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Abstract

Analyzing joint movements of an athlete helps to improve

the pose of the athlete. Human pose estimation (HPE) algo-

rithms regress the locations of parts such as wrists, ankles

and knees. In this paper, we propose a network that com-

bines global and local information for HPE using a 2D im-

age. Unlike previous works that have used global or local

information separately, we use the combined information

to enhance the performance of HPE. General information

from a global network is used as an input to a local network

to refine the location of a part using a variety of regions.

The global network is based on ResNet-101 [6] and trained

to regress a heatmap representing parts’ locations. The out-

put features from the global network are used as input fea-

tures for the local network. The local network learns spa-

tial information using position sensitive score maps [11].

Through the end-to-end learning, the global network is af-

fected by the local information. We demonstrate that the

proposed HPE method is efficient on the LSP and UCF

sports datasets.

1. Introduction

In sports, not only managing the condition of an athlete,

but also analysis of the data after the game is important to

improve the competence of the athlete. Especially, meth-

ods for video or image data analysis have long been used to

analyze the ability of an athlete. In the past, sports experts

analyzed athletics videos through their domain knowledge.

This analysis is highly subjective and requires a lot of feed-

back to get justified. Thus, an auxiliary objective analysis is

needed.

Recently, a lot of high quality sports media datasets are

available and we can access a significant volume of ana-

lyzed data. In the analysis of sports datasets, various com-

puter vision methods can be utilized. Especially, a pose

estimation method helps to correct athlete’s posture. Be-

cause sports are environmentally constrained and have a lot

(a) (b) (c)
Figure 1. Comparison of HPE results from different algorithms.

(a) local network, (b) global network, (c) global-local network

(proposed). Red, Blue and Green line are head, right arm and left

arm respectively. Light blue is right leg and light green is left leg.

Resnet-101 is used as a base network.

of rough motions, obtaining 3D information is quite chal-

lenging and 2D data obtained by a single camera is com-

monly used.

Previous works on HPE can be categorized based on

whether an algorithm uses general (global) information or

partial (local) information [9, 17, 7, 18, 13, 2, 14, 3, 16, 20,

15]. In case of using local information, most of the previous

works used contextual relations between local parts. Picto-

rial structures [5], which have been successful on images

where all the limbs are visible, learn the pairwise geomet-

ric relations between parts using a tree model. However,

this tree-based model has a limitation in expressing com-

plex human pose and the proposed hand-crafted features are

sensitive to noise. Fan et al. [4] adapted the local part ap-

pearance using the dual-source deep convolutional neural

network (CNN). They take a set of image patches extracted

by a region proposal method such as Edgebox [21] and train

the local appearance by considering their holistic views in

the full body.

CNNs have shown outstanding results for HPE and many

CNN-based researches used global information [17, 7, 18,

13, 2]. Because CNN is robust to variations and can ex-

tract good representations without using hand-crafted low-

432158



level features, these methods have outperformed in estimat-

ing the pose using the full image. Among these, DeepPose

[17] applied holistic way regression to refine the joint lo-

cations around the initial estimation. Deepercut [7] intro-

duced a strong body part detector and used a very deep

network trained with image-conditioned pairwise terms be-

tween body parts. Recently, many methods iteratively train

the same convolutional networks, each of which taking the

features from the previous stage [18, 13]. Stacked hourglass

[13] repeated bottom-up, top-down processing and Wei et

al. [18] concatenated the same structure as a pose machine.

Those deeper networks have a large receptive field to expli-

cate global context.

Figure 1(a) and (b) are exemplary results that use only

local or global networks. On the other hand, Fig. 1(c)

is a result by the proposed method which combines global

and local networks into one. In the figure, we can see that

the proposed local-global network performs better than the

other two. As can be inferred from this example, because

humans have very diverse poses, using both global and local

information is needed for accurate pose estimation.

Previous works have insisted that a receptive field is pos-

sible to explain spatial information as well as global infor-

mation. However, the receptive fields of higher convolu-

tional layers in a deep network cover large parts of the im-

age instead of explaining spatial information and the fixed

sizes of strides regulate the position of corresponding recep-

tive fields. Thus, we propose the refine network that com-

bines both the local and global information to estimate the

sports pose as shown in Figure 2. The contributions of this

work are as follows:

1) We adapted various region sizes and scales to detect the

proposal regions (ROIs) directly.

