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Abstract

The production of sports highlight packages summariz-

ing a game’s most exciting moments is an essential task for

broadcast media. Yet, it requires labor-intensive video edit-

ing. We propose a novel approach for auto-curating sports

highlights, and use it to create a real-world system for the

editorial aid of golf highlight reels. Our method fuses in-

formation from the players’ reactions (action recognition

such as high-fives and fist pumps), spectators (crowd cheer-

ing), and commentator (tone of the voice and word analy-

sis) to determine the most interesting moments of a game.

We accurately identify the start and end frames of key shot

highlights with additional metadata, such as the player’s

name and the hole number, allowing personalized content

summarization and retrieval. In addition, we introduce new

techniques for learning our classifiers with reduced man-

ual training data annotation by exploiting the correlation

of different modalities. Our work has been demonstrated at

a major golf tournament, successfully extracting highlights

from live video streams over four consecutive days.

1. Introduction

The tremendous growth of video data has resulted in a

significant demand for tools that can accelerate and simplify

the production of sports highlight packages for more effec-

tive browsing, searching, and content summarization. In a

major professional golf tournament such as Masters, for ex-

ample, with 90 golfers playing multiple rounds over four

days, video from every tee, every hole and multiple camera

angles can quickly add up to hundreds of hours of footage.

Yet, most of the process for producing highlight reels is still

manual, labor-intensive, and not scalable.

In this paper, we present a novel approach for auto-

curating sports highlights, showcasing its application in ex-

tracting golf play highlights. Our approach uniquely fuses

information from the player, spectators, and the commen-

tator to determine a game’s most exciting moments. More

specifically, we measure the excitement level of video seg-

ments based on the following multimodal markers:

Figure 1. The H5 system dashboard for auto-curation of sports

highlights. Highlights are identified in near real-time (shown in

the right panel) with an associated excitement level score. The user

can click on the icons in the right panel to play the associated video

in the center, along with the scores for each excitement measure.

• Player reaction: visual action recognition of player’s

celebration (such as high fives or fist pumps);

• Spectators: audio measurement of crowd cheers;

• Commentator: excitement measure based on the

commentator’s tone of the voice, as well as exciting

words or expressions used, such as “beautiful shot”.

These indicators are used along with the detection of TV

graphics (e.g., lower third banners) and shot-boundary de-

tection to accurately identify the start and end frames of key

shot highlights with an overall excitement score. The se-

lected segments are then added to an interactive dashboard

for quick review and retrieval by a video editor or broadcast

producer, speeding up the process by which these highlights

can then be shared with fans eager to see the latest action.

Figure 1 shows the interface of our system, called High-Five

(Highlights From Intelligent Video Engine), H5 in short.

In our approach, we exploit how one modality can guide

the learning of another modality, with the goal of reducing

the cost of manual training data annotation. In particular,

we show that we can use TV graphics and OCR as a proxy

to build rich feature representations for player recognition

from unlabeled video, without requiring costly training data

annotation. Our audio-based classifiers also rely on feature
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representations learned from unlabeled video [3], and are

used to constrain the training data collection of other modal-

ities (e.g., we use the crowd cheer detector to select train-

ing data for player reaction recognition). Personalized high-

light extraction and retrieval is another unique feature of our

system. By leveraging TV graphics and OCR, our method

automatically gathers information about the player’s name

and the hole number. This metadata is matched with the rel-

evant highlight segments, enabling searches like “show me

all highlights of player X at hole Y during the tournament”

and personalized highlights generation based on a viewer’s

favorite players. In summary, the key contributions of our

work are listed below:

• We present a first-of-kind system for automatically ex-

tracting golf highlights by uniquely fusing multimodal

excitement measures from the player, spectators, and

commentator. In addition, by automatically extract-

ing metadata via TV graphics and OCR, we allow per-

sonalized highlight retrieval or alerts based on player

name, hole number, location, and time.

• Novel techniques are introduced for learning our mul-

timodal classifiers without requiring costly manual

training data annotation. In particular, we build rich

feature representations for player recognition without

manually annotated training examples.

• We provide an extensive evaluation of our work, show-

ing the importance of each component in our pro-

posed approach, and comparing our results with pro-

fessionally curated highlights. Our system has been

successfully demonstrated at a major golf tournament,

processing live streams and extracting highlights from

four channels during four consecutive days.

