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Abstract

We present an attention-based modular neural frame-

work for computer vision. The framework uses a soft at-

tention mechanism allowing models to be trained with gra-

dient descent. It consists of three modules: a recurrent at-

tention module controlling where to look in an image or

video frame, a feature-extraction module providing a repre-

sentation of what is seen, and an objective module formal-

izing why the model learns its attentive behavior. The atten-

tion module allows the model to focus computation on task-

related information in the input. We apply the framework

to several object tracking tasks and explore various design

choices. We experiment with three data sets, bouncing ball,

moving digits and the real-world KTH data set. The pro-

posed Recurrent Attentional Tracking Model (RATM) per-

forms well on all three tasks and can generalize to related

but previously unseen sequences from a challenging track-

ing data set.

1. Introduction

Attention mechanisms are one of the biggest trends in

deep-learning research and have been successfully applied

in a variety of neural-network architectures across different

tasks. In computer vision, for instance, attention mecha-

nisms have been used for image generation [13] and image

captioning [40]. In natural language processing they have

been used for machine translation [1] and sentence summa-

rization [27]. And in computational biology attention was

used for subcellular protein localization [32].

In these kinds of applications usually not all information

contained in the input data is relevant for the given task. At-

tention mechanisms allow the neural network to focus on

the relevant parts of the input, while ignoring other, poten-

tially distracting, information. Besides enabling models to

ignore distracting information, attention mechanisms can be

helpful in streaming data scenarios, where the amount of

data per frame can be prohibitively large for full process-

ing. In addition, some studies suggest that there is a rep-

resentational advantage of sequential processing of image

parts over a single pass over the whole image (see for ex-

ample [22, 18, 13, 7, 26, 29]).

Recently, [13] introduced the Deep Recurrent Atten-

tive Writer (DRAW), which involves a Recurrent Neural

Network (RNN) that controls a read and a write mecha-

nism based on attention. The read mechanism extracts a

parametrized window from the static input image. Simi-

larly, the write mechanism is used to write into a window

on an output canvas. This model is trained to sequentially

produce a reconstruction of the input image on the canvas.

Interestingly, one of the experiments on handwritten digits

showed that the read mechanism learns to trace digit con-

tours and the write mechanism generates digits in a contin-

uous motion. This observation hints at the potential of such

mechanisms in visual object tracking applications, where

the primary goal is to trace the spatio-temporal “contours”

of an object as it moves in a video.

Previous work on the application of attention mecha-

nisms for tracking includes [7] and references therein. In

contrast to that line of work, we propose a model based on

a fully-integrated neural framework, that can be trained end-

to-end using back-propagation. The framework consists of

three modules: a recurrent differentiable attention module

controlling where to look in an image, a feature-extraction

module providing a representation of what is seen, and an

objective module formalizing why the model learns its at-

tentive behavior. As we shall show, a suitable surrogate

cost in the objective module can provide a supervised learn-

ing signal, that allows us to train the network end-to-end,

and to learn attentional strategies using simple supervised

back-prop without resorting to reinforcement learning or

sampling methods.

According to a recent survey of tracking methods [30],

many approaches to visual tracking involve a search over

multiple window candidates based on a similarity mea-

sure in a feature space. Successful methods involving

deep learning, such as [24], perform tracking-by-detection,

e.g. by using a Convolutional Neural Network (CNN) for

foreground-background classification of region proposals.

As in most approaches, the method in [24] at each time

step samples a number of region proposals (256) from a
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Gaussian distribution centered on the region of the previ-

ous frame. Such methods do not benefit from useful cor-

relations between the target location and the object’s past

trajectory. There are deep-learning approaches that consider

trajectories by employing particle filters such as [38], which

still involves ranking of region proposals (1, 000 particles).

More recently, Siamese networks [3] have been employed

to compute the matching of proposal windows [36, 2]. The

latter work achieves beyond real-time performance by us-

ing a fully-convolutional Siamese architecture to compute a

map of support in a single evaluation per frame.