2) The inputs to the local network are features concatenated

with global features and heatmaps of the global network.

This method is effective to refine local features guided by

global features.

3) The combined global-local network can be trained end-

to-end.

The proposed method consists of two parts: the global

(general) network and the local (partial) network. In the

global network module, we estimated heatmaps [1] of joints

based on the ResNet-101. We adjusted the stride of the con-

volutional layers to increase the resolution of the heatmaps.

We trained the network using a pixel-wise L2 loss func-

tion to create an estimation of heatmaps. Then, the feature

maps of the final convolutional layer are concatenated by

the heatmaps of global network, which are inputted to the

local network to refine the location. In the local network,

position-sensitive score maps are created to explain the spa-

tial information on region of interest (ROI) as in [11], where

region-based fully convoluitonal networks was proposed for

object detection.

We test the proposed method on the Leeds sports pose

(LSP) and UCF sports datasets. To show the effective-

ness of the proposed approach, we compared two baseline

algorithms: ResNet using local network loss and ResNet

using global network loss. Also we compared a perfor-

mance with recent pose estimation methods [19, 4]. On the

LSP dataset, the average of percentage corrected keypoints

(PCK) is 81.8% on a normalized threshold and the PCK of

head position is 96.2% which is competitive to the state-of-

the-art methods. The UCF sports dataset contains a variety

of sports videos and we evaluated a qualitative results.

The rest of the paper is organized as follows. In Section

2, we present the proposed method and Section 2.1 and 2.2

describe how the global network and the local network are

designed, respectively. In Section 3, we demonstrate the

efficiency of the proposed method through the evaluation on

the LSP and UCF datasets. Finally, we conclude in Section

4.

2. Method

We propose a global-local combined network for HPE:

the first (global) network is a big deep network which esti-

mates locations of parts using the global features, and the

second (local) network is a small network which modifies

the parts’ locations using local information. In the first net-

work, we regress the heatmaps of parts using a pixel-wise

L2 loss. The ground truth of the heatmaps are generated

as Gaussian maps centered at the ground truth locations

of body parts. The output of this network is fed into the

small network to refine the location of each joint. Position-

sensitive ROI pooling based on R-FCN [11] is applied to

the small network. Detailed explanation on the global and

local network is given in the following subsections.

2.1. Global Regression Network

In this module, we predict the position of each part using

a wide range of global information. Because human pose

estimation is a highly non-linear problem, it is difficult to di-

rectly regress the locations of the parts. Rather than directly

regressing the position of the parts, we followed a simple

alternative method which regressed a set of heatmaps cen-

tered at the visible target joints as in [1]. For the visible

joints, the heatmaps are generated as Gaussian maps, each

of which is centered at the location of the corresponding

joint with standard deviation of 5.

To jointly regress the location of each part, we used the

ResNet-101 model [6] which has a very large receptive field

as shown in Figure 2. The large receptive field can ex-

plain the global context. We enlarged the size of the output

feature maps of the network by adjusting the stride of the

convolutional layers in order to increase the resolution of
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Figure 2. Overall architecture of the proposed method (global-local network). The output of the global network is used as an input to a

local network to refine the location using a variety of region proposals. On the left, we show each receptive field of features after the

corresponding convolution layer with its size (e.g., 7× 7 for conv1 layer). On the right, several region proposals are shown.

the heatmaps. Specifically, we changed the stride of the

conv3, conv4 and conv5 layers to 2,1 and 1 respectively,

which yields the size of the output feature map (conv5) to

be 14× 14.

We trained the network with a pixel-wise L2 loss, where

the loss function is as follows:

Lg =
1

N

N
∑

n=1

∑

x,y

∥

∥Hn(x, y)− H̄n(x, y)
∥

∥

2
. (1)

Here, Hn means the predicted heatmap and H̄n is the

ground truth heatmaps. N is a number of parts and (x, y)
means pixel locations of a heatmap.

2.2. Local Refine Network

We refine the location of the parts effectively using com-

bined features and direct local evidences. Combined fea-

tures were created from the global network, which is a con-

catenation of the output of conv5 and the heatmaps. Those

features represent the global features based on the regressed

locations on the heatmaps.