2. Related Work

Video Summarization. There is a long history of re-

search on video summarization [10, 15, 28], which aims to

produce short videos or keyframes that summarize the main

content of long full-length videos. Our work also aims at

summarizing video content, but instead of optimizing for

representativeness and diversity as traditional video sum-

marization methods, our goal is to find the highlights or

exciting moments in the videos. A few recent methods ad-

dress the problem of highlight detection in consumer videos

[20, 25, 26]. Instead our focus is on sports videos, which of-

fer more structure and more objective metrics than uncon-

strained consumer videos.

Sports Highlights Generation. Several methods have

been proposed to automatically extract highlights from

sports videos based on audio and visual cues. Example ap-

proaches include the analysis of replays [30], crowd cheer-

ing [24], motion features [23], and closed captioning [27].

More recently, Bettadapura et al. [4] used contextual cues

from the environment to understand the excitement levels

within a basketball game. Tang and Boring [21] proposed

to automatically produce highlights by analyzing social me-

dia services such as twitter. Decroos et al. [5] developed a

method for forecasting sports highlights to achieve more ef-

fective coverage of multiple games happening at the same

time. Different from existing methods, our proposed ap-

proach offers a unique combination of excitement measures

to produce highlights, including information from the spec-

tators, the commentator, and the player reaction. In ad-

dition, we enable personalized highlight generation or re-

trieval based on a viewer‘s favorite players.

Self-Supervised Learning. In recent years, there has

been significant interest in methods that learn deep neu-

ral network classifiers without requiring a large amount of

manually annotated training examples. In particular, self-

supervised learning approaches rely on auxiliary tasks for

feature learning, leveraging sources of supervision that are

usually available “for free” and in large quantities to regu-

larize deep neural network models. Examples of auxiliary

tasks include the prediction of ego-motion [1, 6], location

and weather [22], spatial context or patch layout [12, 14],

image colorization [29], and temporal coherency [11]. Ay-

tar et al. [3] explored the natural synchronization between

vision and sound to learn an acoustic representation from

unlabeled video. We leverage this work to build audio mod-

els for crowd cheering and commentator excitement with a

few training examples, and use these classifiers to constrain

the training data collection for player reaction recognition.

More interestingly, we exploit the detection of TV graphics

as a free supervisory signal to learn feature representations

for player recognition from unlabeled video.

3. Technical Approach

3.1. Framework

Our framework is illustrated in Figure 2. Given an input

video feed, we extract in parallel four multimodal markers

of potential interest: player action of celebration (detected

by a visual classifier), crowd cheer (with an audio classi-

fier), commentator excitement (detected by a combination

of an audio classifier and a salient keywords extractor ap-

plied after a speech-to-text component). We employ the au-

dience cheer detector for seeding a potential moment of in-

terest. Our system then computes shot boundaries for that

segment as exemplified in Figure 5. The start of the segment

is identified by graphic content overlaid to the video feed.

By applying an OCR engine to the graphic, we can recog-

nize the name of the player involved and the hole number, as

well as additional metadata. The end of the segment is iden-

tified with standard visual shot boundary detection applied

in a window of few seconds after the occurrence of the last

excitement marker. Finally we compute a combined excite-
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Figure 2. Our approach consists of applying multimodal (video, audio, text) marker detectors to measure the excitement levels of the player,

spectators, and commentator in video segment proposals. The start/end frames of key shot highlights are accurately identified based on

these markers, along with the detection of TV graphics and visual shot boundaries. The output highlight segments are associated with an

overall excitement score as well as additional metadata such as the player name, hole number, shot information, location, and time.

ment score for the segment proposal based on a combination

of the individual markers. In the following we describe each

component in detail.

3.2. Audio­based Markers Detection

Crowd cheering is perhaps the most veritable form of

approval of a player’s shot within the context of any sport.

Specifically in golf, we have observed that cheers almost al-

ways accompany important shots. Most importantly crowd

cheer can point to the fact that an important shot was just

played (indicating the end of a highlight). Another impor-

tant audio marker is excitement in the commentators’ tone

while describing a shot. Together those two audio mark-

ers play an important role in determining the position and

excitement level of a potential highlight clip.

In this work, we leverage Soundnet [3] to construct

audio-based classifiers for both crowd-cheering and com-

mentator tone excitement. Soundnet uses a deep 1-D convo-

lutional neural network architecture to learn representations

of environmental sounds from nearly 2 million unlabeled

videos. Specifically, we extract features from the conv-5

layer to represent 6 seconds audio segments. The choice

of the conv-5 layer is based upon experiments and superior

results reported in [3]. The dimensionality of the feature is

17,152. One key advantage of using such a rich representa-

tion pre-trained on millions of environmental sounds is the

direct ability to build powerful linear classifiers, similarly

to what has been observed for image classification [16], for

cheer and commentator tone excitement detection with rela-

tively few audio training examples (for example we started

with 28 positive and 57 negative training samples for the

audio-based commentator excitement classifier). We adopt

an iterative refinement bootstrapping methodology to con-

struct our audio based classifiers. We learn an initial clas-

sifier with relatively few audio snippets and then perform

bootstrapping on a distinct test set. This procedure is re-

peated to improve the accuracy at each iteration.

3.2.1 Crowd Cheer Detection

Cheer samples from 2016 Masters replay videos as well as

examples of cheer obtained from YouTube were used in or-

der to train the audio cheer classifier using a linear SVM on

top of deep features. For negative examples, we used audio

tracks containing regular speech, music, and other kinds of

non-cheer sounds found in Masters replays. In total our fi-

nal training set consisted of 156 positive and 193 negative

samples (6 seconds each). The leave-one-out cross valida-

tion accuracy on the training set was 99.4%.

3.2.2 Commentator Excitement Detection

We propose a novel commentator excitement measure based

on voice tone and speech-to-text-analysis. Tone-based:

Besides recognizing crowd cheer, we employ the deep

Soundnet audio features to model excitement in commen-

tators’ tone. As above, we employ a linear SVM clas-

sifier for modeling. For negative examples, we used

audio tracks containing regular speech, music, regular

cheer (without commentator excitement) and other kinds of

sounds which do not have an excited commentator found

in 2016 Masters replays. In total, the training set for au-

dio based commentator excitement recognition consisted of

131 positive and 217 negative samples. The leave-one-out

cross validation accuracy on the training set was 81.3%.

Text-based: While the commentator’s tone can say a lot

about how excited they are while describing a particular

shot, the level of their excitement can also be gauged from

another source, that is, the expressions they use. We created

a dictionary of 60 expressions (words and phrases) indica-

tive of excitement (e.g. ”great shot”, ”fantastic” ) and as-

sign to each of them excitement scores ranging from 0 and

1. We use a speech to text service1 to obtain a transcript of

commentators’ speech and create an excitement score as an

aggregate of scores of individual expressions in it.

1https://www.ibm.com/watson/developercloud/speech-to-text.html

43233

https://www.ibm.com/watson/developercloud/speech-to-text.html


When assigning a final excitement score to a highlight

(as described in Section 3.4), we average the tone-based

and text-based commentator excitement to obtain the over-

all level of excitement of the commentator. The two scores

obtained from complementary sources of information cre-

ate a robust measure of commentator excitement, as exem-

plified in Figure 3.

3.3. Visual Marker Detection

3.3.1 Player Reaction

Understanding the reaction of a player is another important

cue to determine an interesting moment of a game. In our

work, we train an action recognizer to detect a player cel-

ebrating. To the best of our knowledge, measuring excite-

ment from the player reaction for highlight extraction has

not been explored in previous work.

We adopt two strategies to reduce the cost of training

data collection and annotation for action recognition. First,

we use our audio-based classifiers (crowd cheer and com-

mentator excitement) at a low threshold to select a subset of

video segments for annotation, as in most cases the player

celebration is accompanied by crowd cheer and/or commen-

tator excitement. Second, inspired by [9], we use still im-

ages which are much easier to annotate and allow training

with less computational resources compared to video-based

classifiers. Figure 4 shows examples of images used to train

our model. At test time, the classifier is applied at every

frame and the scores aggregated for the highlight segment

as described in the next Section.

Initially, we trained a classifier with 574 positive exam-

ples and 563 negative examples. The positive examples

were sampled from 2016 Masters replay videos and also

from the web. The negative examples were randomly sam-

pled from the Masters videos. We used the VGG-16 model

[18], pre-trained on Imagenet as our base model. The Caffe

[7] deep learning library was used to train the model with

stochastic gradient descent, learning rate 0.001, momentum

0.9, weight decay 0.0005. Then, we performed three rounds

of hard negative mining on Masters videos from previous

years, obtaining 2,906 positive examples and 6,744 nega-

tive ones. The classifier fine-tuned on this data achieved

88% accuracy on a separate test set containing 460 positive

and 858 negative images.

