may

need to consider multiple bands of both images and the

spectral response function (SRF) in the registration.

For example, a color band of a multispectral sensor

could cover 100nm [9] while a band of a hyperspectral

sensor could only cover 10nm [19].

In addition, there are other challenges specific to this prob-

lem. First, the raw data of these airborne hyperspectral im-

ages are distorted due to airstream turbulence, earth rotation

etc. These are calibrated in post-processing, which brings

spatial errors to the spectra collected. Second, the registra-

tion accuracy should be high enough for the subsequent ap-

plications. It has been shown that the registration accuracy

should be within 0.1 - 0.2 of the low-resolution hyperspec-

tral pixel size to ensure correct fusion or unmixing [28].

Fig. 1 uses an example to show the challenges, where the

hyperspectral image is the Salton Sea dataset obtained from

AVIRIS portal, the color image is obtained from Google

Earth. Fig. 1(a) shows the huge scale difference such that

a PSF may be needed in the registration; (b) shows neigh-

boring pixels having the same spectra, which is probably

caused by spatial calibration and therefore necessitates a

nonrigid registration.

Figure 1. Challenges for registering a hyperspectral image and a

color image. In (a) the ROI of the Salton Sea dataset has 56 by

51 pixels with 224 bands (shown as color image by extracting the

bands close to 650nm, 540nm and 470nm) while the color image

has 738 by 674 pixels with 3 bands. The scale difference is about

10. In (b) the manually picked pixels P1 and P2 have the same

spectra, so do P3 and P4. Consider the thinness of the road, it is

likely that they are spectra corresponding to the same location.

In this paper, we consider these assumptions and chal-

lenges in the registration, propose a least-squares (LSQ)

objective function while considering multiple bands of the

hyperspectral image with the SRF and the PSF. We apply a
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rigid transformation to the color image and a nonrigid trans-

formation to the hyperspectral image, and estimate them si-

multaneously. The proposed method can handle significant

scale difference and spatial distortion with high accuracy.

Hence, it can be used for pansharpening, spectral unmix-

ing, and spatial calibration of hyperspectral images.

2. Problem Formulation

We will make the following physical assumptions. Let

D ⊂ R
2, x = (x, y),

I : D → R
B
+ : I (x) = [I1 (x) , I2 (x) , . . . , IB (x)]

T

be the hyperspectral image with B bands and Ik : D → R+

be the image at the kth band such that

Ik (x) =

∫

R2

g (y − Sx) rk (y) dy+nk (x) , k = 1, . . . , B

(1)

where S = diag (s1, s2) ∈ R
2×2
+ is the scaling matrix,

g : R
2 → R is the PSF that is assumed to be positive and

normalized, i.e.

g (x) ≥ 0 ∀x,

∫

R2

g (x) dx = 1. (2)

The PSF usually takes the form of a Gaussian function or a

constant function over a circular region around the origin;

rk : R
2 → R+ denotes the fine scale reflectance at the kth

wavelength; nk (x) is the noise.

Suppose the color or panchromatic image has b bands,

I ′ : D′ → R
b
+ : I ′ (x) = [I ′1 (x) , . . . , I

′

b (x)]
T
.

When the bandwidths of the hyperspectral sensor are nar-

row, the color image can be assumed to be a linear com-

bination of the reflectances at selected wavelengths of the

hyperspectral sensor,

I ′l (x) = h0l +

d∑

i=1

hilrki
(x) + n′

l (x) , l = 1, . . . , b (3)

where k1, k2, . . . , kd are the selected indices of the B wave-

lengths, h0l, h1l, . . . , hdl are the coefficients of the SRF;

n′

l (x) is again the noise function. Most research does not

include h0l in the SRF, but we use it for more general appli-

cations. An example SRF for the IKONOS satellite sensor

(1m resolution for panchromatic and 4m for multispectral)

can be seen in [9].

Combining (1) and (3) while ignoring the two noise

functions, we have

h0l +

d∑

i=1

hilIki
(x) = h0l +

d∑

i=1

hil

∫

R2

g (y − Sx) rki
(y) dy

=

∫

R2

g (y − Sx) I ′l (y) dy, (4)

where the change of summation and integration uses the

property in (2). In the context of image registration, we usu-

ally have a reference (fixed) image and a test (moving) im-

age whose coordinates are transformed. For our case, first

note that to introduce the PSF, a rigid transformation should

be applied to the coordinates of the color image, since we

want to combine a correct set of hi-resolution pixels into a

low-resolution pixel. For the nonrigid transformation, how-

ever, we can not add it to the rigid transformation. This is

because the hi-resolution color image has a better spatial ac-

curacy, distorting it will impede applications like image fu-

sion. Hence, we separate the transformation into two parts,

and apply the nonrigid transformation to the hyperspectral

image. Let T : R
2 → R

2 be the transformation on the hy-

perspectral image, T ′ : R2 → R
2 be the transformation on

the color image. They are defined by

T (x) = x+ v (x) , T ′ (x) = Ax+ t (5)

where v (x) = (u (x) , v (x)) is a nonrigid translation field

on the coordinates, A contains only rotation since scaling is

incorporated in S (we ignore shearing for the color image)

and t = (t1, t2) ∈ R
2 is the translation vector. Then, the

relation (4) becomes

h0l +

d∑

i=1

hilIki
(T (x)) =

∫

R2

g (y − Sx) I ′l (T
′ (y)) dy

(6)

for l = 1, . . . , b and our problem is to find T and T ′ given

I and I ′.
The major difference of this formulation compared to the

traditional registration is the separation of the transforma-

tion to the two images. Another difference is the introduc-

tion of the SRF and the PSF by separating the scaling from

the rotation/translation. Note that the right hand side is actu-

ally a convolution if we ignore the scale S. Hence it actually

moves the color image and then performs low-pass filtering

and downsampling.

3. Nonrigid Registration at fine-scale

We may scale the color image down to a similar scale

as the hyperspectral image and perform a nonrigid regis-

tration. However, in the context of pansharpening or un-

mixing, we require the registration to be accurate at a sub-

pixel level, while an initial scaling may not combine the

correct hi-resolution pixels. Hence we will solve the fine-

scale problem (6) with the PSF and SRF.

3.1. Rigid registration at finescale

We first consider the rigid registration and then extend

it to the nonrigid case. Let I ′′ : D → R
b : I ′′ (x) =

[I ′′1 (x) , . . . , I ′′b (x)]
T

be the transformed color image, i.e.

I ′′l (x) =

∫

R2

g (y − Sx) I ′l (T
′ (y)) dy, l = 1, . . . , b (7)
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where T ′ is defined in (5). Assume the PSF has the form of

a Gaussian,

g (x, y) ∝ H
(
ρ−

√
x2 + y2

)
e−

x2+y2

2σ2

where σ determines the shape and ρ is the radius controlling

the range of influence with the Heaviside function H [and ρ
can be obtained from the instantaneous field of view (IFOV)

and the flight height]. We can minimize the squared L2

norm of the difference function,

E (S,A, t, σ) =

∫

D

∑

l

∣∣∣∣∣h0l +
d∑

i=1

hilIki
(x)− I ′′l (x)

∣∣∣∣∣

2

dx,

(8)

w.r.t. S, A, t, σ, where the selected indices

{ki, i = 1, . . . , d} are determined by the visible range

0.4µm - 0.8µm. We can rewrite the continuous objective

function in a discrete form. Let Y ∈ R
N×B be the dis-

cretized version of I , X ∈ R
N×b be the discretized version

of I ′′. The selection of d bands can be encoded in a matrix

E ∈ R
B×d where for the ith column, only the kith row

is one while the others are zero. Let H := [hil] ∈ R
d×b,

h0 := [h01, . . . , h0b]
T ∈ R

b, H̃ :=
[
h0,H

T
]T
∈

R
(d+1)×b, Ỹ := [1N ,YE] ∈ R

N×(d+1), we can rewrite

(8) in the following discrete form

E (S,A, t, σ) = ‖X− ỸH̃‖2F . (9)

Eq. (9) not only has the unknown registration parame-

ters, but also the SRF H̃. We can remove this dependence

by solving for it. It is an overdetermined problem to get

H̃ from (9). A direct solution will introduce non-smooth

SRFs. So we add a regularization term to enforce neighbor-

ing values to be similar,

E
(
H̃
)
= ‖X− ỸH̃‖2F +

λ

2

d∑

i=1

d∑

j=1

wij‖hi − hj‖
2

= ‖X− ỸH̃‖2F + λTr
(
HTLH

)
, (10)

where hi := [hi1, . . . , hib]
T ∈ R

b (hence H̃ =

[h0,h1, . . . ,hd]
T

). wij = 1 when |i− j| = 1 and wij = 0
otherwise. L ∈ R

d×d is the graph Laplacian matrix con-

structed from {wij} [21]. λ is a parameter controlling the

smoothness of the SRF. Taking the derivative of (10) w.r.t.