Usually, lower convolutional layers can contain local in-

formation since the receptive fields cover small parts of the

image. However, as passing convolutional layers more and

more, the receptive fields of higher convolutional layers gets

larger. At the bottom-left of Figure 2, receptive fields of dif-

ferent convolutional layers (conv1, conv3, and conv5) from

the ResNet-101 are shown. It can be observed that the re-

ceptive field of the last layer of the ResNet-101 network

covers almost the entire image. Moreover, since the convo-

lutional layers have fixed sizes of strides, the corresponding

receptive fields are regularly positioned. Different from the

previous works, we exploited local evidences explicitly by

Figure 3. The position-sensitive model applied to our local net-

work.

extracting ROIs. ROIs have various scale, size and posi-

tions, and they contain a variety of combinations of body

parts. These characteristics help to increase the expres-

siveness and generalization power of the network. At the

bottom-right of Figure 2, the examples of ROIs using the

Edgebox [21], which is one of the most popular methods in

ROI extraction, are shown.

To learn the local information, we applied the position-

sensitive score maps and the position-sensitive ROI pooling

from R-FCN [11], which are the architectures for position-

sensitive object detection. In R-FCN, each feature map in

position-sensitive score maps contain information of a spe-

cific position. In our method, the position-sensitive score

map has Nb × N channel to describe spatial information

for each joint. Here, N is the number of parts and Nb is

the number of bins to which ROIs are divided. Note that

Nb = B×B in the figure. The position-sensitive ROI pool-

ing is applied to the score maps to generate the feature maps

that are used to locate the body parts as shown in Figure 3.
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Layer name Output size Layer size

conv6 P × P 1× 1, 2048, 1

conv7 P × P 1×1, Nb×N, 1

PS-ROI pooling B ×B ×N

Table 1. The structure of the local refine network. The values in

the layer size tap means (kernel, channels, stride). P is the output

size of conv6, which depends on the stride of the global network.

N is the number of parts and Nb is the number of bins.

Table 1 is the structure of the proposed local network.

The local network consists of one convolutional layer, one

ReLu layer, and one position-sensitive score map layer.

The output size P depends on the stride of the global net-

work. We used average pooling as a method of the position-

sensitive ROI pooling. The output value of b -th bin after the

pooling is calculated as

r(b) =
1

E

∑

(x,y)∈bin(b)

Cb(x0 + x, y0 + y) (2)

where E is the number of elements in a feature map that

are inside the b-th bin, Cb is the value of the feature map

that corresponds to the b-th bin, (x0, y0) is the offset of the

top-left corner of an ROI, and (x, y) are the offsets in the b

-th bin. .

To produce the ground truth for the local network, we ap-

plied the selective pooling to the region of the ground-truth

heatmap that corresponds to the ROI. The average score

value in each bin was trained using a L2 loss where the loss

function is as follows:

Ll =
1

N

N
∑

n=1

(
1

Nb

Nb
∑

b=1

∥

∥rn(b)− r̄n(b)
∥

∥

2
). (3)

Here, rn(b) is the value after the selective pooling in the

b -th bin of the n -th joint and r̄n(b) is the corresponding

ground truth heatmap.

Figure 4 shows a visualization of the results of position-

sensitive ROI pooling on two region proposals. E1 and

E2 are the region proposals extracted from Edgebox. The

pooled features that are used to locate right ankle, right

shoulder, and head are visualized for both region propos-

als. It is verified that the proposed local network success-

fully locate the joints in each region proposal. For example,

because E1 included the head and the shoulder but not the

right ankle, the pooled features for the right ankle have low

values while the values of the other joints are high at the

position of the joints.

Figure 4. Visualization of position-sensitive score maps on two

different ROIs, E1 and E2.

3. Experiments

3.1. Dataset

In order to assess the practical validity of the proposed

method, experiments on the Leeds sports pose(LSP) dataset

and the UCF sports dataset were performed.

The LSP dataset contains dynamic images of people

in sports games gathered from Flickr. It contains various

sports such as Badminton, Baseball, Gymnastics, Tennis

and so on. The dataset consists of 11,000 training images

including the extended data and 1,000 testing pose images

which are annotated with person-centric (PC) 14 joint loca-

tions. The input image was adjusted to 224× 224 pixels for

training. We cropped each image such that a person is lo-

cated at center and minimized the background. The images

are zero padded to maintain the person in high resolution.

The UCF sports dataset is sports action dataset collected

from broadcast television channels such as the BBC and

ESPN. The dataset contains a wide range of sport actions

and scenes such as golf swing and kicking. A total of 150

sequences are included in the dataset. Because UCF sports

dataset have been usually used for sports action recognition,

it does not have annotation of joints. Although we couldn’t

provide the quantitative results, we provided the qualita-

tive results to demonstrate the applicability of the proposed

method on sports videos. As in the LSP dataset, we adjusted

the input image to 224× 224 pixels.

3.2. Implementation details

We implemented our model using the open-source li-

brary Caffe [8]. We used a weight decay of 0.0005 and

momentum of 0.9. For each iteration, the network accepted

1 image as an input. ROIs of the input image are generated

via EdgeBox [21]. Among them, 20 ROIs are randomly se-

lected and are fed to the local network. We used the ResNet-

101 model pre-trained on ImageNet [10] as a base network.

The proposed network was fine-tuned using a learning rate

of 0.0001. Training is done in two stages. First, the global

network is trained except the local refine network, and then,

starting from the weights of the first stage, the full network
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Head Shoulder Elbow Wrist Hip Knee Ankle Total

Local 74.8 63.9 44.7 29.7 66.6 47.9 28.3 50.8

Global 89.3 71.5 58.0 51.0 70.5 66.5 62.5 67.0

Global(14)-local 91.8 76.0 64.7 58.6 76.9 72.9 68.8 72.8

Global(14)-local* 92.3 79.1 69.2 62.9 80.8 76.0 71.5 76.0

Global(28)-local* 96.2 85.4 76.1 71.2 85.7 81.8 76.2 81.8

Fan[4] et al. CVPR’15 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0

Yang [19] et al. CVPR’16 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6

Table 2. PCK-based comparison on LSP. A threshold value was measured at 0.2 (@0.2). The mark * indicates weights from the additional

fine-tuning step is used.

is trained to refine the heatmaps. For inference, we fed the

input image of size 224× 224, and then the output heatmap

of the global network was used as a final result. We empir-

ically determined the size of the bins used for the position-

sensitive pooling as 7× 7, i.e., Nb = 49.

3.3. Evaluation

Several methods are used to evaluate the performance

of human pose estimation in the literature: Percentage of

corrected parts (PCP) and Percentage of correct keypoints

(PCK). PCP calculates the detection rate of limbs. A limb is

considered as detected if the distance between the detected

limb position and the ground truth limb position is smaller

than half of the limb length. Due to the penalization of the

short limbs in PCK, the other methods, in which normal-

ization is done with respect to the human torso, are intro-

duced. In this paper, the performance is reported in PCK.

In PCK, the distance between the estimated and the ground

truth joints is normalized with respect to the torso size of

the target.

Results on the LSP dataset are shown in Table 2 and

Figure 5. We compared the performance of the proposed

global-local network (Global-local) with the case that only

the global network is used (Global), the case that only the

local network is used (Local), and recent human pose esti-

mation methods [19, 4]. Global network was based on the

ResNet-101 and used L2 pixel-wise loss to regress heatmap.

Local network was also based on the ResNet-101, and L2

loss is used for the position-sensitive score maps. Yang et

al. [19] proposed a combined network with the expressive

deformable mixture of parts. Fan et al. [4] proposed a dual-

source CNN without using any explicit graphical model.

They used the local information in image patches. Unlike

our method, they put the cropped image on input image. We

compared those methods as representative methods of ex-

ploiting global information [19] and local information [4].

In the method tab of Table 2, the numbers in parentheses are

the size of the output heatmap.

The performance of the local network and the global

network were 50.8% and 67% in terms of PCK accuracy

respectively. The accuracy of the proposed global-local

(a) (b)
Figure 5. Compared result of global network and the proposed

method. (a) Global network, (b) Global(14)-local network. For

both (a) and (b), the left image shows the position of body parts

and the right image is the original image overlapped with the

heatmap of the left wrist.

network is 5.8% higher than that of the global network.

From the results, we can see that using only local or only

global feature is insufficient for expressing complex hu-

man poses. To boost the performance, we added interme-

diate fine-tuning step before training the global-local net-

work. For the model, we added the deconvolution layer

[12] after the last convolutional layer of the ResNet. The

deconvolution layer upsamples the size of the feature maps

to 224 × 224. Then, 224 × 224 heatmaps are generated,

which are trained using the L2 loss with the ground truth

heatmaps. We found that using the weight trained from

the intermediate fine-tuning step improves the performance.

In Table 2, methods with the postfix (*) are the networks

trained from the weights that comes from the intermediate

step. It can be seen that the intermediate fine-tuning im-

proves the PCK performance by 3.2%. As stated Section 2.1

that the stride of the convolutional layers inside the ResNet

is adjusted to control the output heatmap size, we tested two

different output heatmap sizes, 14×14 and 28×28 to show

the importance of the output heatmap size. When the out-

put heatmap size is doubled, PCK has been improved from

76.0% to 81.8% by 5.8%.

The model that shows the best performance is

Global(28)-local* model of which PCK@0.2 is 81.8%.

Note that the PCK of head regression shows superior results

to the compared methods [19, 13]. Figure 6 shows the PCK

curve according to the normalized distance of each part. It

can be seen that the proposed Global(28)-local* model out-
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Figure 6. Quantitative typical results on the LSP dataset using the PCK. Our proposed method the highest performance especially on head

part. The other parts tend to be similar.

performs the other methods in estimating a variety of parts.

Qualitative results from LSP dataset are shown in Figure 7.

The proposed method included the local network to ef-

fectively learn local information. The role of the local net-

work is to find the local information which cannot be in-

ferred in the global network. Figure 5 is the example that

shows the effect of the local network. The images that

shows the results of all parts locations and the images that

show the output heatmap of the left wrist are shown. Fig-

ure 5(a) is the results from Global model, and Figure 5(b)

is the results from Global(14)-local model. In the case of

Global model which aggregates the global information, the

heatmap of the left wrist has high values around the right

wrist which is visible in the image. On the other hand, in

the case of Global(14)-local model which exploits the local

information as well as the global one, it is possible to refine

the heatmap even for the occluded part, and the position of

the left wrist is correctly inferred as shown in Figure 5(b).

Thus, we conclude that the global-local network is able to

learn both global and local information.

Next, we tested the Global(28)-local* network model

that had been trained using the LSP dataset on the UCF

sports dataset and provide qualitative results. Figure 8

shows the results of representative frames of various videos

such as kicking and skate-boarding. The network success-

fully locates parts even though it is not trained on the UCF-

sports dataset. Especially the head, knee and shoulder po-

sitions were estimated with small amount of errors. Com-

pared to LSP dataset, UCF sports dataset is more challeng-

ing since the dataset contains low resolution and blurry im-

ages as can be seen in Figure 8. The proposed network

produces reliable results despite those challenging condi-

tions. Lastly, we showed the failure cases of our methods

in Figure 7 (b) . When a person is in a squatting position

or a person is wearing loose clothes, it was difficult to lo-

cate the body parts. The proposed method also suffers from

self-occlusions. In those case, it is difficult to regress the

part’s location correctly on a single frame. Using a track-

ing algorithm that contains temporal information can be a

solution for the case. Our method performs slightly worse

than the state-of-the-art. However, since the state-of-the-art

methods are constructed as a repetitive structure or a very

deep structure, our proposed method will work a little faster.

Also, attaching our local refine network to other structures

which has been previously proposed will be left for the fu-

ture work.

4. Conclusion

We presented a network combining both global and lo-

cal information to regress the human pose. Concatenating

global features with heatmaps to refine locally and using

several region proposals are the key features of our meth-

ods. The proposed architecture is a deep global network

followed by a small local network, and the whole network

is trained end-to-end. The combined network efficiently

regressed body parts with high complexity such as veiled

parts. As it is tested on the LSP and UCF sports dataset, the

proposed method was demonstrated to produce good results

in both image data and video. A future work will be attach-

ing our local refine network to other networks that show the

state-of-the-art performance
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(a)

(b)
Figure 7. Qualitative results of our method on LSP dataset. (a) Successful results, (b) Failure results. Proposed method was successful in

various poses. As like squatting pose, many joints had self-occlusion, then it made a failure result.
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