3.3.2 TV Graphics, OCR, and Shot-boundaries

In professional golf tournament broadcasts, a golf swing is

generally preceded by a TV graphics with the name of the

player just about to hit the golf ball and other information

about the shot. The detection of such markers is straightfor-

ward, as they appear in specific locations of the image, and

have distinct colors. We check for such colors in the vicin-

ity of pre-defined image locations (which are fixed across

all broadcasting channels) to determine the TV graphics

bounding box. One could use a more general approach by

training a TV graphics detector (for example via faster-rcnn

[17] or SSD [8]), however this was beyond the scope of

this work. We then apply OCR (using the Tesseract engine

[19]) within the detected region in order to extract metadata

such as the name of the player and the hole number. This

information is associated with the detected highlights, al-

lowing personalized queries and highlight generation based

on a viewers favorite players. We also use standard shot-

boundary detection based on color histograms [2] as a vi-

sual marker to better determine the end of a highlight clip.

3.4. Highlight Detection

Figure 5 illustrates how we incorporate multimodal

markers to identify segments as potential highlights and as-

sign excitement scores to them. The system starts by gen-

erating segment proposals based on the crowd cheering

marker. Specifically, crowd cheering detection is performed

on a continuous segment of the stream and positive scores

are tapped to point to potentially important cheers in au-

dio. Adjacent 6 second segments with positive scores are

merged to mark the end of a bout of contiguous crowd cheer.

Each distinct cheer marker is then evaluated as a potential

candidate for a highlight using presence of a TV graphics

marker containing a player name and hole number within a

preset duration threshold (set at 80 seconds). The beginning

of the highlight is set as 5 seconds before the appearance

of TV graphics marker. In order to determine the end of

the clip we perform shot boundary detection in a 5 second

video segment starting from the end of cheer marker. If a

shot boundary is detected, the end of the segment is set at

the shot change point.

Segments thus obtained constitute valid highlight seg-

ment proposals for the system. The highest cheer score

value among adjacent segments that are merged is set as

the crowd cheer marker score for a particular segment pro-

posal. Once those baseline segment scores have been com-

puted, we perform further search to determine if the seg-

ment contains player celebration action, excitement in com-

mentators’ tone, or exciting words or expressions used to

describe the shot. It is important to note that the cheer and

commentator excitement predictions are performed on ev-

ery 6 seconds audio segment tapped from the video stream.

Similarly the visual player celebration action recognition is

performed on frames sampled at 1 fps.

In order to determine the overall excitement level of a

video segment we incorporate available evidence from all

audio, visual, and text based classifiers that fall within a

segment proposal. Specifically, we aggregate and normal-

ize positive scores for these markers within a time-window

of detected crowd cheer marker. For player reaction, we set

this window to be 15 seconds while for audio commentator
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Figure 3. Commentator excitement score computation based on (i) audio tone analysis and (ii) speech to text analysis.

Figure 4. Examples of still images used to train our action recog-

nition model.

excitement the window was set to be 20 seconds. Finally

we obtain the overall excitement score of a segment pro-

posal using a linear fusion of scores obtained from crowd

cheer, commentator excitement (audio and text-based), and

player celebration action markers. Weights for crowd cheer,

commentator excitement (audio and text) and player reac-

tion components are set as 0.61, 0.13, 0.13, and 0.13 respec-

tively. The search time-windows, segment duration thresh-

olds and weights for linear fusion were decided on the basis

of analysis performed on the training set, which consists on

the broadcast from the 2016 Masters tournament.

4. Self-Supervised Player Recognition

Automatic player detection and recognition can be a very

powerful tool for generating personalized highlights when

graphics are not available, as well as to perform analysis

outside of the event broadcast itself. It could for example

enable to estimate the presence of a player in social media

posts by recognizing his face. The task is however quite

challenging. First, there is a large variations in pose, illu-

mination, resolution, occlusion (hats, sunglasses) and facial

expressions, even for the same player, as visible in Figure 7.

Second, inter-player differences are limited, as many play-

ers wear extremely similar outfits, in particular hats, which

occlude or obscure part of their face. Finally, a robust face

recognition model requires large quantities of labeled data

in order to achieve high levels of accuracy, which is of-

ten difficult to obtain and labor intensive to annotate. We

propose to alleviate such limitations by exploiting the in-

formation provided by other modalities of the video con-

tent, specifically the overlaid graphics containing the play-

ers name. This allows us to generate a large set of training

examples for each player, which can be used to train a face

recognition classifier, or learn powerful face descriptors.

We start by detecting faces within temporal window after

a graphic with a player name is found, using a faster-rcnn

detector [17]. The assumption is that in the segment after

the name of a player is displayed, his face will be visible

multiple times in the video feed. Not all detected faces in

that time window are going to represent the player of inter-

est. We therefore perform outliers removal, using geomet-

rical and clustering constraints. We assume the distribution

of all detected faces to be bi-modal, with the largest cluster

containing faces of the player of interest. Faces that are too

small are discarded, and faces in a central position of the

frame are given preference. Each face region is expanded

by 40% and rescaled to 224x224 pixels. Furthermore, only

a maximum of one face per frame can belong to a given

player. Given all the face candidates for a given player, we

perform two-class k-means clustering on top of fc7 features

extracted from a VGG Face network [13], and keep only

the faces belonging to the largest cluster while respecting

the geometric constraints to be the representative examples

of the player’s face. This process, working without supervi-

sion, allows us to collect a large quantity of training images

for each player. We can then train a player face recognition

model, which in our case consists of a VGG Face Network

fine-tuned by adding a softmax layer with one dimension

per player. Figure 7(b) shows an example subset of train-

ing faces automatically collected for Sergio Garcia from the

2016 Golf Masters broadcast. The system was able to col-

lect hundreds of images with a large variety of pose and

expressions for the same player. Bordered in red are high-

lighted two noisy examples. While the purity of the training

clusters is not perfect, as we will show in the experiments

of Section 5.3 it still allowed to learn a robust classifier with

no explicit supervision.
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Figure 5. Demonstrating highlight clip start and end frames selection.

5. Experiments

5.1. Experimental Setting

We evaluated our system in a real world application,

namely the 2017 Golf Masters tournament. We analyzed

in near real-time the content of the four channels broad-

casting simultaneously over the course of four consecutive

days, from April 6th to April 9th, for a total of 124 hours

of content2. Our system produced 741 highlights over all

channels and days. The system ran on a Redhat Linux box

with two K40 GPUs. We extracted frames directly from

the video stream at a rate of 1fps and audio in 6 seconds

segments encoded as 16bit PCM at rate 22,050. The cheer

detector and commentator excitement run in real time (1

second to process one second of content), the action detec-

tion takes 0.05secs per frame, graphics detection with OCR

takes 0.02secs per frame. The speech-to-text is the only

component slower than real time, processing 6 seconds of

content in 8 seconds, since we had to upload every audio

chunk to an API service. In the following we report exper-

iments conducted after the event to quantitatively evaluate

the performance of the system, both in terms of overall qual-

ity of the produced highlights as well as the efficacy of its

individual components. All training was performed on con-

tent from the 2016 Golf Masters broadcast, while testing

was done on the last day of the 2017 tournament.

5.2. Highlights Detection

Evaluating the quality of sports highlights is a challeng-

ing task, since a clearly defined ground truth does not exist.

Similarly to previous works in this field [4], we approached

this problem by comparing the clips automatically gener-

ated by our system to two human based references. The

first is a human evaluation and ranking of the clips that we

produced. The second is the collection of highlights pro-

2Video replays are publicly available at http://www.masters.com/en

US/watch/ index.html

fessionally produced by the official Masters curators and

published on their Twitter channel.

5.2.1 Human Evaluation of Highlights Ranking

We employed three persons in a user study to determine

the quality of the top 120 highlights clips produced by our

system from Day 4 of the Golf Masters. We asked each

participant to assign a score to every clip in a scale from

0 to 5, with 0 meaning a clip without any interesting con-

tent, 1 meaning a highlight that is associated with the wrong

player, and 2 to 5 meaning true highlights, 5 being the most

exciting shots and 2 the least exciting (but still relevant)

shots. We then averaged the scores of the three users for

each clip. The resulting scores determined that 92.68% of

the clips produced by our system were legitimate highlights

(scores 2 and above), while 7.32% were mistakes. We also

compared the rankings of the clips according to the scores

of each individual component, as well as their fusion, to

the ranking obtained through the users votes. The perfor-

mance of each ranking is computed at different depth k with

the normalized discounted cumulative gain (nDCG) metric,

which is a standard retrieval measure computed as follows

nDCG(k) =
1

Z

k∑

i=1

2reli − 1

log2(i+ 1)

