
Decoding the Deep: Exploring class hierarchies of deep representations

using multiresolution matrix factorization

Vamsi K. Ithapu

University of Wisconsin-Madison

http://pages.cs.wisc.edu/˜vamsi/projects/incmmf.html

Abstract

The necessity of depth in efficient neural network learn-

ing has led to a family of designs referred to as very

deep networks (e.g., GoogLeNet has 22 layers). As the

depth increases even further, the need for appropriate tools

to explore the space of hidden representations becomes

paramount. For instance, beyond the gain in generalization,

one may be interested in checking the change in class com-

positions as additional layers are added. Classical PCA

or eigen-spectrum based global approaches do not model

the complex inter-class relationships. In this work, we pro-

pose a novel decomposition referred to as multiresolution

matrix factorization that models hierarchical and composi-

tional structure in symmetric matrices. This new decompo-

sition efficiently infers semantic relationships among deep

representations of multiple classes, even when they are not

explicitly trained to do so. We show that the proposed

factorization is a valuable tool in understanding the land-

scape of hidden representations, in adapting existing archi-

tectures for new tasks and also for designing new architec-

tures using interpretable, human-releatable, class-by-class

relationships that we hope the network to learn.

1. Introduction

The ability of a feature to succinctly represent the pres-

ence of an object/scene is, at least, in part, governed by

the relationship of the learned representations across mul-

tiple object classes/categories. Cross-covariate contextual

dependencies have been shown to improve the performance,

for instance, in object tracking and recognition in vision

[37, 29] and medical applications [13] (a motivating aspect

of adversarial learning [23]). This then poses an interest-

ing question – Do the semantic relationships learned by

the deep representations associate with those seen by hu-

mans? Or in other words, can the relationships between

different tasks (or categories) inferred by the highest layer

representations ‘drive’ the design of the network itself (e.g.,

to add an additional layer or to remove an existing one)?

For instance, can such models infer that cats are closer to

dogs than they are to bears; or that bread goes well with

butter/cream rather than, say, salsa. Invariably, addressing

these questions amounts to learning hierarchical and cate-

gorical relationships in the class-covariance of hidden rep-

resentations. Using classical techniques may not easily re-

veal interesting, human-relateable trends as recently shown

by [26]. Note that the problem here is not about construct-

ing learning models that model the semantics, like those us-

ing statistical relational learning [25] or rule-based meth-

ods [6, 18]. Instead, we are asking whether one can decode

the semantics of representations from an arbitrary (trained)

network.

Related Work: The problem of understanding the land-

scape of representations learned by machine learning mod-

els is not entirely new, and interpreting learning models has

a long history [19, 22, 17]. For instance, some approaches

construct the learning model to be parsable to begin with,

like decision sets [32] or decision lists [19]. Alternatively,

the learned features are inverted appropriately to visualize

what the learning model sees (e.g. HOGgles [31]). Sev-

eral recent studies have approached the problem of inter-

preting of deep representations from alternate view-points

[21]. The seminal papers on deep networks [10, 9, 34] argue

that, intuitively and empirically, higher layer representa-

tions learn abstract relationships between objects in a given

image. However, it is unclear whether we can “define” what

these abstract relationships (that the network should learn)

are supposed to be. In [28, 35, 36], the authors visualize the

representation classes using supervised learning methods,

and extra semantic information is provided during training

time to improve interpretability [7]. [28, 8] have addressed

similar aspects for deep representations by visualizing im-

age classification and detection models, and there is recent

interest in designing tools for visualizing what the network

perceives when predicting a test label [35]. As shown in [1],

the contextual images that a deep network (even with good

detection power) desires to see may not even correspond to

real-world scenarios.

1 45

http://pages.cs.wisc.edu/~vamsi/projects/incmmf.html

Figure 1. Example category (or class) covariances from AlexNet and

VGG-S (of a few ImageNet classes).

1.1. Overview

The contribution of this work is a general framework,

and an exploratory tool, that models the hierarchical re-

lationships between several classes (or categories, tasks)

of any given arbitrary (trained) deep network. To con-

cretize the argument above, consider the representations of

some ImageNet classes learned by AlexNet [16] and VGG-

S [5]. Figure 1 shows the class covariance matrices (i.e.,

each entry is covariance computed using multiple instances

from two classes) computed using the final hidden layer

representations of the two networks respectively. Clearly,

there is rich hierarchical, compositional, blocks-of-blocks

type structure, and directly accounting for this parsimo-

nious structure will reveal the hierarchical relationships be-

tween different class-specific representations. Invoking the

de facto constructs like sparsity, low-rank or a decaying

eigen-spectrum cannot account for such localized cluster-

like structures. Devising such block-structured kernels was

the original motivation for several local low-rank and hierar-

chical factorizations [27, 4, 20, 38]. However these methods

are mainly heuristic, sensitive to the choice of several hyper-

parameters involved (like the choice of local patch size, the

local-rank etc.), require making hard-partitioning of data

into clusters, non-trivial to compute for large dimensions

and mostly do not necessarily capture the global and local

structure equally well.