In our RATM, an RNN predicts the position of an ob-

ject at time t, given a real-valued hidden state vector. The

state vector can summarize the history of observations and

predictions of previous time steps. We rely on a single pre-

diction per time step instead of using the predicted loca-

tion as basis for a search over multiple region proposals.

This allows for easy integration of our framework’s com-

ponents and training with simple gradient-based methods.

Since the initial version of this work, [21] have developed a

similar approach to action recognition, the main difference

being the use of a convolutional Long Short-Term Mem-

ory (LSTM) for better modeling of spatial structure and

guidance of the attention by optical flow features.

The main contribution of our work is the introduction of

a modular neural framework, that can be trained end-to-end

with gradient-based learning methods. Using object track-

ing as an example application, we explore different settings

and provide insights into model design and training. While

the proposed framework is targeted primarily at videos, it

can also be applied to sequential processing of still images.

2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are powerful ma-

chine learning models that are used for learning in sequen-

tial processing tasks. Advances in understanding the learn-

ing dynamics of RNNs enabled their successful application

in a wide range of tasks (for example [15, 25, 12, 35, 5, 33]).

In each time step t, the network computes a new hidden

state ht based on the previous state ht−1 and the input xt:

ht = σ(Winxt +Wrecht−1), (1)

where σ is a non-linear activation function, Win is the ma-

trix containing the input-to-hidden weights and Wrec is the

recurrent weight matrix from the hidden layer to itself. At

each time step the RNN also generates an output

yt = Woutht + by, (2)

where Wout is the matrix with weights from the hidden to

the output layer.

Although the application of recurrent networks with so-

phisticated hidden units, such as LSTM [15] or Gated Re-

current Unit (GRU) [5], has become common in recent

years (for example [1, 35, 33]), we rely on the simple IRNN

proposed by [19], and show that it works well in the context

of visual attention. The IRNN corresponds to a standard

RNN, where recurrent weights Wrec are initialized with

a scaled version of the identity matrix and the hidden ac-

tivation function σ(.) is the element-wise Rectified Linear

Unit (ReLU) function [23]. The initial hidden state h0 is

initialized as the zero vector. Our experiments are based

on the Theano [37] implementation of the IRNN shown to

work well for video in [8].

3. Neural Attention Mechanisms

Our attention mechanism is a modification of the read

mechanism introduced in [13]. It extracts glimpses from the

input image by applying a grid of two-dimensional Gaus-

sian window filters. Each of the filter responses corresponds

to one pixel of the glimpse. An example of the glimpse ex-

traction is shown in Figure 1.

Figure 1: A 20×10 glimpse is extracted from the full image

by applying a grid of 20 × 10 two-dimensional Gaussian

window filters. The separability of the multi-dimensional

Gaussian window allows for efficient computation of the

extracted glimpse.

Given an image x with A columns and B rows, the atten-

tion mechanism separately applies a set of M column filters

FX ∈ R
M×A and a set of N row filters FY ∈ R

N×B , ex-

tracting an M × N glimpse p = FY xF
T

X . This implicitly

computes M × N two-dimensional filter responses due to

the separability of two-dimensional Gaussian filters. For

multi-channel images the same filters are applied to each

channel separately. The sets of one-dimensional row (FY )

and column (FX ) filters have three parameters each1: the

grid center coordinates gX , gY , the standard deviation for

each axis σX , σY and the stride between grid points on each

axis δX , δY . These parameters are dynamically computed

as an affine transformation of a vector of activations h from

1The original read mechanism in [13] also adds a scalar intensity pa-

rameter γ, that is multiplied to filter responses.
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a neural network layer:

(g̃X , g̃Y , σ̃X , σ̃Y , δ̃X , δ̃Y ) = Wh+ b, (3)

where W is the transformation matrix and b is the bias.