H̃ and setting it to zero, we have

H̃ =
(
ỸT Ỹ + λL′

)−1

ỸTX, (11)

where L′ := diag (0,L) ∈ R
(d+1)×(d+1). Plug H̃ in (11)

back into (9), the objective function becomes

E (S,A, t, σ) = ‖X− Ỹ
(
ỸT Ỹ + λL′

)−1

ỸTX‖2F .

(12)

This is the final objective function used in the optimization.

The objective function (12) involves the parameters for

the transform and for the PSF. We can split them into two

sets and use block coordinate descent to solve for them. For

each iteration, we alternately set

S,A, t← arg min
S,A,t

E (S,A, t, σ) ,

σ ← argmin
σ
E (S,A, t, σ) .

For the minimization problem w.r.t. S,A, t, we can also

use block coordinate descent, where each individual mini-

mization can be achieved by brute force search. Given an

initial coarse-scale registration (e.g. phase correlation), the

search can be constrained to a small neighborhood and we

can use multiple levels of search with diminishing step size

to achieve high accuracy.

3.2. Nonrigid registration using calculus of varia
tions

We can extend the rigid registration in Section 3.1 to the

nonrigid case by adding the optimization w.r.t. v (x). Let

I ′′l (x) be defined in (7). With the nonrigid transformation,

Eq. (8) is written as

E (S,A, t,v, σ)

=

∫

D

∑

l

∣∣∣∣∣h0l +
d∑

i=1

hilIki
(T (x))− I ′′l (x)

∣∣∣∣∣

2

dx, (13)

where T (x) = x + v (x). When H̃ is given as in (11),

this is a functional w.r.t. the translation field v (x) =
(u (x) , v (x)). For optimization w.r.t. v (x), we also

want the nonrigid transformation to be a smooth function,

which leads to an additional constraint α
∫
‖∇u (x) ‖2 +

‖∇v (x) ‖2dx added to (13). Using calculus of variations,

we can obtain the necessary condition for its minimization,

by setting the following Euler-Lagrange equation to zero,

δE

δv
=2
∑

l

{(
h0l +

d∑

i=1

hilIki
(T (x))− I ′′l (x)

)

(
d∑

i=1

hil∇Iki
(T (x))

)}
− 2α∇2v (x) ,

where ∇ is the gradient operator and ∇2 is the Laplacian

operator. Directly solving δE
δv

= 0 for v (x) is usually a

difficult problem. We use gradient descent on v (x), giving

us a partial differential equation (PDE) ∂v
∂t

= − δE
δv

to solve.

Using forward difference on ∂v
∂t

, we have an update rule

v (x)← v (x)−∆t
δE

δv
(14)
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for v (x), where ∆t should be small enough to ensure a

stable solution. Given an initial condition (e.g. v (x) = 0),

we can update v (x) according to (14). Once it converges,

we have a solution to δE
δv

= 0.

The implementation involves the discretization of the

gradient and the Laplacian operator. We use centered differ-

ence for the first order derivative and second centered dif-

ference for the Laplacian operator. Since the diffusion term

∇2v (x) originates from the heat equation and we want the

smoothing to be isolated within the domain, a homogeneous

Neumann boundary condition is used for v (x) in the PDE.

Combining this optimization with the rigid version, we

have our final update rules for the problem (13):

S,A, t← arg min
S,A,t

E (S,A, t,v, σ) ,

v (x)← argmin
v(x)
E (S,A, t,v, σ) ,

σ ← argmin
σ
E (S,A, t,v, σ) ,

where the second minimization problem is solved by the

update rule (14) while the remaining two follow Section 3.1.

In the implementation, we only update the rigid parameters

for the first few iterations for the sake of efficiency.

4. Results

We compared 4 algorithms in the experiments. Other

than the proposed LSQ rigid registration in Section 3.1

and LSQ nonrigid registration with freeform deformation

in Section 3.2, we also tried MI as a metric in our registra-

tion framework and compared a rigid and a nonrigid ver-

sion. The parameters α, λ, ∆t in our algorithms are fixed

as α = 0.05, λ = 10−3N , ∆t = 1, where α has the largest

effect on the final result as the larger it is, the smoother non-

rigid distortion we get. The two MI-based algorithms are

embedded and implemented in our own framework to han-

dle the significant scale difference. The rigid MI algorithm

calculates the metric based on the red band of the color im-

age and the closest band to 650nm of the hyperspectral im-

age. The entropy was calculated by histogramming with

64 bins for the marginal distribution. The nonrigid ver-

sion uses B-splines to model the deformation, with control

points spaced at 8 pixels, then refined to 4 pixels, and finally

2 pixels for the first iteration. The remaining iterations use

2 pixel spaced control points from the previous iteration as

initial conditions to further fine-tune the parameters.