We instead take a more natural approach that follows di-

rectly from the generative structure of the matrix. Consider

a symmetric matrix C ∈ R
m×m (like those from Figure

1), and let us say that an oracle provides the strongest pos-

sible k < m number of rows/columns (classes here). In

principle, one can decorrelate (diagonalize) these k rows to

reveal the hidden dependance of the remaining classes on

the k de-correlated set of classes. This procedure can then

be repeated in a systematic fashion – the only unknowns

being the choice of k, and which rows/columns to diag-

onalize within each iteration. One can see that this pro-

cedure relates to decomposing a higher-order rotation ma-

trix into composition of kth order rotations. Unlike PCA

which decomposes C as QTΛQ where Q is an orthogo-

nal matrix or sparse PCA (sPCA) [39] which imposes spar-

sity on the columns of Q, the proposed multi-scale factor-

ization computes a sequence of (carefully chosen) rotations

Q1,Q2, . . .QL to factorize C in the form

C = (Q1)T (Q2)T . . . (QL)TΛQL . . .Q2Q1,

Qℓs are sparse kth-order rotations (orthogonal matrices that

are the identity except for at most k of their rows/columns),

leading to a hierarchical tree-like matrix organization (and

if L = 1, this is sPCA). This decomposition is referred

to as multi-resolution matrix factorization (MMF). In [14],

the authors show that this factorization is the first Mallat-

style wavelet decomposition on the class of symmetric ma-

trices. It has been shown to be an efficient compression

tool [30] and a preconditioner [14]. Clearly this multi-scale

factorization involves searching a combinatorial space of

row/column indices (i.e., choosing which k candidates suit

the best), thereby restricting the order of the rotations to be

small (typically, ≤ 3). Not allowing higher order rotations

restricts the richness of the allowable block structure, result-

ing in a hierarchical decomposition that is “too localized” to

be sensible or informative (reverting back to the issues with

sPCA and other block low-rank approximations).

Until recently randomized heuristics have been proposed

to handle large k and large matrices [15]. In [11], the au-

thors have proposed an incremental version of MMF by ob-

serving that many of the computations involved in the ex-

haustive procedures ([30, 15]) may be by-passed or approx-

imated to a high fidelity. In Sections 2 and 3, we briefly

describe this incremental procedure, and in turn show that

the generative structure of a symmetric matrix can be rep-

resented via an object referred to as MMF graph. We show

that this MMF graph is a vital tool in answering the ques-

tions posed at the beginning of this Section (expanding upon

the observations made in [11]). The exhaustive evaluations

presented in Section 4 use VGG-S network’s deep repre-

sentations corresponding to multiple ImageNet classes and

attributes. The code-base of the proposed factorization is

made open-source to further encourage the readers to ex-

plore interesting interpretability questions about deep rep-

resentations, beyond what will be presented in this work.

2. Multiresolution Matrix Factorization

Notation: We begin with some notation. Matrices are bold

upper case, vectors are bold lower case and scalars are lower

case. [m] := {1, . . . ,m} for any m ∈ N. Given a matrix

C ∈ R
m×m and two set of indices S1 = {r1, . . . rk} and

S2 = {c1, . . . cp}, CS1,S2
will denote the block of C cut out

by the rows S1 and columns S2. C:,i is the ith column of C.

Im is the m-dimensional identity. SO(m) is the group of

m dimensional orthogonal matrices with unit determinant.

Rm
S is the set of m-dimensional symmetric matrices which

are diagonal except for their S × S block (S–core-diagonal

matrices).

46

Multiresolution matrix factorization (MMF), introduced

in [14, 15], retains the locality properties of sPCA while

also capturing the global interactions provided by the many

variants of PCA, by applying not one, but multiple sparse

rotation matrices to C in sequence. We have the following.

Definition. Given an appropriate class O ⊆ SO(m) of

sparse rotation matrices, a depth parameter L ∈ N and a

sequence of integers m = d0 ≥ d1 ≥ . . . ≥ dL ≥ 1, the

multi-resolution matrix factorization (MMF) of a sym-

metric matrix C ∈ R
m×m is a factorization of the form

M(C) := Q
T
ΛQ with Q = QL . . .Q2Q1, (1)

where Qℓ ∈ O and Qℓ
[m]\Sℓ−1,[m]\Sℓ−1

= Im−dℓ
for some

nested sequence of sets [m] = S0 ⊇ S1 ⊇ . . . ⊇ SL with

|Sℓ| = dℓ and Λ ∈ Rm
SL

.

Sℓ−1 is referred to as the ‘active set’ at the ℓth level, since

Qℓ is identity outside [m] \ Sℓ−1. The nesting of the Sℓs
implies that after applying Qℓ at some level ℓ, Sℓ−1 \ Sℓ
rows/columns are removed from the active set, and are not

operated on subsequently. This active set trimming is done

at all L levels, leading to a nested subspace interpretation

for the sequence of compressions Cℓ = QℓCℓ−1(Qℓ)T

(C0 = C and Λ = CL). In fact, [14] has shown that, for

a general class of symmetric matrices, MMF from Defini-

tion 2 entails a Mallat style multiresolution analysis (MRA)

[24]. Observe that depending on the choice of Qℓ, only a

few dimensions of Cℓ−1 are forced to interact, and so the

composition of rotations is hypothesized to extract subtle or

softer notions of structure in C.

Since multiresolution is represented as matrix factoriza-

tion here (see (1)), the Sℓ−1 \ Sℓ columns of Q correspond

to “wavelets”. While d1, d2, . . . can be any monotonically

decreasing sequence, we restrict ourselves to the simplest

case of dℓ = m − ℓ. Within this setting, the number of

levels L is at most m − k + 1, and each level contributes a

single wavelet. Given S1,S2, . . . and O, the matrix factor-

ization of (1) reduces to determining the Qℓ rotations and

the residual Λ, which is usually done by minimizing the

squared Frobenius norm error

min
Qℓ∈O,Λ∈Rm

SL

‖C−M(C)‖2Frob. (2)

The above objective can be decomposed as a sum of contri-

butions from each of the L different levels (see Proposition

1, [14]), which suggests computing the factorization in a

greedy manner as C = C0 7→ C1 7→ C2 7→ . . . 7→ Λ.

This error decomposition is what drives much of the intu-

ition behind our algorithms.

After ℓ − 1 levels, Cℓ−1 is the compression and Sℓ−1 is

the active set. In the simplest case of O being the class

of so-called k–point rotations (rotations which affect at

most k coordinates) and dℓ = m − ℓ, at level ℓ the algo-

rithm needs to determine three things: (a) the k–tuple tℓ

of rows/columns involved in the rotation, (b) the nontrivial

part O := Qℓ
tℓ,tℓ

of the rotation matrix, and (c) sℓ, the index

of the row/column that is subsequently designated a wavelet

and removed from the active set. Without loss of general-

ity, let sℓ be the last element of tℓ. Then the contribution of

level ℓ to the squared Frobenius norm error (2) is

E(Cℓ−1;Oℓ; tℓ, s) = 2

k−1
∑

i=1

[OCℓ−1
tℓ,tℓ

OT]2k,i

+ 2[OBBTOT]k,k where B = Cℓ−1
tℓ,Sℓ−1\tℓ

,

(3)

and, in the definition of B, tℓ is treated as a set. The factor-

ization then works by minimizing this quantity in a greedy

fashion, i.e.,

Qℓ, tℓ, sℓ ← argmin
O,t,s

E(Cℓ−1;O; t, s)

Sℓ ← Sℓ−1 \ s
ℓ ; Cℓ = QℓCℓ−1(Qℓ)T .

(4)

3. Incremental MMF

We now motivate our algorithm using (3) and (4). Solv-

ing (2) amounts to estimating the L different k-tuples

t1, . . . , tL sequentially. At each level, the selection of

the best k-tuple is clearly combinatorial, making the ex-

act MMF computation (i.e., explicitly minimizing (2)) very

costly even for k = 3 or 4 (this has been independently

observed in [30]). As discussed in Section 1, higher or-

der MMFs (with large k) are nevertheless inevitable for al-

lowing arbitrary interactions among dimensions (see sup-

plement for a detailed study), and our proposed incremental

procedure exploits some interesting properties of the factor-

ization error and other redundancies in k-tuple computation.

The core of our proposal is the following setup.

3.1. Overview

Let C̃ ∈ R
(m+1)×(m+1) be the extension of C by a single

new column w = [uT, v]T , which manipulates C as:

C̃ =

[

C u
uT v

]

. (5)

The goal is to computeM(C̃). Since C and C̃ share all but

one row/column (see (5)), if we have access toM(C), one

should, in principle, be able to modify C’s underlying se-

quence of rotations to constructM(C̃). This avoids having

to recompute everything for C̃ from scratch, i.e., perform-

ing the greedy decompositions from (4) on the entire C̃.

The hypothesis for manipulating M(C) to compute

M(C̃) comes from the precise computations involved in

the factorization. Recall (3) and the discussion leading up

to the expression. At level ℓ+ 1, the factorization picks the

47

‘best’ candidate rows/columns from Cℓ that correlate the

most with each other, so that the resulting diagonalization

induces the smallest possible off-diagonal error over the rest

of the active set. The components contributing towards this

error are driven by the inner products (Cℓ
:,i)

TCℓ
:,j for some

columns i and j. In some sense, the largest such correlated

rows/columns get picked up, and adding one new entry to

Cℓ
:,i may not change the range of these correlations. Ex-

tending this intuition across all levels, we argue that

argmax
i,j

C̃T
:,iC̃:,j ≈ argmax

i,j

CT
:,iC:,j . (6)

Hence, the k-tuples computed from C’s factorization are

reasonably good candidates even after introducing w. To

better formalize this idea, and in the process present our

algorithm, we parameterize the output structure of M(C)
in terms of the sequence of rotations and the wavelets.

3.2. The graph structure of M(C)

If one has access to the sequence of k-tuples t1, . . . , tL

involved in the rotations and the corresponding wavelet in-

dices (s1, . . . , sL), then the factorization is straightforward

to compute i.e., there is no greedy search anymore. Recall

that by definition sℓ ∈ tℓ and sℓ /∈ Sℓ (see (4)). To that

end, for a given O and L,M(C) can be ‘equivalently’ rep-

resented using a depth L MMF graph G(C). Each level of

this graph shows the k-tuple tℓ involved in the rotation, and

the corresponding wavelet sℓ i.e., G(C) := {tℓ, sℓ}L1 . Inter-

preting the factorization in this way is notationally conve-

nient for presenting the algorithm. More importantly, such

an interpretation is central for visualizing hierarchical de-

pendencies among dimensions of C, and will be further

discussed in Section 4. An example of such a 3rd order

MMF graph constructed from a 5 × 5 matrix is shown in

Figure 2(a) (the rows/columns are color coded for better

visualization). At level ℓ = 1, s1, s2 and s3 are diago-

nalized while designating the rotated s1 as the wavelet (the

black ellipse). The dashed arrow from s1 indicates that it

is not involved in future rotations. This process repeats for

ℓ = 2 and 3, and as shown by the color-coding of differ-

ent compositions, MMF gradually teases out higher-order

correlations that can only be revealed after composing the

rows/columns at one or more scales (levels here). Figure

2(b) shows the visualization of the resulting MMF graph –

each ellipse is a level and the black lines simply indicate

interactions. To avoid clutter as ℓ increases, lines are only

shown from higher level categories (s4 and s5 here) to lower

level ellipses (and not s1, s2 and s3).

For notational convenience, we denote the MMF graphs

of C and C̃ as G := {tℓ, sℓ}L1 and G̃ := {t̃ℓ, s̃ℓ}L+1
1 . Recall

that G̃ will have one more level than G since the row/column

w, indexed m + 1 in C̃, is being added (see (5)). The goal

is to estimate G̃ without recomputing all the k-tuples using

the greedy procedure from (4). This translates to inserting

the new index m+1 into the tℓs and modifying sℓs accord-

ingly. Following the discussion from Section 3.1, incremen-

tal MMF argues that inserting this one new element into

the graph will not result in global changes in its topology.

Clearly, in the pathological case, G may change arbitrarily,

but as argued earlier (see discussion about (6)) the chance

of this happening for non-random matrices with reasonably

large k is small. The core operation then is to compare the

new k-tuples resulting from the addition of w to the best

ones from [m]k provided via G. If the newer k-tuple gives

better error (see (3)), then it will knock out an existing k-

tuple. This constructive insertion and knock-out procedure

is the incremental MMF.

3.3. The Incremental MMF

The basis for this incremental procedure is that one has

access to G (i.e., MMF on C). We first present the algorithm

assuming that this “initialization” is provided, and revisit

this aspect shortly. The procedure starts by setting t̃ℓ = tℓ

and s̃ℓ = sℓ for ℓ = 1, . . . , L. Let I be the set of elements

(indices) that needs to be inserted into G. At the start (the

first level) I = {m + 1} corresponding to w. Let t̃1 =
{p1, . . . , pk}. The new k-tuples that account for inserting

entries of I are {m+1}∪ t1 \pi (i = 1, . . . , k). These new

k candidates are the probable alternatives for the existing

t̃1. Once the best among these k + 1 candidates is chosen,

an existing pi from t̃1 may be knocked out.

If s̃1 gets knocked out, then I = {s̃1} for future levels.

This follows from MMF construction, where wavelets at ℓth

level are not involved in later levels. Since s̃1 is knocked

out, it is the new inserting element according to G. On the

other hand, if one of the k − 1 scaling functions is knocked

out, I is not updated. This simple process is repeated se-

quentially from ℓ = 1 to L. At L+1, there are no estimates

for t̃L+1 and s̃L+1, and so, the procedure simply selects

the best k-tuple from the remaining active set S̃L. This in-

sertion and knock-out procedure is for the setting from (5)

where one extra row/column is added to a given MMF, and

clearly, the incremental procedure can be repeated as more

and more rows/columns are added, thereby estimating the

factorization for large (possibly dense) matrices.

The overall procedure will then have two components:

an initialization on some randomly chosen small block (of

size m̃×m̃) of the entire matrix C; followed by insertion of

the remaining m− m̃ rows/columns in a streaming fashion

(similar to w from (5)). The initialization entails computing

a batch-wise MMF on this small block (m̃ ≥ k). Note that

whenever m̃ is reasonably small (< 10 or so), one can ex-

haustively compute the MMF using the classical algorithms

from [14, 15]. Although there are approximate faster proce-

dures as well for computing this initialization. For brevity,

the precise algorithms and the different types of initializa-

48

s1

s2

s3

s4

s5

Q1

Q2

Q3

l = 0 l = 1 l = 2

s1 s2 s3 s4 s5

s1

s2

s3

s4

s5

3
rd

order MMF

l = 3

(a) Example Construction

ℓ = 1

ℓ = 2

s3
s1

s2

s4
s5

(b) MMF graph Visualization

Figure 2. (a) An example 5 × 5 matrix, and its 3rd order MMF graph (better in color). Q1, Q2 and Q3 are the rotations. s1, s5 and s2 are wavelets

(marked as black ellipses) at l = 1, 2 and 3 respectively. The arrows imply that a wavelet is not involved in future rotations. (b) The corresponding MMF

graph visualization (used in Section 4).

tions that one can explore, are not presented below. We in-

stead direct the readers to Algorithms 1 and 2 from [11],

where we also show exhaustive evidence that this incre-

mental procedure scales efficiently for very large matrices

(while recovering good factorization, in terms of the MMF

loss from (2)), compared to using the batch-wise scheme on

the entire matrix.

4. Experiments

We demonstrate the ideas presented above by construct-

ing MMF graphs, and interpreting them, using task-specific

representations learned by VGG-S network [5]. Multiple

different ImageNet classes and attributes are used. The eval-

uation setup involves computing MMFs on class covariance

matrices. Let m be the number of classes/attributes we are

interested in, and C ∈ R
m×m be the class covariance ma-

trix. For each class i, let p1, . . . , p|i| denote the indices of

the data instances belonging to class i (For large classes at

most a randomly chosen 2k instances are used). Each entry

of C is

Ci,j =
1

|i||j|

pi
∑

î=p1

qj
∑

ĵ=q1

dT

î
dĵ (7)

where dî is the hidden representation of îth data instance

coming from some hidden layer of the given deep network.

MMF graphs would then be constructed on C as described

in Sections 3.2 and 3.3.

4.1. Decoding the deep

To precisely walk through the power of MMF graphs,

consider the last hidden layer (FC7, that feeds into softmax)

representations from a VGG-S network [5] corresponding

to 12 different ImageNet classes, shown in Figure 3(a). Fig-

ure 3(b) visualizes a 5th order MMF graph learned on this

class covariance matrix.

The semantics of breads and sides. The 5th order MMF

says that the five categories – pita, limpa, chapati, chutney

and bannock – are most representative of the localized struc-

ture in the covariance. Observe that these are four differ-

ent flour-based main courses, and a side chutney that shared

strongest context with the images of chapati in the training

data (similar to the body building and dumbell images from

[1]). MMF then picks salad, salsa and saute representa-

tions’ at the 2nd level, claiming that they relate the strongest

to the composition of breads and chutney from the previous

level (see visualization in Figure 3(b)). Observe that these

are in fact the sides offered/served with bread. Although

VGG-S was not trained to predict these relations, according

to MMF, the representations are inherently learning them

anyway – a fascinating aspect of deep networks i.e., they

are seeing what humans may infer about these classes.

Any dressing? What are my dessert options? Let us

move to the 3rd level in Figure 3(b). margarine is a cheese

based dressing. shortcake is dessert-type meal made from

strawberry (which shows up at 4th level) and bread (the

composition from previous levels). That is the full course.

The last level corresponds to ketchup, which is an outlier,

distinct from the rest of the 10 classes – a typical order of

dishes involving the chosen breads and sides does not in-

clude hot sauce or ketchup. Although shortcake is made up

of strawberries, “conditioned” on the 1st and 2nd level de-

pendencies, it is less useful in summarizing the covariance

structure. An interesting summary of this hierarchy from

Figure 3(b) is – an order of pita with side ketchup or straw-

berries is atypical in the data seen by these networks.

4.2. Are we reading tea leaves?

The networks are not trained to learn the hierarchy of

categories (unlike the alternate works from [33, 7, 2]) – the

49

(a) 12 classes (b) 5th order (FC7 layer reps.)

Figure 3. Hierarchy and Compositions of VGG-S [5] representations inferred by 5th order MMF. (a) The 12 classes, (b) Hierarchical structure.

Chapati

Salad

Ketchup

Bannock

Saute

Limpa

Pita

Salsa

Shortcake

Chutney

Margarine

Strawberry

(a) 4th order (FC7 layer reps.)

Salad

Ketchup

Salsa

Shortcake

Chutney

Margarine

Strawberry

Bannock
Limpa

Pita

Chapati

Saute

(b) 3rd order (FC7 layer reps.)

Chapati

Salad

Chutney

Bannock

Saute

Limpa

Pita

Salsa

Shortcake

Margarine

Strawberry

Ketchup

(c) 5th order (FC6 layer reps.)

Chapati

Salad

Chutney

Bannock

Saute

Limpa

Pita

Salsa

Shortcake

Strawberry

Margarine

Ketchup

(d) 5th order (conv5 layer reps.)

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5
Chapati

Salad

Ketchup

Chutney

Bannock

Saute

Limpa

Pita

Salsa

Strawberry

Shortcake

Margarine

(e) 5th order (conv3 layer reps.)

ℓ = 1
ℓ = 2

ℓ = 3

ℓ = 4

Chutney

Limpa

Margarine

Shortcake

Salsa

Strawberry

Saute

Pita
Bannock

Chapati

Ketchup

Salad

(f) 5th order (Pixel reps.)

Figure 4. Hierarchy and Compositions of VGG-S [5] representations inferred by MMF. (a,b) Hierarchical structure from 4th and 3rd order MMF,

(c-f) the structure from a 5th order MMF on other VGG-S layers.

task was object/class detection. Hence, the relationships are

completely a by-product of the power of deep networks to

learn contextual information, and the ability of MMF to

model these compositions by uncovering the structure in

the covariance matrix. Nevertheless it is reasonable to ask

if this description is meaningful since the semantics drawn

above are subjective. We provide explanations below.

Choice of the order: The first aspect that one may ask is if

the compositions are sensitive/stable to the order k – a crit-

ical hyperparameter of MMF. Figure 4(a,b) uses a 4th and

3rd order MMF respectively, and the resulting hierarchies

are similar to that from Figure 3(b). Specifically, the differ-

50

Salad Chutney SalsaSaute ChapatiPita BannockMargarine Limpa KetchupShortcakeStrawberry

Figure 5. Agglomerative clustering (Dendrogram) constructed on VGG-

S FC7 representations.

ent breads and sides show up early, and the most distinct cat-

egories (strawberry and ketchup) appear at the higher levels.

Changing the hidden layer: If the class relationships from

Figures 3 and 4(a,b) are non-spurious, then similar trends

should be implied by MMF’s on different (higher) layers

of VGG-S. Figure 4(c–e) shows the compositions from the

FC6, 5th and 3rd convolutional layer representations of

VGG-S for the 12 classes in Figure 3(a). The strongest

compositions, the 8 classes from ℓ = 1 and 2, are already

picked up half-way thorough the VGG-S, providing further

evidence that the compositional structure implied by MMF

is data-driven. We further discuss this in Section 4.3. Over-

all, the MMF graphs from Figures 3 and 4 show many of

the summaries that a human may infer about the 12 classes

in Figure 3(a).

Baseline comparison: We compared MMF’s class-

compositions to the hierarchical clusters obtained from ag-

glomerative clustering of representations shown in Figure 5.

The categories like bannok and chapati, or saute and salad

are closer to each other here. However, the compositional

relationships (like the dependency of chutney/salsa/salad

on several breads, or the disparity of ketchup from others)

shown in Figures 3(b) and 4, especially in the FC7 and

FC6 layers, are not apparent in these dendrogram outputs.

4.3. The flow of MMF graphs: A tool for designing
deep networks

Figure 4(f) shows the compositions from the 5th order

MMF on the input (pixel-level) data. Pixel-level features

are non-informative (the success of deep learning is a direct

evidence for this), and clearly, the classes whose RGB val-

ues/signals correlate are at l = 0 in Figure 3(f). Most impor-

tantly, comparing Figure 3(b) to Figures 4(c–e), which are

from the FC6, 5th and 3rd convolutional layer respectively,

we see that l = 1 and 2 have the same compositions. This

says that the strongest possible representative classes may

be learned in lower layers of the network. Visualizations

like Figure 3(b) followed by Figures 4(c–f) are a powerful

exploratory tool in decoding, and possibly, designing deep

networks [12] – providing solutions to our original moti-

vation of interpretability of deep representations. We here

point out few such aspects.

Firstly, visualizations like these can be constructed for

all the layers of the network leading to a trajectory of class

compositions. This is driven by the saturation of the com-

positions – if the class compositions from last few layers

do not change, then the additional layer may be removed,

thereby reducing the parameters to be trained (and in turn

improving the optimization). The saturation at l = 1, 2 in

Figure 3(b) and Figure 4(c,d) is one such example. If these

8 classes are a priority, then the predictions of the VGG-S’

3rd convolutional layer may already be good enough. On

the other hand, if there is large variance among the com-

positions, especially in lower MMF graph levels, then the

lower layers of the deep network may not have efficiently

accounted for the strongest representative classes. This im-

plies that the hidden layer lengths or activations for lower

network layers need to be modified. A smaller variance

however may imply that adding additional layer may be

beneficial. Such constructs can be tested across other layers

and architectures (see supplement for MMFs from AlexNet,

VGG-S and other networks).

4.3.1 Alternate Classes

To further explore the interpretations of MMF graphs on

ImageNet representations, we constructed 5th order MMFs

on other families of classes from ImageNet as shown in

Figure 6. Figure 6(a) contains 10 different versatile set

of classes i.e., the contextual information (like background,

typical sets of objects that are found etc.) for cow or hound

may be drastically different from kangaroo or ptarmigan.

Clearly, the most distinct classes – green lizard, killer whale

are resolved at highest levels. The composition at first level

involves those classes which share context – there is most

certainly grass or trees on the bark in these images. Given

the first level, Figure 6(a) shows that kangaroo rather than

green lizard is most related to this first level composition

– implying a clear sense of hierarchy in learned represen-

tations. The categories in Figure 6(b) that MMF picked

for first level compositions are highly correlated to begin

with, both with respect to the texture/pixel-values as well

as the background (most show up with grassy or landscape

background). It is reasonable to say that human perception

would imply that blackbuck, deer, goat are most related to

the first level compositions – which were composed at the

next level. zebra clearly is the most distinct one, implying

that many compositions of the first and second level cate-

gories may not really infer what constitutes a zebra.

In another example, 8 of the 12 classes from Figure 6(c)

are sports accessories/objects and the rest (pot, couch, sheet,

toilet seat) are more of household-type categories. This was

done to see what the MMF will do, if it is forced to pick hi-

erarchy among arbitrary classes. Clearly, pot shows up at

last level. The first level compositions are 5 of the sports

related classes. Interestingly couch is closer in composi-

51

(a) Animal Classes (FC7 layer reps.) (b) Correlated Classes (FC7 layer reps.) (c) Another Example (FC7 layer reps.)

red

yellow

orange

green

gray

black

brown

white

violet

pink

blue

(d) color attributes (FC7 layer reps.)

long

wet

round

metallic

shiny

furry

rectangular

wooden

square
rough

smooth

spottedstriped

(e) shape attributes (FC7 layer reps.)

Figure 6. Hierarchy and Compositions of VGG-S [5] reps inferred by 5th order MMF. (a–c) Alternate classes, (d,e) color and shape attributes.

tion to the first level than a roller coaster or sail, which

may be because the context of four of the first level classes

is that they are ‘indoors’. sail and roller coaster have sky

and water as background respectively, making them distinct

enough from the first level composition, and pushing couch

or toilet seat instead.

4.3.2 Colors and Shape Attributes

The VGG-S network used in the evaluations has been

trained on the ImageNet categories. If the networks are as

powerful as we hope them to be, then this class-wise trained

network should capture interesting, human-releatable, com-

positions for meta-class attributes like color or shape. Fig-

ure 6(d,e) show the MMF graphs from FC7 representations

for these color and shape attributes. This most distinctive

of the colors (like red, yellow) are picked up at lowest level.

Bright colors like pink and violet which are in fact compo-

sitions of basis RGB colors are at higher levels of the MMF

graph. Similarly, visually the most evident shapes like furry

and shiny form lower level composition, while most subtle

shapes like smooth and spotted are at the last level.

Apart from visualizing deep representations, these eval-

uations show that MMF graphs are vital exploratory tools

for category/scene understanding from unlabeled represen-

tations in transfer and multi-domain learning [3]. This is

because, by comparing the MMF graph prior to inserting

the new unlabeled instance to the one after insertion, one

can infer whether the new instance contains non-trivial in-

formation that cannot be expressed as a composition of ex-

isting categories.

5. Conclusions

Bridging matrix decomposition and harmonic analysis,

we proposed a multi-resolution matrix factorization scheme

that models symmetric matrices. We showed that this fac-

torization uncovers the class compositions learned in higher

layers of deep networks. Beyond addressing whether se-

mantics of deep representations are similar to those inferred

by the humans, we showed that this tool can also help de-

signing and debugging/adapting an existing network (e.g.,

checking the goodness of lower layers). The proposed tool

is made open-source for further exploration.

Acknowledgments: The author thanks Risi Kondor and Vikas

Singh. The work is supported by NIH AG021155, EB022883,

AG040396, NSF CAREER 1252725, NSF AI117924 and

1320344/1320755.

52

References

[1] Inceptionism: Going deeper into neural networks. 2015. 1,

5

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv preprint arXiv:1511.00561, 2015. 5

[3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,

and J. W. Vaughan. A theory of learning from different do-

mains. Machine learning, 79(1-2):151–175, 2010. 8

[4] S. Chandrasekaran, M. Gu, and W. Lyons. A fast adaptive

solver for hierarchically semiseparable representations. Cal-

colo, 42(3-4):171–185, 2005. 2

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. arXiv preprint arXiv:1405.3531, 2014. 2, 5, 6,

8

[6] K. A. DeJong and W. M. Spears. Learning concept classifica-

tion rules using genetic algorithms. Technical report, DTIC

Document, 1990. 1

[7] Y. Dong, H. Su, J. Zhu, and B. Zhang. Improving inter-

pretability of deep neural networks with semantic informa-

tion. arXiv preprint arXiv:1703.04096, 2017. 1, 5

[8] A. Dosovitskiy and T. Brox. Inverting visual repre-

sentations with convolutional networks. arXiv preprint

arXiv:1506.02753, 2015. 1

[9] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-

cent, and S. Bengio. Why does unsupervised pre-training

help deep learning? Journal of Machine Learning Research,

11(Feb):625–660, 2010. 1

[10] D. Erhan, A. Courville, and Y. Bengio. Understanding rep-

resentations learned in deep architectures. Department dIn-

formatique et Recherche Operationnelle, University of Mon-

treal, QC, Canada, Tech. Rep, 1355, 2010. 1

[11] V. K. Ithapu, R. Kondor, S. C. Johnson, and V. Singh. The in-

cremental multiresolution matrix factorization algorithm. In

Proceedings of IEEE Computer Vision and Pattern Recogni-

tion (CVPR). IEEE, 2017. 2, 5

[12] V. K. Ithapu, S. N. Ravi, and V. Singh. On architectural

choices in deep learning: From network structure to gradi-

ent convergence and parameter estimation. arXiv preprint

arXiv:1702.08670, 2017. 7

[13] V. K. Ithapu, V. Singh, O. C. Okonkwo, et al. Imaging-

based enrichment criteria using deep learning algorithms

for efficient clinical trials in mild cognitive impairment.

Alzheimer’s & Dementia, 11(12):1489–1499, 2015. 1

[14] R. Kondor, N. Teneva, and V. Garg. Multiresolution matrix

factorization. In Proceedings of the 31st International Con-

ference on Machine Learning (ICML-14), pages 1620–1628,

2014. 2, 3, 4

[15] R. Kondor, N. Teneva, and P. K. Mudrakarta. Parallel mmf:

a multiresolution approach to matrix computation. arXiv

preprint arXiv:1507.04396, 2015. 2, 3, 4

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 2

[17] H. Lakkaraju and J. Leskovec. Confusions over time: An

interpretable bayesian model to characterize trends in deci-

sion making. In Advances in Neural Information Processing

Systems, pages 3261–3269, 2016. 1

[18] H. Lakkaraju and C. Rudin. Learning cost-effective and in-

terpretable treatment regimes. In Artificial Intelligence and

Statistics, pages 166–175, 2017. 1

[19] B. Letham, C. Rudin, T. H. McCormick, D. Madigan, et al.

Interpretable classifiers using rules and bayesian analysis:

Building a better stroke prediction model. The Annals of

Applied Statistics, 9(3):1350–1371, 2015. 1

[20] Y. Liang, M.-F. F. Balcan, V. Kanchanapally, and

D. Woodruff. Improved distributed principal component

analysis. In Advances in Neural Information Processing Sys-

tems, pages 3113–3121, 2014. 2

[21] Z. C. Lipton. The mythos of model interpretability. arXiv

preprint arXiv:1606.03490, 2016. 1

[22] Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for

classification and regression. In Proceedings of the 18th

ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 150–158. ACM, 2012. 1

[23] D. Lowd and C. Meek. Adversarial learning. In Proceedings

of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pages 641–647. ACM,

2005. 1

[24] S. G. Mallat. A theory for multiresolution signal decom-

position: the wavelet representation. IEEE transactions on

pattern analysis and machine intelligence, 11(7):674–693,

1989. 3

[25] R. Mooney. Relational learning of pattern-match rules for

information extraction. In Proceedings of the Sixteenth Na-

tional Conference on Artificial Intelligence, volume 328,

page 334, 1999. 1

[26] J. C. Peterson, J. T. Abbott, and T. L. Griffiths. Adapting

deep network features to capture psychological representa-

tions. arXiv preprint arXiv:1608.02164, 2016. 1

[27] B. Savas, I. S. Dhillon, et al. Clustered low rank approxima-

tion of graphs in information science applications. In SDM,

pages 164–175. SIAM, 2011. 2

[28] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside

convolutional networks: Visualising image classification

models and saliency maps. arXiv preprint arXiv:1312.6034,

2013. 1

[29] Y. Su and F. Jurie. Improving image classification using se-

mantic attributes. International journal of computer vision,

100(1):59–77, 2012. 1

[30] N. Teneva, P. K. Mudrakarta, and R. Kondor. Multiresolu-

tion matrix compression. In Proceedings of the 19th Inter-

national Conference on Artificial Intelligence and Statistics,

pages 1441–1449, 2016. 2, 3

[31] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba.

Hoggles: Visualizing object detection features. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1–8, 2013. 1

[32] T. Wang, C. Rudin, F. Doshi, Y. Liu, E. