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Abstract

Estimation of human energy expenditure in sports and

exercise contributes to performance analyses and tracking

of physical activity levels. The focus of this work is to de-

velop a video-based method for estimation of energy expen-

diture in athletes. We propose a method using thermal video

analysis to automatically extract the cyclic motion pattern,

in walking and running represented as steps, and analyse

the frequency. Experiments are performed with one subject

in two different tests, each at 5, 8, 10, and 12 km/h. The

results of our proposed video-based method is compared to

concurrent measurements of oxygen uptake. These initial

experiments indicate a correlation between estimated step

frequency and oxygen uptake. Based on the preliminary re-

sults we conclude that the proposed method has potential as

a future non-invasive approach to estimate energy expendi-

ture during sports.

1. Introduction

Measuring the performance of athletes in sports is of in-

terest at many levels. In elite and professional sports ath-

letes are regularly tested for their maximum performance

and endurance level, and at amateur levels performance of

both organised sports and daily exercises are measured and

compared with team mates and friends. Self-tracking has

become a trend in all aspects of life.

Due to the sedentary everyday life of most people in the

modern society, both governments and individuals focus on

the amount of physical activity performed regularly. Keep-

ing track of ones performance might inform and inspire a

healthy lifestyle.

In this paper we will focus on the estimation of energy

expenditure, which quantifies the activity level of humans.

Traditionally, in sports science, energy expenditure is mea-

sured directly by oxygen uptake [7]. This requires the par-

ticipant to wear a mask connected to a stationary metabolic

cart while performing tests on a treadmill or cycle ergome-

ter, or in case of free movement the athlete must carry a

mobile metabolic cart. As this equipment is both expensive

and may interfere with the natural behaviour of the athlete,

the method is primarily applied in science and when test-

ing professional athletes. For daily activities and amateur

sports cheaper methods with inexpensive devices are ap-

plied. These indirect methods for estimating energy expen-

diture include heart rate registration [11], accelerometry [5],

and GPS [8], which have been validated against oxygen up-

take. Particularly accelerometers and GPS in wearable de-

vices or smartphones are often used by individuals wanting

to track their own activities on a daily basis. However, these

methods also require special equipment attached directly to

athletes. Each technology has limitations; heart rate mea-

surements may introduce inaccuracy because of emotional

or environmental stress, and the training status can affect the

association between oxygen uptake and heart rate [5, 11].

GPS can only be applied in outdoor environments, and stud-

ies show that energy expenditure can not be precisely esti-

mated from this technology [8]. Accelerometers seem to be

the best low-cost wearable technology for this purpose, but

especially uniaxial accelerometers have limitations at high

speeds [5].

The focus of this paper is on estimation of energy expen-

diture for sports activities with a new non-invasive camera-

based method.

2. Related work

During recent years the focus on vision-based analysis of

sports has increased significantly in both research and com-

mercial systems [15]. Particularly, tracking the motion of
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players is an important step in the analysis of, e.g., physical

performance and tactics [2, 17]. Going further into the anal-

ysis of human motion often involves research in estimation

of body pose [13].

Even though the distance covered, found by tracking,

or the recognised activity relates to energy expenditure of

humans, only few papers compares vision-based measure-

ments with energy expenditure directly. Tsou and Wu [16]

exploited a Microsoft Kinect sensor to remotely track the

movements of 10 joints and they estimate the energy ex-

penditure during aerobics exercises. This approach requires

reliable skeleton data, which currently only operates reli-

ably at close distances, and when the subject is facing the

camera. Kim et al. [10] presented a similar approach, using

a Microsoft Kinect sensor, for assessing the energy expen-

diture of subjects playing exercise games.

Osgnach et al. [12] applied a semiautomatic visual track-

ing system to gather performance data from soccer matches.

From players’ speed, accelerations and decelerations energy

expenditure was estimated. From 2D images captured by a

cell phone camera Yang et al. [18] estimated the energy

expenditure of indoor workouts (sit up, push up, jumping

jack, and squat). This method is based on estimation of rep-

etitions and intensity level of each activity.

Non-invasive video-based energy expenditure measure-

ment has also been investigated for rehabilitation purposes

and assistive monitoring for elderly people. In applications

like these, activities can be assumed to have low intensity

and slow speed, which causes the duration of activities to

be more important than the momentary activity level. Edg-

comb and Vahid [4] estimated energy expenditure in normal

household activities from the sum of horizontal accelera-

tions of a person captured by video. Tao et al. [14] used

RGB-Depth sensors for estimating energy expenditure dur-

ing daily living activities at home. First, the activity type

was recognised, after which the energy expenditure was es-

timated.

A first step towards measuring energy expenditure from

thermal video was described in [9]. The purpose of this

paper was to investigate the correlation between energy ex-

penditure measured by oxygen uptake and a video based

motion measure. For a constrained scenario with horizontal

walking and running on a treadmill, energy expenditure was

estimated from optical flow, which proved to have a linear

correlation with oxygen uptake. As this is a valid method

when assuming a static treadmill setup, it has limitations for

free movement.

The previous work published in this field shows that it is

possible to estimate energy expenditure from video. How-

ever, previous methods applied on sports activities either re-

quire close distance 2D or depth images at a fixed angle, or

manual interventions in a semiautomatic tracking system.

In this work we will focus on general sports activities ob-

served from a distance, e.g., in an indoor sports arena or at

an outdoor field.

3. Approach

With a camera based method, our goal is to develop

a non-invasive estimation method of energy expenditure

for general sports activities. Inspired by the nature of ac-

celerometer data, we aim to extract the dynamics of human

motion, but by using video data we avoid the need of extra

equipment attached to each individual.

In this work we focus on controlled motion patterns, in

particular walking and running at constant velocity. With

this approach we are able to directly compare our results

with steady state measurements of oxygen uptake at each

level of activity. As a direct continuation of the treadmill

experiments published in [9] we start our experiments by

considering motion in a straight line with a camera captur-

ing a side-view. After that, we continue by examining run-

ning activities in a circular pattern, for which the viewing

angle on the body will continuously change.

4. Methods

The first step to consider is the image acquisition tech-

nique. In this work we will use a thermal camera to avoid

any privacy issues while testing in public sports arenas.

However, the methods proposed will be generic with only

minor adjustments to different image types. For applica-

tions where the identity of individuals is of interest, RGB

video would be preferred.

A thermal camera captures infrared radiation in the mid-

or long-wavelength infrared spectrum depending on sensor

type (approx. 3-5 µm and 7-15 µm, respectively). This ra-

diation, often called thermal radiation, is emitted from any

object with a temperature above absolute zero, where inten-

sity and dominating wavelengths depend on the temperature

[6]. As such, pixel values represent temperature, in this pa-

per visualised with white for the hottest pixels and black

for the coldest pixels. An example of input image used is

shown in figure 1.

4.1. Segmentation

Using a static camera view, background subtraction can

be applied to detect the foreground. Assuming that the only

moving objects in the scene are humans, the foreground will

consist of people and possibly noise, which includes reflec-

tions of thermal radiation in the floor. After thresholding

the difference image a binary image is obtained, which can

still contain noise. An example of the resulting difference

image from background subtraction, and the binary result

after thresholding the difference image are shown in figure

2(b) and (c).
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Figure 1: Example of thermal image from a sports arena.

(a) Thermal (b) Difference (c) Binary (d) Closed

Figure 2: Input image (a) and results of three segmentation

steps: (b) background subtraction, (c) thresholding (thresh-

old value 50), and (d) morphology (closing). All images are

cropped.

Smaller noise objects can be filtered by size, however,

there is also a risk that pixels from true body parts are de-

tached from the main part when thresholding the image.

They may then be interpreted as noise pixels. This is the

case for one leg in figure 2(c). In order to close small gaps

and holes, and aim for one connected white object for each

person, we apply morphology closing on a binary image

using a structuring element of disk shape with 5 pixels di-

ameter. The result is shown in figure 2(d).

As it can be observed in figure 2, the reflection of ther-

mal radiation from the body in the floor can be detected. In

cases where the size is small and reflections are separated

from the body, it can be filtered and left out from further

processing. But in other cases the reflection might be con-

nected to the body. In order to separate reflections from the

body, the binary object can be analysed, and a decision on if

and where to cut the object is made. From empirical studies

of segmentation results, it is decided to cut the object if a

row with less than five white pixels is found in the second

lowest sixth of the bounding box area. The lowest part of

the area is not used, due to the high risk of cutting a foot

from a good segmentation. An illustration of this step is

shown in figure 3.

(a) Thermal (b) Binary (c) Binary with cut

Figure 3: Illustration of how to separate body from reflec-

tion.

4.2. Estimation of energy expenditure

From the segmented body silhouettes, we aim to develop

a method that captures the dynamics of human motion, in-

dependent of viewing angle and distance covered by the per-

son. For this initial work we focus on the cyclic motion pat-

tern of natural human motion like walking and running. We

will show that it can be extracted by analysing the bounding

box of the person’s silhouette. Example images from one

step cycle of a test person running at 10 km/h is provided in

figure 4.

Figure 4: Sequence of frames during one step cycle with

bounding boxes marked. All images are cropped.

As seen in figure 4 the bounding box primarily changes

the width when observing a person from a side-view or

partly side-view. However, from a front-view the height of

the bounding box contributes to the cyclic pattern. Further-

more, as the distance between camera and person changes,

the pixel dimensions of a person in the image changes.

Therefore, the ratio between height and width of the bound-

ing box may better represent the motion pattern indepen-

dently of scaling. An example of bounding box ratio mea-

sured during three steps at 10 km/h (captured at a framerate

of 30 fps) is presented in figure 5.
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Figure 5: Example of bounding box height/width ratio dur-

ing three steps when running at 10 km/h, captured at 30 fps.

Maximum points of the ratio graph over time represents

steps. These are extracted from the slope between data

points; a maximum is registered when the slope changes

from positive to negative sign. The frequency of maximums

corresponds to the step frequency.

5. Experiments

The developed video based method is evaluated against

oxygen uptake, which is the direct quantification of energy

expenditure, as discussed in section 1. The experiments

described in this paper are conducted with one participant,

and can therefore not be considered a full validation of the

method, but should be seen as a proof-of-concept which

leads to further research and evaluations.

The experiment is divided into two tests with different

running protocols. During the first test the participant runs

along a straight line of 20 metres and turns at each end, as

illustrated in figure 7. A frame from this test is shown in

figure 1. The participant is told to keep a constant velocity,

which is controlled by a sound signal when the participant

should reach each end point.

During the second test the participant runs along a circle

of 20 metres diameter as illustrated in figure 8. The veloc-

ity is controlled by a sound signal which should be reached

at fix points placed at each eighth of the circle perimeter.

Frames exemplifying different views from the circle pattern

is presented in figure 6. For both tests, the camera is placed

in a height of 3 metres.

Each test is performed at four different velocities: 5 km/h

(walking), 8, 10, and 12 km/h (running). The participant

runs a 4-minute interval at each velocity, with rest time be-

tween each interval. 4 minutes of constant velocity is cho-

sen to ensure that a steady state oxygen uptake is reached.

Only the last minute of each interval is used for processing

of both oxygen and video data.

Video is captured at 30 fps with a thermal camera of type

Figure 6: Frame examples from test 2, running along a cir-

cle with a diameter of 20 metres.

Figure 7: Sketch of test setup for test 1. Participant runs

along the red line and turns at each end point.

AXIS Q1922 with a 10mm lens, 57 degrees field-of-view,

640 × 480 pixels [1]. Oxygen uptake is measured with a

mobile Cardiopulmonary Exercise Testing (CPET) system,

Carefusion - Oxycon mobile by Jaeger [3]. The test partici-

pant is an endurance trained male subject, with a weight of

69 kg.

5.1. Results

For each 1-minute video sequence, the bounding box ra-

tio of the detected person is extracted and saved. The re-

sults are presented in figures 11 and 12 for line and cir-

cle patterns, respectively. For the first test, running in a

straight line, the camera observes the athlete from a side-

view, which provides a relatively stable ratio pattern. This

is, however, interrupted every time the athlete turns, which

can be observed 4 times at 5 km/h, 7 times at 8 km/h, 9

134



Figure 8: Sketch of test setup for test 2. Participant runs

along the red circle.

times at 10 km/h, and 10 times at 12 km/h. When running

in a circle the magnitude variations in the ratio measure-

ments depend on the viewing angle. When observing the

athlete directly from the front or from the back, only small

variations are observed in the ratio.

From these ratio graphs local maximums are extracted as

described in section 4.2. Each maximum can be interpreted

as a step or cyclic repetition of motion. Table 1 summarises

the number of detected maximums and the gross oxygen

uptake measured at the same sequence. Figures 9 and 10

plot these results.

Figure 9: Results of test 1.

The comparisons between maximum counts and oxygen

uptake, plotted against velocity, indicates a correlation. In

test 1 the number of maximums shows a large difference

between 5 km/h and 8 km/h, which is not observed from

oxygen data. However, for test 2, when the participant is

running continuously in a circle, a linear correlation is ob-

Figure 10: Results of test 2.

served. To conclude whether these correlation patterns are

generic we will need a test with a larger number of partici-

pants.

6. Discussion

In this work we have investigated the estimation of en-

ergy expenditure from visual analysis of thermal video.

Tested at two different running protocols, each at four dif-

ferent velocities, we compared the extracted repetition num-

bers with oxygen uptake.

Considering oxygen uptake as the ground truth quantifi-

cation of energy expenditure, we observe that the two dif-

ferent test scenarios have different energy costs. At a veloc-

ity of 5 km/h the difference in oxygen uptake between line

and circle patterns is insignificant, but at higher velocities

the line pattern requires more energy than the circle pattern.

This can be related to the 180 degrees turn that happens for

every 20 metres, which forces the athlete to decelerate and

accelerate. At the circle pattern the velocity is kept constant.

These abrupt changes when turning do also cause noise in

the visual analysis, which can be seen in figure 11.

We measure the changes in ratio of the bounding box,

which is interpreted as the step frequency of running, but

could also be repetitions in still-standing exercises with sim-

ilar repetitive motion patterns. For running, two factors in-

fluence the speed, hence the energy expenditure; step fre-

quency and stride length. For future work it could therefore

be interesting to investigate whether relative stride length or

similar intensity level of activities can improve the estima-

tion of energy estimation.

The initial experiments presented in this paper include

only one participant due to the demanding test protocol

when measuring oxygen uptake. However, we have proved

that a relatively simple visual analysis can provide estima-

tions of energy expenditure which are related to the mea-

surements of oxygen consumption. It therefore serves as a

proof-of-concept, which will be the starting point for further

research and a thorough evaluation. In addition to more test
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5 km/h 8 km/h 10 km/h 12 km/h

Line
Gross oxygen uptake [ml O2/kg/min] 13.0 26.8 35.7 49.6

Maximums [counts/min] 116 174 177 184

Circle
Gross oxygen uptake [ml O2/kg/min] 12.7 24.7 29.8 36.4

Maximums [counts/min] 163 182 192 197

Table 1: Oxygen uptake and step counts from both tests.

(a) Walking in straight line at 5 km/h. Ratio extracted from 1 minute at 30 fps.

(b) Running in straight line at 8 km/h. Ratio extracted from 1 minute at 30 fps.

(c) Running in straight line at 10 km/h. Ratio extracted from 1 minute at 30 fps.

(d) Running in straight line at 12 km/h. Ratio extracted from 1 minute at 30 fps.

Figure 11: Extracted bounding box ratio for test 1, moving along a line of 20 metres length, turning at each end.
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(a) Walking in a circle at 5 km/h. Ratio extracted from 1 minute at 30 fps.

(b) Running in a circle at 8 km/h. Ratio extracted from 1 minute at 30 fps.

(c) Running in a circle at 10 km/h. Ratio extracted from 1 minute at 30 fps.

(d) Running in a circle at 12 km/h. Ratio extracted from 1 minute at 30 fps.

Figure 12: Extracted bounding box ratio for test 2, moving along a circle of 20 metres diameter.

participants, future tests should also include higher running

velocities to investigate how the correlation between step

frequency and oxygen uptake extends, and test a possible

need for additional features.

For this work we have focused on constant running ve-

locities to be able to compare with measurements of oxygen

uptake, which are usually measured after 2-3 minutes to en-

sure steady state conditions. Using this approach we aim

to establish a correlation, after which we can start experi-

menting with dynamically changing velocities and different

activity types. Eventually, we expect it to be possible to cap-

ture the dynamics of activities by analysing step frequency

during few seconds of video. So, in addition to providing a

non-invasive measurement method, visual analysis has the

possibility of cutting down the response time for estimation

of energy expenditure during sports.
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7. Conclusion

We have here presented a new method for estimating en-

ergy expenditure of athletes from passive video data. The

proposed method is based on automatic extraction of step

frequency, independent of viewing angle. The presented

results indicate a linear correlation between the new non-

invasive measurement method and oxygen uptake, which is

usually considered the ground truth. For future work a more

extensive test should be performed to be able to statistically

conclude on the correlation and identify areas for future re-

search and improvements.
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