The registration error can be calculated for the simulated

dataset, where the rigid and nonrigid transformations are

known. Though various parameters are known, we are espe-

cially interested in the pixel match error in the hyperspectral

domain, since they affect the subsequent application. Ac-

cording to [28], the pixel match error should be within 0.1 -

0.2 pixels in the hyperspectral domain for meaningful spec-

tral unmixing and pansharpening. To calculate this error, we

Figure 2. Simulated Pavia University dataset with color image and

hyperspectral images (rotated by 5 degrees). The top right corner

shows the translation field that was applied for the nonrigidly dis-

torted version. The translation field moves 4 parts of the image

by opposite directions, with maximal magnitude of 1 pixel. The

distortion is obvious on the blue roof.

transform the hyperspectral pixel coordinates to the corre-

sponding points in the hi-resolution image according to the

ground truth rigid and nonrigid transformations in (6), then

apply the estimated transformations to transform them back

to the hyperspectral domain, compare them to the expected

coordinates, and calculate the Euclidean distances.

4.1. Simulated dataset  Pavia University

The Pavia University dataset was recorded by the Reflec-

tive Optics System Imaging Spectrometer (ROSIS) during a

flight over Pavia, Italy, in July 2002. The scene is around the

Engineering School at the University of Pavia. The image

has spatial size 340 by 610 pixels with a resolution of 1.3

meters/pixel. In the spectral domain, it covers wavelengths

from 430nm to 860nm by 103 bands. We use it to generate

the experimental color and hyperspectral images.

The color image takes the visible bands and uses a Gaus-

sian like SRF covering 120nm for each color band, centered

at 650nm, 540nm and 470nm. We use the top part of the im-

age with pixel size 340 by 500 as the final input color image

(shown in Fig. 2). The hyperspectral image is generated by

rotating the original image by 0 - 10 degrees and scaling it

by s = (4.4, 4.5) with a PSF σ = 10, ρ = 3. The gener-

ated hyperspectral image has size 50 by 80 pixels with 103

bands. We considered two cases. For the rigid case, only

the rotation and scaling generates the hyperspectral image.

For the nonrigid case, a further nonrigid transformation with

T (x) = x+v (x), where v (x) =
∑

k ckN
(
x|µk, σ

2I2
)
,

is applied to the aforementioned image. We use 8 Gaussian

components to simulate the aircraft instability. The trans-

lation field v (x) and the nonrigidly distorted hyperspectral

image are shown in Fig. 2. Both the hyperspectral and color
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Figure 3. Quantitative comparison of error distribution for the simulated rigid (row one) and nonrigid (row two) Pavia dataset.

images are further contaminated by a zero-mean additive

Gaussian noise with standard deviation σn on all the bands.

The quantitative errors for all the methods and noise lev-

els are shown in Fig. 3. Among the 11 results for each

noise level, we remove the largest 4 errors to better visu-

alize the error statistics. The distribution shows that for the

rigid dataset, the proposed rigid version gives the least error,

while all except MI B-spline have errors below 0.1. For the

nonrigid dataset, the nonrigid version performs best with

errors below 0.15, followed by the errors around 0.2 from

the MI B-spline approach. The average time costs for the 4

methods are 290, 95, 72, 792 seconds respectively.

To test the nonrigid estimation part of the two nonrigid

methods, we performed experiments on images generated

with increasing distortion magnitude following the same

pattern in Fig. 2, where the rigid parameters are fixed (as-

sumed to be known) and only the nonrigid parameters are

updated. The qualitative results on 4 examples and the

quantitative errors for all are shown in Fig 4. We can see

that although visually the MI B-spline result for the 4th ex-

ample is not as good as LSQ freeform, the quantitative error

is actually slightly lower. Compared to the result in Fig. 3, it

implies that MI B-spline does not perform well in the whole

framework despite slightly better nonrigid estimation capa-

bility.

4.2. The Salton Sea dataset

The Salton Sea dataset was collected by the AVIRIS on-

board the ER-2 aircraft (20km above the ground) on March

31, 2014. The IFOV for one sample is about 1 milliradian,

so each pixel covers approximately a 20-meter diameter re-

gion. Given its 16.9m spatial resolution, there is some over-

lap between the IFOVs of neighboring pixels. We selected a

small ROI (56 by 51 pixel with 224 bands) containing veg-

etation, a river, rooftops and part of a hill. The color image

(738 by 674 pixels with 3 bands) is obtained from Google

Earth, but the original image was collected in March, 2015.

