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Abstract

In many sports, it is useful to analyse video of an athlete

in competition for training purposes. In swimming, stroke

rate is a common metric used by coaches; requiring a la-

borious labelling of each individual stroke. We show that

using a Convolutional Neural Network (CNN) we can auto-

matically detect discrete events in continuous video (in this

case, swimming strokes). We create a CNN that learns a

mapping from a window of frames to a point on a smooth 1D

target signal, with peaks denoting the location of a stroke,

evaluated as a sliding window. To our knowledge this pro-

cess of training and utilizing a CNN has not been inves-

tigated before; either in sports or fundamental computer

vision research. Most research has been focused on action

recognition and using it to classify many clips in continuous

video for action localisation.

In this paper we demonstrate our process works well on

the task of detecting swimming strokes in the wild. How-

ever, without modifying the model architecture or training

method, the process is also shown to work equally well on

detecting tennis strokes, implying that this is a general pro-

cess.

The outputs of our system are surprisingly smooth sig-

nals that predict an arbitrary event at least as accurately as

humans (manually evaluated from a sample of negative re-

sults). A number of different architectures are evaluated,

pertaining to slightly different problem formulations and

signal targets.

1. Introduction

Automatic video analysis of sports boasts several attrac-

tive features: it can be done quickly, with a simple camera,

objectively, without obstructing the athletes in any way and

without using the time of sports analytics experts. Stroke

rate is an important metric used in swimming training, and
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Figure 1. The raw labels for swimming stroke detection are very

sparse. To train a CNN on these labels, we smooth them to produce

a continuous target signal instead of discrete binary values.

currently, experts spend a significant amount of time manu-

ally labelling each stroke in a video in order to provide sta-

tistical feedback to the swimmers. We call this task discrete

event detection (distinct from, event detection; which is

detecting the beginning and end of an action).

There has been much research in extracting useful in-

formation from video and recent improvements in training

deep CNNs [7, 6] allow them to replace whole sections of

computer vision pipelines for video analysis [30, 29, 27,

24]. In this paper, we describe a method to train a simple

CNN for discrete event detection.

CNNs are constrained to fixed-size input/output, requir-

ing a sliding window approach. The naive approach would

be to classify each window as a stroke (denoted as 1) or

not a stroke (denoted as 0), but training a CNN on these

labels directly is an unstable learning problem. First, there

is a huge imbalance between positive and negative exam-

ples; statistically speaking, always predicting 0 is very accu-

rate, and hence favoured by a machine learning algorithm.

Second, as Figure 1 shows, the neighboring frames of each

‘stroke’ have similar pixel contents, but would have differ-
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Table 1. Summary of related, but distinct, video analysis tasks discussed in this paper.

Name Description Example Output Public Datasets

Action Recognition Classifying a whole non-continuous video

as a particular action

This video shows ‘soccer’ UCF[22], Sports-

1M[10]

Action Localisation

/ Event Detection

Locating any number of actions in continu-

ous video and classifying them

There was a ‘horse riding’ ac-

tion from frames a to b, etc.

THUMOS[9],

TRECVID MED[1]

Discrete Event De-

tection

Determine precise frame numbers that an

event occurs

The swimmer’s hand entered

the water on frames {a, b, ...}
To our knowledge:

none

ent labels; there is very little correlation between pixel con-

tent and the desired output. This second problem is exacer-

bated by the ambiguity inherent to frame-specific labels (it

is sometimes unclear even to human experts).

Our key contribution is to translate this unstable learning

problem into a more numerically optimal learning problem.

First we translate the raw labels to a continuous signal. Fig-

ure 1 shows that by forcing nearby frames to have similar

targets, we also create many non-zero labels, solving both

problems at once, and introducing a tolerance to inconsis-

tent label positions. Next, we train a CNN to match this

continuous signal. Finally, from the predicted continuous

signal we discretise the signal back into precise frame num-

bers.

For clarity, we disambiguate between three important,

and related, video analysis tasks: action recognition, ac-

tion localisation/event detection and discrete event detec-

tion. Table 1 describes each task with examples/public

datasets. Figure 2 shows the targets for each task with re-

spect to video frames. To put discrete event detection (the

focus of this paper) more formally: we want some function

g that processes some video V with N frames into frame

numbers F (denoting where events occurred) such that

g(V) = F , with (∀i ∈ F) i ∈ [1, N ]. (1)

We have conducted several experiments to test different

ways of using CNNs for discrete event detection. The key

findings are:

• using a CNN to predict strokes works extremely well

in both swimming and tennis (F-Score = 0.92 and 0.97,

respectively, at 3-frame tolerance) with no domain-

specific settings, suggesting this training process is

general to many sports.

• softening the targets to produce a smooth 1D signal is

more effective than using hard labels.

• differentiating between swimming styles is not impor-

tant for swimming stroke detection.

• early fusion of video frames with a 2D architecture is

able to discern motion information and out-performs a

single frame.

• there is very little variance between the model’s raw

and smoothed signal output (∼3% on average).

C

C C

Action Recognition

Action Localisation /

Event Detection

Discrete Event Detection

Figure 2. Comparing different video tasks: the cells represent

video frames, colored cells means a frame number annotation, and

‘C’ means a classification annotation for some number of frames.

2. Related Works

There are two backgrounds to consider for this work.

The first is how generic image classification, video action

recognition and action localisation have evolved recently

with deep learning. The second is swimming analysis and

stroke detection. To our knowledge, our specific definition

of discrete event detection has not been studied in generic

video analysis research.

2.1. Generic image classification and video analysis
tasks

Video action recognition could be described as image

classification using temporally unbounded image frames as

input. Solutions to image classification are often adapted

and extended to work for video data [20]. The typical

pipeline for video action recognition with hand-crafted fea-

tures uses a Bag of Visual Words approach and has up to 5

stages; feature extraction, feature pre-processing, codebook

generation, feature encoding, and pooling, before going

through a classification algorithm [14]. Research on hand-

crafted features focuses on improving part of this pipeline

(usually feature extraction or feature encoding).

The most well-known algorithms for feature extraction

are: Scale Invariant Feature Transform (SIFT) [12], His-

togram of Gradients (HOG) [4], Histogram of Optical Flow

(HOF) [2], and Motion Boundary Histograms (MBH) [25].

For feature encoding, the best performing methods are

Fisher Vectors (FV) [15] or variations, like Vector of Lo-

cally Aggregated Descriptors (VLAD) [8].

Until recently the state-of-the-art in video action recog-

nition has been hand-crafted feature extraction. Oneata

et al. [13] achieved state-of-the-art performance on the
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TRECVID MED dataset using densely extracted SIFT and

MBH for feature extraction, FV for feature encoding and

an SVM for classification. Gaidon [5] suggested that each

action consists of multiple parts, called ‘actoms’. By mod-

elling actions as a series of actoms it simplifies the recog-

nition of parts, but requires denser labels, which is usually

not available. Peng et al. [14] achieved state-of-the-art mAP

on the UCF101 dataset with an almost exhaustive search

across combinations of known algorithms for each step of

the above pipeline.

Image classification competitions are currently domi-

nated by CNNs [11, 21, 6]. These have provided very

large improvements over methods involving hand-crafted

visual features; from 25.8% error in ILSVRC2011 using

compressed Fisher Vectors to 3.57% error in ILSVRC2015

[6, 16].

Like the hand-crafted features before them, Convolu-

tional Neural Networks have since been adopted for use in

video action recognition. Neural networks tend to function

on fixed-size input and output, so it is not immediately obvi-

ous how to use CNNs for video. Wang et al. [26] evaluated

images frames with a pre-trained VGG model [21] to pro-

duce frame-level features from the activations of later lay-

ers. They averaged and encoded these with VLAD before

using cosine similarity for classification. Simonyan and

Zisserman used their VGG[21] architecture in a two-stream

architecture [20] using image frames and optical flow to im-

prove on state-of-the-art. They make action predictions at

25 equidistant frames in each clip and evaluate for a whole

clip by using the last layers’ activations in an SVM.

Karpathy et al. [10] evaluated different methods of pro-

cessing small fixed-size windows with CNNs for action

recognition: single frame, early fusion, late fusion and 3D

convolutions. They evaluated by simply sampling several

locations in videos and pooling the results by majority vot-

ing. Tran et al. [24] used a 3D Convolutional Neural net-

work to produce 16-frame clip-level descriptors in a sliding

window approach, averaging across the whole video to pro-

duce a video-level descriptor which was classified with an

SVM.

To our knowledge, the best result on UCF101 is cur-

rently by Wang et al. [27]. They learn a transformation

matrix per action class, from two descriptors obtained at

statistically likely locations for the beginning and end of an

action with siamese networks, selecting the transformation

that minimised the distance.

2.1.1 Action Localisation

The main reason we differentiate between action localisa-

tion and discrete event detection is to make clear that dis-

crete event detection requires much more precise predic-

tions. Action localisation tends to be thought of as action

Video

Action

Recognition

Model Output:

Multiple Bounding Boxes

above con dence threshold

NMS

Localisation

Predictions

Con dences

Labels

Figure 3. Most other work treats action localisation as a classifica-

tion problem. A near-perfect action recognition algorithm would

produce several bounding boxes around each ground truth; the

confidence would smoothly increase as the bounding box overlaps

more with the original labels. Typically this granular information

is not leveraged and NMS is used to select a single bounding box.

recognition on untrimmed video, where subsets of frames

need to be classified. This introduces a problem if the subset

of frames are interpreted as a bounding box through time;

there are too many positive predictions. From this inter-

pretation, it seems natural that the most applicable bound-

ing box will have the highest confidence and nearby pre-

dictions should be ignored. The most common solution

is non-maximal suppression [5, 13, 19]. Gaidon et al. [5]

and Oneata et al. [13] used their action recognition for ac-

tion localisation with a sliding window, using non-maximal

suppression to obtain distinct predictions. Shou et al. [19]

explicitly separated detecting an action and classifying it,

creating separate 3D CNNs to do each job. They produced

classifications for a small clip at a time, in a sliding window

over the videos, with non-maximal suppression to produce

the final predictions.

Yet, it can be seen that the expected output of a near-

perfect action recognition algorithm would approximate the

smoothed target labels proposed in this paper. Consider that

the confidence in a bounding box using such an algorithm

will vary smoothly from 0% recognition for no overlap to

100% recognition for complete overlap around each true

action (this is shown in Figure 3). In a sense, the predic-

tions for both action localisation and discrete event detec-

tion are a continuous signal which need to be discretised.

While others have noted that positive classifications that are

temporally close to one another can be utilised to make pre-

dictions more accurate [28, 29], this is only mentioned as a

side-note. To our knowledge no one else directly learns and

utilises this natural continuous signal.
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2.2. Swimming Analysis

Sha et al. [17] used the differences in colour between the

water and the foreground objects (i.e. swimmers and lane

ropes) to spatially locate swimmers in untrimmed video.

They first isolate the lanes, and then the swimmers them-

selves, building an image mask for the swimmer. They were

quite successful at tracking swimmers (88.6% of frames af-

ter post-processing), but the method does not translate to

other sports at all. They did not attempt to detect strokes in

this work.

Building on their work in spatially localising the swim-

mer, Sha et al. [18] predicted swimming stroke rate by lo-

cating the swimmer’s elbow with a deformable parts model,

tracking it’s y-position through time to produce a noisy, pe-

riodic pattern. They used a relatively small set of videos

(freestyle only) and noted difficulties with varying illumina-

tion, camera angle and zoom. They obtained an average of

5% error in stroke rate. By this metric, our method achieves

0% error (see the ‘10+’ column in Figure 8).

Tong et al. [23] used broadcast video of swimming races

to predict the style. They used a lengthy pipeline of pro-

cessing involving a few custom hand-crafted features used

in a neural network and SVM, evaluated at multiple frames,

with majority voting to aggregate.

Zecha et al. [29] detected swimming strokes using video

taken through a glass wall, showing the whole swimmer

above and below the water. They used an AlexNet archi-

tecture [11] to classify patches of an image to locate joints

at each frame, from which they used a deformable parts

model to create a pose estimation. They fed the pose es-

timations into a neural network to predict several types of

swimming event. Compared to our process: their videos

are constrained to a lab setting where the swimmer’s whole

body is visible at all times, while ours uses natural video

taken at races; and theirs is not an end-to-end deep learning

solution.

3. Modified problem description

Equation 1 defines the task of discrete event detection.

As explained in the introduction, directly classifying each

window is an unstable learning problem. Hence we break

the problem into two parts: regression and discretisation

(see Figure 4). The regression part is a mapping from a

small number of video frames to a point on a signal. The

target signal is the result of label smoothing (see Figure 7

and Section 5.3).

Regression. Let yi be the smoothed label for the i-th

frame with xi the input video frame. Then, we want some

function R that produces an estimate ŷi such that

R({xi−w, ...,xi, ...,xi+w}) = ŷi (2)

Video

Model Output

Event Predictions

Regression

Discretisation

Target Labels

Raw Labels

Smoothing

Figure 4. We define two parts to our solution of the modified prob-

lem for discrete event detection. We use a CNN to do the com-

plex mapping from video frames to a simple target signal (regres-

sion), and simple thresholding to predict precise frame numbers

(discretisation).
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Figure 5. The base architecture used for all experiments, using the

ELU non-linearity[3] and Batch Normalization[7].

with the minimum mean-squared error loss

min

(N−w)
∑

i=w

(yi − ŷi)
2
. (3)

Where (2w + 1) is the width of the window of frames

used as input and N is the number of frames in the video.

Discretisation. From the estimated signal ŷ, we want

some function D that produces specific frame numbers F̂;

D(ŷ) = F̂ = {f̂1, f̂2, ..., f̂m}. (4)

Where f̂i is a stroke prediction (frame number) and m is

the number of predicted strokes.

4. Our solution

Regression. We used a standard CNN for the regression

function R. As a base architecture, we use a CNN loosely

based on VGG-B[21]; a pattern of blocks of two convolu-

tions with a max pooling layer on the end, however the num-

ber of maps, blocks and fully connected layers are different

(see Figure 5). The kernel sizes for all convolution layers

are 3x3 (2D case) or 3x3x3 (3D case) with padding to retain
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image size. The max pooling layers use a 5x5 spatial ker-

nel with stride of 2x2 to downsample and padding similar

to convolution layers. For the 3D case, the max pool layers

have a stride of 1 in the temporal dimension and no padding

if the intermediate temporal dimension is larger than 3.

Discretisation. Our discretisation process involves three

steps. First, we smooth the signal with a weighted moving

average, producing a smoother curve. Second, we threshold

the signal at the mean (for tennis we threshold at 0.5), pro-

ducing a square wave. Third, we scan linearly through the

signal and for every unbroken chain of 1’s, we declare the

middle frame of that chain to be a predicted stroke f̂i.

5. Exploratory Factors

We consider several different CNN architectures. First

we consider how temporal information should be incorpo-

rated into the model. Second we consider different ways to

use swimming style information, necessitating architecture

changes and having implications for the model capacity and

generalisation of the result.

5.1. Using Temporal Data

We compared ‘single frame’, ‘early fusion’ and 3D CNN

as in [10]. Taking a single frame as input is used as a

baseline technique. In early fusion we stack the frames to-

gether along the maps dimension and use a 2D CNN. A 3D

CNN has three dimensional convolution kernels; where a

3D CNN retains temporal representations throughout, a 2D

CNN does not and hence is less equipped to find motion cor-

relations. Temporal/motion information is especially im-

portant for the case of occlusions. A single frame model is

unable to cope with a mostly occluded frame, while the oth-

ers will be able to use the surrounding information to make

some kind of prediction. A 3D CNN has more parameters;

increasing model capacity and computation time required.

5.2. Using Swimming Style Data

We wanted to determine the most effective way to use

classes for discrete event detection. In this paper, we treat

the different styles as a proxy for different classes of action.

Four styles were used: Backstroke, Breaststroke, Butterfly

and Freestyle.

A neural network model is an approximation of an un-

known target function. The potential benefit of adding com-

plexity to the target function is that it generalises better with

a small cost to model capacity, resulting in better overall

performance. The potential detriment is that it either does

not generalise any better and/or has a large cost of model

capacity which will hurt overall performance.

Model per style. The simplest target function investi-

gated here was to limit our dataset to just one style of video

(freestyle; ∼50% of the videos) for both training and eval-

uation with just one output number (k = 1). Even if this

Images

Style

1 Output

Figure 6. A method to use the style as extra input for the network.

The input image frames go through the convolution section like

normal, while the style (one-hot encoded) is processed in parallel

to produce a gating vector on the output of the convolution section.
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Figure 7. A visual comparison between the different ways of trans-

forming the original labels (shown as green circles) into smoother

functions used in this paper (red, cyan and blue lines; ‘sine’, ‘trun-

cated sine’ and ‘square’ respectively).

method works slightly better, it is less practical to construct

a separate model for each class of action, and is included

more as a comparison point than a viable alternative.

All styles. Conversely, we use k = 1, and feed all videos

to the model. Given the subtleties between the styles, it

is plausible that this change introduces a small increase in

complexity with a relatively larger generalisation effect.

Multi-class. By using k = 4, one for each style, we can

predict and learn for each style separately. This is based on

the idea of multi-task learning. Let ui be the scalar target

for the i-th frame used for the case of k = 1, and let s be

the style (class), one-hot encoded. Then the targets for the

‘multi-class’ model are

yi = uis. (5)

Note that since s has three zeros, 3 of the values in y are

always zero.

Style as Input. We also experiment with providing the

class label (one-hot encoded) as extra input with k = 1,

called a ‘style as input’ model. After passing the class label

through a single linear layer to match sizes, the class label

is element-wise multiplied with the flattened output of the

convolutional section of the network (see Figure 6). Thus

the network learns a gating on the convolution features,

based on the style. This reduces the complexity as com-

pared to ‘all styles’, while retaining the concept of explic-

itly separating the swimming styles from the ‘multi-class’

model.

5.3. Target Signal

We propose to compare three different smoothing func-

tions to create the target signal; called ‘square’, ‘sine’ and

‘truncated sine’ (see Figure 7). The labels for frames are -

conceptually - modified by their proximity to events. Any
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transformation needs to account for events potentially be-

ing very close together and being very far away from each

other; e.g. a fixed shape must not be wider than the small-

est distance between events. With regards to swimming, the

number of frames between the strokes is indicative of how

quickly the swimmer performs the action, which is not con-

sistent across time, videos or style. Additionally there are

periods of no strokes where the swimmer turns around at

the edge of the pool.

For the ‘square’ labels, if the frame is within 3 frames

(inclusive) of an event frame, then it is labelled as a 1. For

the ‘sine’ and ‘truncated sine’ labels the first step is to fit

a cosine between every pair of strokes (except through a

swimmer’s turn, where the average cosine is fit to the edges,

leaving most of the turn action labelled as 0). Let c be these

intermediate labels from the first step, with cn being the

intermediate label for the n-th frame. Then the transformed

labels are:

yn = max {acn + (1− a), 0} . (6)

Where ‘sine’ labels use a = 1
2 and ‘truncated sine’ labels

use a = 1.

For the tennis evaluation, the strokes were more sparse.

A fixed shape was constructed similarly around each label,

with c representing half of a cosine wave with a period of

40 frames, the peak centred on the stroke.

6. Implementation details

The model parameters were initialised with He et al.’s

method in [6]. The Adadelta[31] optimiser was used - thus

no learning rate was selected - with a minibatch size of 64.

As this is now a regression problem, the loss function used

is Mean-Squared Error. No regularisation of weights was

used. All frames’ pixels were encoded in the YUV colour-

space and downsampled to 128x48. The video frame pixel

values were standardised at the channel level with the mean

and standard deviation across the whole dataset. The result-

ing data was augmented by random zooming (up to 20%

larger, cropping back to original size), and random colour-

space variation (between 1/3x and 3x scaling, applied per-

channel).

By skipping input frames, a lower fps can be simulated,

introducing more motion between frames. Along with tem-

poral window size, this introduces some hyper-parameters

for using video. There were some small experiments done

to determine the best values for these; the number of frames

appeared mostly irrelevant, but skipping frames was found

to be strictly worse beyond a certain point. Every second

frame was skipped for the swimming experiments in Sec-

tion 7, but not for the tennis experiment as they were only

30fps video (as opposed to the swimming videos at 50fps).

To minimise the disk I/O, the input frames are pulled in

succession from the videos, from beginning to end, caching

the previous frames for each video. The video from which

the frames are pulled is chosen at random from a discrete

non-uniform distribution of the number of frames in each

video (i.e. a video with 2% of the total number of frames

has a 2% chance of being selected). With the number of

videos present, there is typically no bias in a minibatch.

6.1. Datasets and Video preprocessing

We used two datasets which were hand-labelled by ex-

perts at the Australian Institute of Sport. The swimming

dataset was the initial focus, while the tennis data was the

most readily available different dataset that could be used

as a validation that the training process was general across

sports.

Swimming data. The dataset used for the experiments -

unless otherwise stated - contains 15k labelled swimming

strokes in 650k frames of video (at 50fps) at two venues,

consisting of 40 different swimmers. Unprocessed video

of swimming races can include multiple swimmers, but by

indicating only one set of strokes, and there was no guaran-

tee to which swimmer the labels belong. Thus these videos

are the result of being preprocessed as in [17] to extract the

lanes from colour information: cropped and sheared to ob-

tain a single swimmer’s lane that is axis-aligned. We used

∼80% of the data for training. A ‘stroke’ is defined as “the

frame that the swimmer’s hand enters the water”

Tennis data. Tennis is a good sport to test the gener-

ality of our method since the background, colours and hu-

man motions are very different from swimming while the

moment the key event occurs is similarly clear in tennis

(racket hits ball). This dataset consisted of 1.3k labelled

tennis strokes in 270k frames of video (at 30fps) at two

venues with of 4 different players practising tennis shots.

Swimming strokes appear much more densely than the ten-

nis strokes due to their periodic nature and there was a rel-

atively large number of tennis strokes that were unlabelled.

Thus the dataset of videos for tennis was constructed as

small clips around each labelled stroke, and large sections

of video with no strokes used as background videos. The

sliding window evaluation used in this paper means that the

network uses the same frames and thus is still completely

applicable to the original videos. We used ∼80% of the

tennis data for training, and ∼20% for testing.

7. Experiments

For the swimming experiments the default decisions are

to use early fusion of input, ‘style as input’, and to train

using ‘sine’ transformed labels. The input for all early fu-

sion and 3D architecture models for swimming is 11 frames

wide (5 frames wide for tennis). The decisions are com-

pared with one another on the validation set, as there is no

publicly available dataset to compare performance on.
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Figure 8. The 3D CNN from the swimming experiments (the

model with the best results) completely missed very few strokes.

This shape is representative of all models.
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Figure 9. A typical histogram of the point-wise difference between

the raw outputs and the smoothed output (this is from the 3D

CNN).

7.1. Evaluation Metrics

The main evaluation metric used is the F1-score:

F1-score = 2×
Precision × Recall

Precision + Recall
, (7)

henceforth called the F-score. Each stroke prediction was

considered a true positive if it was within 3 frames of any

initial stroke label. All other stroke predictions were consid-

ered false positives, and all initial stroke labels that were not

covered were considered false negatives. The stroke predic-

tions were not evaluated frame-to-frame because the precise

frame number is ambiguous, even to human experts, and the

initial labels have approximately this same margin of error

as well.

We use two additional metrics for further comparison.

Average frame distance, measuring the average distance

between each predicted stroke f̂i and the nearest true stroke

fj (denoted ‘min
∣

∣

∣
f̂i − fj

∣

∣

∣
’). And average difference to

smoothed, measuring the average point-wise difference be-

tween the raw output signal ŷ and the smoothed output sig-

nal (denoted ‘∆ Smooth’).

7.2. Using Temporal Data

In Section 5.1, we mention three ways of including tem-

poral data. Although the 3D convolution architecture ob-

tained a higher F-score (Table 2 and Figure 10), it takes
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Figure 10. The validation loss between the different methods for

including temporal data (minibatch size of 64).

several times longer and more parameters than the others.

Using a single frame does quite well, however, some-

times the swimmer will be occluded by foreground objects,

or failed pre-processing. There are not many occlusions in

the dataset, and using early fusion does not introduce many

new parameters, so the increase in performance from no

temporal information to early fusion can be attributed to

finding a better representation using motion information. It

is unclear what proportion of the improvement from early

fusion to a 3D architecture can be attributed to an intrinsic

understanding of motion by convolving through time, and

how much is simply because a 3D architecture has more

parameters.

7.3. Using Swimming Style Data

As mentioned in Section 5.2, there are four ways to use

the style of swim as classes. Of these, the simple ‘all styles’

was the best (Table 2). The benefit of more videos must

outweigh the complexity added by including all styles in

a single model. There must be enough information across

styles that there is no benefit in being provided the style.

It is interesting that the ‘multi-class’ model obtained a

markedly lower F-score. The targets for each input was a

4-element vector, consisting of three 0s and a transformed

target value. We speculate that this method of training may

have been a less stable training objective because the net-

work must identify features that are both distinctive to the

style and the proximity to the original stroke at the same

time. This actually creates less incentive to share features

across styles, since it must find features specifically to dif-

ferentiate completely between the styles. At evaluation

time, the style is inferred by finding the output index with

the highest sum of outputs over a video. The models did not

incorrectly identify any styles.

7.4. Producing Different Signals

A surprising result is how smooth the outputs are in all

cases; Table 2 shows that the average difference between
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Table 2. Experimental results by Temporal Architecture, Style Input Mode, and Target Signal. The default model of ‘Early Fusion’/‘Style

As Input’/‘Sine’ is mentioned once per group for the sake of easier comparison. The models in bold obtained the best F-Score in each

section.

Temporal Architecture Use of Style Data Target Signal F-Score min
∣

∣

∣
f̂i − fj

∣

∣

∣
∆ Smooth

None (Single Frame) Style As Input Sine 0.894 1.690 0.0391

Early Fusion 0.900 1.711 0.0340

3D Conv 0.922 1.604 0.0330

Early Fusion All Styles Sine 0.906 1.722 0.0356

Model per Style 0.875 1.696 0.0419

Multi-Class 0.863 1.811 0.0331

Style as Input 0.900 1.711 0.0340

Early Fusion Style As Input Sine 0.900 1.711 0.0340

Truncated Sine 0.912 1.587 0.0419

Square 0.879 1.960 0.0660

Table 3. When the training method is applied to Tennis, we obtain

at least as good results as for swimming.

Temporal Architecture F-Score

Single Frame 0.964

Early Fusion 0.977

the raw output signal and the smoothed version is extremely

small (see Figure 9).

7.5. Method applied to Tennis

As described in Section 6.1, the input videos were pre-

processed to exclude the unlabelled tennis strokes. The in-

put data frames were downsampled to 192x128 (larger than

the swimming videos) because more of the image was taken

up by background. All other training settings and data aug-

mentation was identical. A ‘single frame’ and a ‘early fu-

sion’ model were trained from scratch on this dataset (both

models were also ‘all styles’ and used ‘truncated sine’ la-

bels). Both achieved better results as compared to equiva-

lent models for swimming (see Table 3), however this may

be due to more precise labels (see Section 7.6).

While the early fusion model did not produce any false

positives further than 6 frames away from a expected stroke,

the single frame model had several false positives where a

player was simply walking across the court. Without the

motion information, the model was unable to tell the dif-

ference between a tennis racket being held in front of the

player and the tennis racket being used in a swing.

7.6. Manual Inspection of False Predictions

For the best performing model from the swimming ex-

periments, by randomly inspecting false predictions we

noted that the majority of the false predictions were more

accurate than the hand-annotated labels, so the true F-Score

for this task is likely to be much higher than reported. From

Figure 8, it can be seen that among the false predictions,

very few were completely missed (or added). We suggest

that the majority of false predictions were due to temporally

imprecise labelling.

For the best performing model from the tennis experi-

ments, due to the relatively small number of mistakes, we

are able to directly classify each mistake. All incorrect pre-

dictions were due to temporal imprecision in the model,

with only two strokes missed completely. These two missed

strokes were dive shots without any back-swing, which are

very rare in the dataset. More video of this kind of stroke

should allow the model to correctly identify these, as well.

8. Conclusion

We have shown that a Convolutional Neural Network

can learn to process continuous video into a 1D signal with

peaks corresponding to arbitrary events. This holds for both

swimming and tennis, implying that it can be used to train

separate models for many other sports. Additionally, our re-

sults imply that some amount of label smoothing provides a

more numerically accurate target.

9. Future work

From our evaluations, the performance of swimming

stroke detection does not have much room for improve-

ment. Instead, future work would most likely focus around

extracting more detailed information from video and incor-

porating this task into the training process. For example,

taking raw video containing multiple swimmers, detecting

the location of those swimmers, and producing the stroke

estimates for each swimmer.

We would also like to see the effect of this kind of

problem translation for action localisation. This process

is very naturally extended to detecting bounding boxes for

generic action localisation by taking the thresholded signal

and treating each unbroken chain of 1s as a bounding box

in time rather than discretising to a single point.
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[25] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense Trajec-

tories and Motion Boundary Descriptors for Action Recogni-

tion. International Journal of Computer Vision, 103(1):60–

79, may 2013. 2

[26] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In 2015

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 4305–4314. IEEE, jun 2015. 3

[27] X. Wang, A. Farhadi, and A. Gupta. Actions ˜ Transforma-

tions. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2658–2667. IEEE, jun

2016. 1, 3

[28] Yan Ke, R. Sukthankar, and M. Hebert. Efficient visual event

detection using volumetric features. In Tenth IEEE Interna-

tional Conference on Computer Vision (ICCV’05) Volume 1,

volume I, pages 166–173 Vol. 1. IEEE, 2005. 3

74



[29] D. Zecha, C. Eggert, and R. Lienhart. Pose Estimation for

Deriving Kinematic Parameters of Competitive Swimmers.

Electronic Imaging, 2017(16):21–29, jan 2017. 1, 3, 4

[30] D. Zecha and R. Lienhart. Key-Pose Prediction in Cyclic

Human Motion. In 2015 IEEE Winter Conference on Appli-

cations of Computer Vision, pages 86–93. IEEE, jan 2015.

1

[31] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate

Method. arXiv, 1212.5701, 2012. 6

75