This is followed by normalization of the parameters:

gX =
g̃X + 1

2
, gY =

g̃Y + 1

2
, (4)

δX =
A− 1

M − 1
· |δ̃X |, δY =

B − 1

N − 1
· |δ̃Y |, (5)

σX = |σ̃X |, σY = |σ̃Y |. (6)

The mean coordinates µi
X , µ

j
Y of the Gaussian filter at

column i, row j in the attention grid are computed as fol-

lows:

µi
X = gX + (i−

M

2
− 0.5) · δX , (7)

µ
j
Y = gY + (j −

N

2
− 0.5) · δY (8)

Finally, the filter banks FX and FY are defined by:

FX [i, a] = exp

(

−
(a− µi

X)2

2σ2

X

)

, (9)

FY [j, b] = exp

(

−
(b− µ

j
Y )

2

2σ2

Y

)

(10)

The filters (rows of FX and FY ) are later normalized to sum

to one.

Our read mechanism makes the following modifications

to the DRAW read mechanism [13]:

• We allow rectangular (not only square) attention grids

and use separate strides and standard deviations for

X and Y -axis. This allows the model to stretch and

smooth the glimpse content to correct for distortions

introduced by ignoring the original aspect ratio of an

input image.

• We use |x| instead of exp(x) to ensure positivity of

strides and standard deviations (see Equations 5 and

6). The motivation for this modification is that in our

experiments we observed stride and standard deviation

parameters to often saturate at low values, causing the

attention window to zoom in on a single pixel. This

effectively inhibits gradient flow through neighboring

pixels of the attention filters. Piecewise linear activa-

tion functions have been shown to benefit optimization

[23] and the absolute value function is a convenient

trade-off between the harsh zeroing of all negative in-

puts of the ReLU and the extreme saturation for highly

negative inputs of the exponential function.

• We drop the additional scalar intensity parameter γ,

because we did not observe it to influence the perfor-

mance in our experiments.

4. A Modular Framework for Vision

The proposed modular framework for an attention-based

approach to computer vision consists of three components:

an attention module (controlling where to look), a feature-

extraction module (providing a representation of what is

seen) and an objective module (formalizing why the model

is learning its attentive behavior). An example architecture

for tracking using these modules is described in Section 5.

4.1. Featureextraction module

The feature-extraction module computes a representa-

tion of a given input glimpse. This representation can be

as simple as the identity transformation, i.e. raw pixels, or a

more sophisticated feature extractor, e.g. an CNN. The ex-

tracted features are used by other modules to reason about

the visual input. Given a hierarchy of features, such as the

activations of layers in an CNN, different features can be

passed to the attention and objective modules.

We found that it can be useful to pre-train the feature-

extraction module on a large data set, before starting to train

the full architecture. After pre-training, the feature extrac-

tor’s parameters can either be continued to be updated dur-

ing end-to-end training, or kept fixed. Figure 2 shows the

symbol used in the following sections to represent a feature-

extraction module.

Figure 2: The symbol for the feature-extraction module. It

can have multiple outputs (e.g. activations from different

layers of an CNN).

4.2. Attention Module

The attention module is composed of an RNN (see Sec-

tion 2) and a read mechanism (see Section 3). At each time

step, a glimpse is extracted from the current input frame us-

ing the attention parameters the RNN predicted in the pre-

vious time step (see Section 3). Note that in this context,

Equation 3 of the read mechanism corresponds to Equa-

tion 2 of the RNN. After the glimpse extraction, the RNN

updates its hidden state using the feature representation of

the glimpse as input (see Equation 1). Figure 3 shows the

symbolic representation used in the following sections to

represent the recurrent attention module.

4.3. Objective Module

An objective module guides the model to learn an at-

tentional policy to solve a given task. It outputs a scalar
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Figure 3: The symbolic representation of a recurrent atten-

tion module, which is composed of an RNN and a read

mechanism that extracts a glimpse from the input frame.

The extracted glimpse is fed back to the RNN. The dots

indicate, that the feed-back connection can involve inter-

mediate processing steps, such as feature extraction.

cost, that is computed as function of its target and predic-

tion inputs. There can be multiple objective modules for a

single task. A learning algorithm, such as Stochastic Gra-

dient Descent (SGD), uses the sum of cost terms from all

objective modules to adapt the parameters of the other mod-

ules. Objective modules can receive their input from dif-

ferent parts of the network. For example, if we want to

define a penalty between window coordinates, the module

would receive predicted attention parameters from the at-

tention module and target parameters from the trainer.