Though there is a one year interval between the two im-

ages, they are visually similar and in the same month. We

estimated an initial scale s = 10.4 between the two images,

hence the PSF has ρ = ⌈(20/16.9) × 10.4/2⌉ = 7. The

dataset is shown in Fig. 1.

Fig. 5 shows the registered hyperspectral and color

images. We compared the original hyperspectral image

and the transformed one from LSQ freeform visually, and

marked three differences in red circles. For the top cir-

cle, the original one has a thick road segment, while the

transformed one has a thinner road. Consider the narrow-

ness of the road in the registered color image. It’s clear that

the transformed one gives a better spectra distribution. For

the other two circles, the boundary between the vegetation

and the road is not smooth compared to the boundary in the

color image. In the transformed image, they correspond to

the real scene better. If we shift to the transformed image

from MI B-spline, the result appears to be fuzzier.

Fig. 6 shows the region-spectra correspondences for the

arrow marked locations in Fig. 5. For the first column, the

green region consists of all vegetation, the blue region con-

sists of mostly road, however, the two regions have the same

spectra for LSQ and MI. For LSQ freeform, the green re-

gion has spectra between the pure vegetation spectra (red)

and the mostly road spectra (blue), which is a better inter-

pretation. The same phenomena repeat for the second and

third columns. For the first and fourth columns, the MI B-
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Figure 4. Qualitative and quantitative results on simulated images

with increasing distortion effect based on only the nonrigid esti-

mation part of the two nonrigid methods. The four columns in (a)

correspond to distortion magnitude 0.4, 1.6, 2.8, 4 pixels.

spline method has very similar spectra for regions with vi-

sually different materials, implying that it tends to blur the

features.

Since there is no ground truth for this dataset, we need

to resort to a new metric for quantitative comparison. Con-

sidering that most pansharpening works assume the validity

of the linear relationship through the PSF and the SRF, i.e.

Eq. (4), we estimate the SRF, reconstruct the low-resolution

color image, and calculate the root mean squared error for

each pixel and the correlation coefficient for the whole re-

gion. Fig. 7 shows the error maps, from which it is clear

that the LSQ freeform method achieves the least average er-

ror. When it comes to correlation coefficient, it also has the

Figure 5. Qualitative results of the two nonrigid methods for the

Salton Sea dataset. The 3 circle marked areas in the original hy-

perspectral image are improved in the transformed image of the

proposed nonrigid algorithm. The detailed region-spectra corre-

spondences for the 4 locations specified in the registered color im-

age are shown in Fig. 6.

highest value 0.981.

The running times for this dataset are 206, 121, 102,

905 seconds respectively. Similar to the simulated dataset,

though LSQ freeform is slower than the two rigid methods,

it is significantly faster than the other nonrigid method.

5. Conclusion

In this paper, we proposed a framework using the PSF to

register images with different spatial scales, and applied it

to registration of hyperspectral and hi-resolution color im-

ages. The algorithm is based on minimizing a LSQ ob-

jective function involving the PSF and the SRF, while a

freeform deformation is applied to the hyperspectral image

and a rigid transformation is applied to the color image. We

compared the nonrigid method with its rigid variation and
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Figure 6. Qualitative region-spectra correspondences for the 4 locations specified in Fig. 5. The four rows are the results from LSQ

freeform, LSQ, MI and MI B-spline respectively. For each location magnification, we select 4 contiguous pixels (in the hyperspectral

image) and denote the PSF covered regions (in the color image) by 4 different colors. The plot below shows the spectra corresponding

to the 4 circled regions above (if the green spectra is missing, it coincides with the blue spectra). We expect to see continuous spectra

transition according to the transition of materials.

Figure 7. Residual images from reconstruction. The average resid-

ual errors are 5.62, 7.52, 7.62, 7.48 for the four methods respec-

tively. The correlation coefficients for the transformed images are

0.981, 0.965, 0.964, 0.967.

two variations using the MI metric, on a simulated dataset

generated by the Pavia University dataset, and a real Salton

Sea dataset. The results indicate that the proposed nonrigid

algorithm has the best accuracy overall (though it does not

outperform the rigid version in the rigid simulation, the er-

ror is still acceptable). Note that the method is validated on

airborne and space images, its application to airborne and

ground images is to be further explored. Also, the impact

of sensor parameters or terrain surface to accurate registra-

tion is still an open question. Future work will verify its

application on spectral unmixing and pansharpening.
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