where reli is the relevance score assigned by the users to

clip i and Z is a normalization factor ensuring that the per-

fect ranking produces a nDCG score of 1. In Figure 6 we

present the nDGC at different ranks. We notice that all com-

ponents but the Commentator Excitement correctly identify

the most exciting clip (at rank 1). After that only the Action

component assigns the highest scores to the following top

5 clips. When considering 10 top clips or more, the benefit

of combining multiple modalities becomes apparent, as the

Fusion nDGC curve remains constantly higher than each in-

dividual marker.

43266

http://www.masters.com/en_US/watch/index.html
http://www.masters.com/en_US/watch/index.html


5.2.2 Comparison with Official Masters Highlights

The previous experiment confirmed the quality of the identi-

fied highlights as perceived by potential users of the system.

We then compared H5 generated clips with highlights pro-

fessionally created for Masters, Masters Moments, available

at their official Twitter page3. There are a total of 116 high-

light videos from the final day at the 2017 Masters. Each

one covers a player’s approach to a certain hole (e.g. Daniel

Berger, 13th hole) and usually contains multiple shots that

the player used to complete a particular hole. In contrast

each H5 highlight video is about a specific shot at a particu-

lar hole for a given player. In order to match the two sets of

videos, we considered just the player names and hole num-

bers and ignored the shot numbers. After eliminating Mas-

ters Moments outside of the four channels we covered live

during the tournament and for which there is no matching

player graphics marker, we obtained 90 Masters Moments.

In Table 1, we report Precision and Recall of matching

clips over the top 120 highlights produced by the H5 Fu-

sion system. We observe that approximately half of the

clips overlap with Masters Moments. This leaves us with

three sets of videos: one shared among the two sets (a gold

standard of sorts), one unique to Masters Moments and one

unique to H5. We observed that by lowering thresholds

on our markers detectors, we can incorporate 90% of the

Masters Moments by producing more clips. Our system is

therefore potentially capable of producing almost all of the

professionally produced content. We also wanted to inves-

tigate the quality of the clips which were discovered by the

H5 system beyond what the official Master’s channel pro-

duced. Generation of highlights is a subjective task and may

not comprehensively cover every player and every shot at

the Masters. At the same time, some of the shots included

in the official highlights may not necessarily be great ones

but strategically important in some ways.

While our previous experiment was aimed at understand-

ing the coverage of our system vis-a-vis official Masters

highlights, we wondered if a golf aficionado would find the

remaining videos still interesting (though not part of official

highlights). We therefore aimed an experiment at quantita-

tively comparing (a) H5 highlight clips that matched Mas-

ters Moments and (b) H5 highlight clips that did not match

Masters Moments videos.

In order to do so we selected the 40 most highly ranked

(by H5) videos from lists (a) and (b) respectively and per-

formed a user study using three human participants famil-

iar with golf. Participants were shown pairs of videos with

roughly equivalent H5 scores/ranks (one from list (a) and

the other from list (b) above) and were asked to label the

more interesting video between the two, or report that they

were equivalent. Majority voting was used among the users

3https:// twitter.com/mastersmoments

Figure 6. nDGC computed at different ranks for the individual

components as well as the Fusion.

Depth 120 500

Precision 0.54 0.35

Recall 0.4 0.9

Matching Highlights Preference 0.57 -

Non-Matching Highlights Preference 0.33 -

Equivalent 0.10 -

Table 1. Highlights detection performance. Comparison between

the top k (k = 120, 500) retrieved clips from our system and the

official Master’s Twitter highlights.

votes to determine the video pick from each pair. From the

results reported in Table 1 we observe that while the pref-

erence of the users lies slightly more for videos in set (a),

in almost half of the cases the highlights uniquely and orig-

inally produced by the H5 system were deemed equally if

not more interesting. This reflects that the system was able

to discover content that users find interesting and goes be-

yond what was officially produced. It is also interesting to

notice that our system is agnostic with respect to the actual

score action of a given play, that is, a highlight is detected

even when the ball does not end up in the hole, but the shot

is recognized as valuable by the crowd and/or commentator

and players through their reactions to it.

5.3. Self­Supervised Recognition

In order to test our self-supervised player recognition

model we randomly selected a set of 10 players who partic-

ipated to both the 2016 and the 2017 tournaments (shown in

Figure 7 (a)). In Table 2 we report the statistics of the num-

ber of training images that the system was able to automat-

ically obtain in a self-supervised manner. For each player

we obtain on average 280 images. Data augmentation in

the form of random cropping and scaling was performed to

uniform the distribution of examples across players. Since

there is no supervision in the training data collection pro-

43277

https://twitter.com/mastersmoments


Figure 7. Self-supervised player face learning. (a) Examples of

the 10 players used in the experiments. (b) Subset of the images

automatically selected as training set (2016 Masters) for Sergio

Garcia (note the diversity of pose, expression, occlusion, illumi-

nation, resolution). (c) Examples of test faces (2017 Masters) cor-

rectly recognized through self-supervised learning. (d) Examples

of False Negatives (in orange) and False Positives (in red).

cess, some noise in bound to arise. We manually inspected

the purity of each training cluster (where one cluster is the

set of images representing one player) and found it to be

94.26% on average. Note that despite evaluating its pres-

ence, we did not correct for the training noise, since our

method is fully self-supervised. The face recognition model

was fine-tuned from a face VGG network with learning rate

= 0.001, γ = 0.1, momentum = 0.9 and weight decay =

0.0005. The net converged after approximately 4K itera-

tions with batch size 32. We evaluated the performance

of the model on a set of images randomly sampled from

Day 4 of the 2017 tournament and manually annotated with

the identity of the 10 investigated players. Applying the

classifier directly to the images achieved 66.47% accuracy

(note that random guess is 10% in this case since we have

10 classes). We exploited the fact that the images come

from video data to cluster temporally close images based

on fc7 features and assigned to all images in a cluster the

identity which received the highest number of predictions

within the cluster. This process raised the performance to

81.12%. Figure 7 (c) shows examples of correctly labeled

test images of Sergio Garcia. Note the large variety of pose,

illumination, occlusion and facial expressions. In row (d)

we also show some examples of false negatives (bordered

in orange) and false positives (in red). The net result of our

framework is thus a self-supervised data-collection proce-

dure which allows to gather large quantities of training data

without need for any annotation, which can be used to learn

robust feature representations and face recognition models.

5.4. Discussion

While we have demonstrated our approach in golf, we

believe our proposed techniques for modeling the excite-

Number of Players 10

Number of Training Images 2,806

Training Clusters Purity 94.26%

Number of Test Images 1,181

Random Guess 10.00%

Classifier Alone Accuracy 66.47%

Classifier + Clustering Accuracy 81.12%

Table 2. Face classification performance.

ment levels of the players, commentator, and spectators are

general and can be extended to other sports. The way we

determine the start of an event based on TV graphics is spe-

cific to golf, but that could be replaced by other markers in

other sports. In tennis, for example, the start of an event

could be obtained based on the detection of a serve by ac-

tion recognition.

The combination of multimodal excitement measures is

crucial to determine the most exciting moments of a game.

Crowd cheer is the most important marker, but alone cannot

differentiate a hole-in-one or the final shot of the tourna-

ment from other equally loud events. In addition, we no-

ticed several edge cases where non-exciting video segments

had loud cheering from other holes. Our system correctly

attenuates the highlight scores in such cases, due to the lack

of player celebration and commentator excitement. We be-

lieve that other sources of excitement measures, such as

player and crowd facial expressions, or information from

social media could further enhance our system.

The same approach used for self-supervised player

recognition could also be applied for the detection of golf

setup (player ready to hit the golf ball), using TV graphics

as a proxy to crop positive examples based on person de-

tection. This would generalize our approach to detect the

start of an event without relying on TV graphics, and also

help fix a few failure cases of consecutive shots for which a

single TV graphics is present.

6. Conclusion

We presented a novel approach for automatically extract-

ing highlights from sports videos based on multimodal ex-

citement measures, including audio analysis from the spec-

tators and the commentator, and visual analysis of the play-

ers. Based on that, we developed a first-of-a-kind system for

auto-curation of golf highlight packages, which was demon-

strated in a major tournament, accurately extracting the start

and end frames of key shot highlights over four days. We

also exploited the correlation of different modalities to learn

models with reduced cost in training data annotation. As

next steps, we plan to demonstrate our approach in other

sports such as tennis and produce more complex storytelling

video summaries of the games.
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