In all our objective modules we use the Mean Squared

Error (MSE) for training:

LMSE =
1

n

n
∑

i=1

||ytarget − ypred||
2

2
, (11)

where n is the number of training samples, ypred is the

model’s prediction, ytarget is the target value and ||.||2
2

is

the squared Euclidean norm. We use the MSE even for clas-

sification, as this makes the combination of multiple objec-

tives simpler and worked well. Figure 4 shows the symbol

we use to represent an objective module.

Figure 4: The symbol for the objective module.

5. Building a Recurrent Attentive Tracking

Model

The task of tracking involves mapping a sequence of in-

put images x1, . . . ,xT to a sequence of object locations

y1, . . . ,yT . For the prediction ŷt of an object’s location

at time t, the trajectory (y1, . . . ,yt−1) usually contains rel-

evant contextual information, and an RNN has the capacity

to represent this trajectory in its hidden state.

5.1. Architecture

At each time step, the recurrent attention module outputs

a glimpse from the current input frame using the attention

parameters predicted at the previous time step. Optionally,

a feature-extraction module extracts a representation of the

glimpse and feeds it back to the attention module, which up-

dates its hidden state. The tracking behavior can be learned

in various ways:

• One can penalize the difference between the glimpse

content and a ground truth image. For simple data sets,

this is done on the raw pixel representation. This loss

is defined as

Lpixel = ||p̂− p||2
2
, (12)

where p̂ is the glimpse extracted by the attention

mechanism and p is the ground truth image. Objects

with more variance in appearance, require a more ro-

bust distance measure, e.g. defined via a feature map-

ping f(.) (implemented by a feature-extraction mod-

ule):

Lfeat = ||f(p̂)− f(p)||2
2
, (13)

• Alternatively, a penalty term can also be defined di-

rectly on the attention parameters. For instance, the

distance between the center of the ground truth bound-

ing box and the attention mechanism’s ĝ = (gx, gy)
parameters can be used as a localization loss

Lloc = ||ĝ − g||2
2
, (14)

We explore several variations of this architecture in Sec-

tion 6.

5.2. Evaluation of Tracking Performance

Tracking models can be evaluated quantitatively on test

data using the average Intersection-over-Union (IoU) [10]

IoU =
|Bgt ∩Bpred|

|Bgt ∪Bpred|
, (15)

where Bgt and Bpred are the ground truth and predicted

bounding boxes. A predicted bounding box for RATM is

defined as the rectangle between the corner points of the at-

tention grid. This definition of predicted bounding boxes

ignores the fact that each point in the glimpse is a weighted

sum of pixels around the grid points and the boxes are

smaller than the region seen by the attention module. While

this might affect the performance under the average IoU

metric, the average IoU still serves as a reasonable metric

for the soft attention mechanism’s performance in tracking.
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6. Experimental Results

For an initial study, we use generated data, as described

in Sections 6.1 and 6.2, to explore design choices without

limitations by the number of available training sequences.

In Section 6.3, we show how one can apply the RATM in a

real-world context.

6.1. Bouncing Balls

For our initial experiment, we generated videos of a

bouncing ball using the script released with [34]. The

videos have 32 frames of resolution 20 × 20. We used

100, 000 videos for training and 10, 000 for testing. The

attention module has 64 hiddens in its RNN and its read

mechanism extracts glimpses of size 5 × 5. The attention

parameters are initialized to a random glimpse in the first

frame. The input to the RNN are raw pixels of the glimpse,

i.e. the feature-extraction module here is the identity. The

objective module computes the MSE between the glimpse

at the last time step and a target patch, which is simply a

cropped ball image, since shape and color of the object are

constant across the whole data set.

For learning, we use SGD with a mini-batch size of 16,

a learning rate of 0.01 and gradient clipping [25] with a

threshold of 1 for 200 epochs. RATM is able to learn the

correct tracking behaviour only using the penalty on the last

frame. We also trained a version with the objective mod-

ule computing the average MSE between glimpses of all

time steps and the target patch. The first two rows of Ta-

ble 1 show the test performance of the model trained with

only penalizing the last frame during training. The first row

shows the average IoU of the last frame and the second

shows the average IoU over all 32 frames of test sequences.

The third row shows the average IoU over all frames of the

model trained with the penalty on all frames.

The model trained with the penalty at every time step is

able to track a bouncing ball for sequences that are much

longer than the training sequences. We generated videos

that are almost ten times longer (300 frames) and RATM

reliably tracks the ball until the last frame.

The dynamics in this data-set are rather limited, but as a

proof-of-concept they show that the model is able to learn

tracking behavior end-to-end. We describe more challeng-

ing tasks in the following sections.

6.2. MNIST

To increase the difficulty of the tracking task, we move

to more challenging data sets, containing more than a single

type of object (ten digits), each with variation. We generate

videos from 28 × 28 MNIST images of handwritten digits

[20] by placing randomly-drawn digits in a larger 100×100
canvas with black background and moving the digits from

one frame to the next. We respected the training and test-

ing split of the original MNIST data-set for the generation

of videos. Figure 5 shows the schematic of RATM for the

Figure 5: The architecture used for MNIST experiments.

MNIST experiments. The attention module is similar to

the one used in Section 6.1, except that its RNN has 100
hidden units and the size of the glimpse is 28× 28 (the size

of the MNIST images and the CNN input layer).

In the bouncing balls experiment we were able to gen-

erate a reliable training signal using pixel-based similarity.

However, the variation in the MNIST data set requires a rep-

resentation that is robust against small variations to guide

training. For this reason, our feature-extraction module

consists of a (relatively shallow) CNN, that is pre-trained

on classification of MNIST digits. Note, that the CNN is

only used during training. The CNN structure has two con-

volutional layers with filter bank sizes of 32 × 5 × 5, each

followed by a 2 × 2 maxpooling layer, 0.25 dropout [14],

and ReLU activation function. These layers are followed

by a 10-unit softmax layer for classification. The CNN was

trained using SGD with a mini-batch size of 128, a learning

rate 0.01, momentum of 0.9 and gradient clipping with a

threshold of 5.0 to reach a validation accuracy of 99%.

This CNN is used to extract class probabilities for each

glimpse and its parameters remain fixed after pre-training.

One objective module computes the loss using these prob-

abilities and the target class. Since training did not con-

verge to a useful solution using only this loss, we first intro-

duced an additional objective module penalizing distances

between the upper-left and lower-right bounding-box cor-

ners and the corresponding target coordinates. While this

also led to unsatisfactory results, we found that replacing

the bounding box objective module with one that penalizes

only grid center coordinates worked well. One possible ex-

planation is, that this does not constrain the stride and the

zoom can be adjusted after locating the object. The two

penalties on misclassification and on grid center distance,

helped the model to reliably find and track the digit. The

localization term helped in the early stages of training to

guide RATM to track the digits, whereas the classification

term encourages the model to properly zoom into the image
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to maximize classification accuracy. For learning we use

SGD with mini-batch size of 32, a learning rate of 0.001,

momentum of 0.9 and gradient clipping with a threshold of

1 for 32, 000 gradient descent steps.

Single-Digit: In the first MNIST experiment, we gen-

erate videos, each with a single digit moving in a random

walk with momentum. The data set consists of 100, 000
training sequences and 10, 000 test sequences. The initial

glimpse roughly covers the whole frame. Training is done

on sequences with only 10 frames. The classification and

localization penalties were applied at every time-step. At

test time, the CNN is switched off and we let the model

track test sequences of 30 frames. The fourth row of Table 1

shows the average IoU over all frames of the test sequences.

Multi-Digit: It it interesting to investigate how robust

RATM is in presence of another moving digit in the back-

ground. To this end, we generated new sequences by mod-

ifying the bouncing balls script released with [34]. The

balls were replaced by randomly drawn MNIST digits. We

also added a random walk with momentum to the motion

vectors. We generated 100, 000 sequences for training and

5, 000 for testing. Here, the bias for attention parameters is

not a learn-able parameter. For each video, the bias is set

such that the initial glimpse is centered on the digit to be

tracked. Width and height are set to about 80% of the frame

size. The model was also trained on 10-frame sequences

and was able to track digits for at least 15 frames on test

data. Figure 6 shows tracking results on a test sequence.

The fifth row of Table 1 shows the average IoU of all test

sequences over 30 frames.

6.3. Tracking humans in video

To evaluate the performance on a real-world data set, we

train RATM to track humans in the KTH action recognition

data set [28], which has a reasonably large number of se-

quences2. We selected the three activity categories, which

show considerable motion: walking, running and jogging.

We used bounding boxes provided by [17], which were not

hand-labeled and contain noise, such as bounding boxes

around the shadow instead of the subject itself.

For the feature-extraction module in this experiment,

we trained a CNN on binary – human vs. background – clas-

sification of 28 × 28 grayscale patches. The data consisted

of 21, 134 positive patches cropped from the ETH pedes-

trian [9] and INRIA person [6] data sets and 29, 923 nega-

tive patches cropped from the KITTI detection benchmark

[11]. 20, 000 samples of each class were used for training

of the CNN. The architecture of the CNN is as follows:

two convolutional layers with filter bank sizes 128× 5 × 5
and 64 × 3 × 3, each followed by 2 × 2 max-pooling and

ReLU activation. After the convolutional layers, we added

2Code for this experiment is available at https://github.com/

saebrahimi/RATM

one fully-connected ReLU-layer with 256 hiddens and the

output softmax-layer of size 2. For pre-training, we used

SGD with mini-batch size of 64, a learning rate of 0.01,

momentum of 0.9 and gradient clipping with threshold 1.

We performed early stopping with a held-out validation set

sampled randomly from the combined data set.

As this real-world data set has more variation than the

previous data sets, the attention module’s RNN can also

benefit from a richer feature representation. Therefore, the

ReLU activations of the second convolutional layer of the

feature-extraction module are used as input to the attention

module. The RNN has 32 hidden units. This low number of

hidden units was selected to avoid overfitting, as the num-

ber of sequences (1, 200 short sequences) in this data set

is much lower than in the synthetic data sets. We initial-

ize the attention parameters for the first time step with the

first frame’s target window. The initial and target bound-

ing boxes are scaled up by a factor of 1.5 and the predicted

bounding boxes are scaled back down with factor 1

1.5
for

testing. This was necessary, because the training data for the

feature-extraction module had significantly larger bounding

box annotations.

The inputs to the objective module are the ReLU ac-

tivations of the fully-connected layer, extracted from the

predicted window and from the target window. The com-

puted cost is the MSE between the two feature vectors. We

also tried using the cosine distance between two feature vec-

tors, but did not observe any improvement in performance.

The target window is extracted using the same read mecha-

nism as in the attention module. Simply cropping the target

bounding boxes would have yielded local image statistics

that are too different from windows extracted using the read

mechanism. Figure 7 shows the schematic of the architec-

ture used in this experiment.

For learning, we used SGD with a mini-batch size of 16,

a learning rate of 0.001 and gradient clipping with a thresh-

old of 1.0. In this experiment we also added a weight-decay

regularization term to the cost function that penalizes the

sum of the squared Frobenius norms of the RNN weight ma-

trices from the input to the hidden layer and from the hidden

layer to the attention parameters. This regularization term

improved the stability during learning. As another stabiliza-

tion measure, we started training with short five-frame se-

quences and increased the length of sequences by one frame

every 160 gradient descent steps.

For evaluation, we performed a leave-one-subject-out

experiment. For each of the 25 subjects in KTH, we used the

remaining 24 for training and validation. A validation sub-

ject was selected randomly and used for early stopping. The

reported number in the sixth row of Table 1 is the IoU on

full-length videos of the test subject averaged over frames

of each left-out subject and then averaged over subjects.

Figure 8 shows an example of test sequences for the class
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Figure 6: Tracking one of two digits. The first and second row show the sequence and corresponding extracted glimpses, re-

spectively. The red rectangle indicates the location of the glimpse in the frame. The third and fourth row are the continuation.

Prediction works well for sequences twice as long as the training sequences with 10 frames.

Figure 7: The architecture used for KTH experiments.

walking. Note, that the region captured by the glimpses is

larger than the bounding boxes, because the model inter-

nally scales the width and height by factor 1.5 and the Gaus-

sian sampling kernels of the attention mechanism extend

beyond the bounding box. An interesting observation is that

RATM scales up the noisy initial bounding box in Figure 8

(bottom example), which covers only a small part of the

subject. This likely results from pre-training the feature-

extraction module on full images of persons. Although the

evaluation assumes accurate target bounding boxes, RATM

is able to recover from such noise.

To show how the model generalizes to unseen videos

containing humans, we let it predict sequences of the TB-

100 tracking benchmark [39]. For this experiment, we

picked one of the 25 KTH model, that had a reasonably sta-

ble learning curve (IoU over epochs). Figure 9 shows every

tenth predicted frame of the sequences Skater2 and Blur-

Body. For the first example, Skater2, RATM tracks the sub-

ject reliably through the whole length of the sequence. This

is interesting, as the tracking model was trained only on se-

quences of up to 30 frames length and the variation in this

data is quite different from KTH. The BlurBody sequence is

more challenging, including extreme camera motion, caus-

ing the model to fail on parts of the sequence. Interestingly,

in some cases it seems to recover.

In general, the model shows the tendency to grow the

window, when it loses a subject. This might be explained

by instability of RNN dynamics and blurry glimpses due to

flat Gaussians in the attention mechanism.

7. Discussion

We propose a novel neural framework including a soft

attention mechanism for vision, and demonstrate its appli-

cation to several tracking tasks. Contrary to most existing

similar approaches, RATM only processes a small window

of each frame. The selection of this window is controlled

by a learned attentive behavior. Our experiments explore

several design decisions that help overcome challenges as-

sociated with adapting the model to new data sets. Several

observation in the real-world scenario in Section 6.3, are

important for applications of attention mechanisms in com-

puter vision in general:

• The model can be trained on noisy bounding box an-

notation of videos and at test time recover from noisy

initialization. This might be related to pre-training of

the feature-extraction module. The information about

the appearance of humans is transferred to the atten-

tion module, which learns to adapt the horizontal and

vertical strides among other parameters of the glimpse

to match this appearance.

• The trained human tracker seems to generalize to re-

lated but more challenging data.

The modular architecture is fully differentiable, allow-

ing end-to-end training. End-to-end training allows the dis-
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Figure 8: An example of tracking on the KTH data set. The layout is as follows: the first row shows 15 frames of one test

sequence with a red rectangle indicating the location of the glimpse. The second row contains the extracted glimpses. The

third and fourth row show the continuation of the sequence. We only show every second frame.

Figure 9: Predictions of a KTH model on sequences from the TB-100 benchmark. From top to bottom we show the sequences

Skater2 and BlurBody. To save space, we only show every tenth frame. The layout for each sequence is as follows: The first

row shows 15 frames of one test sequence with a red rectangle indicating the location of the predicted glimpse. The second

row contains the extracted glimpses. The third and fourth row show the continuation of the sequence.

Experiment Average IoU (over # frames)

Bouncing Balls (training penalty only on last frame) 69.15 (1, only last frame)

Bouncing Balls (training penalty only on last frame) 54.65 (32)

Bouncing Balls (training penalty on all frames) 66.86 (32)

MNIST (single-digit) 63.53 (30)

MNIST (multi-digit) 51.62 (30)

KTH (average leave-one-subject-out) 55.03 (full length of test sequences)

Table 1: Average Intersection-over-Union scores on test data.

covery of spatio-temporal patterns, which would be hard to

learn with separate training of feature extraction and atten-

tion modules. In future work we plan to selectively combine

multiple data sets from different tasks, e.g. activity recog-

nition, tracking and detection. This might allow to benefit

from synergies between tasks [4], and can help overcome

data set limitations. We also intend to explore alternatives

for the chosen modules, e.g. using spatial transformers [16]

as read mechanism, that can align glimpses using various

types of transformations. Spatial transformers in an RNN

applied to digit recognition have been explored in [31].
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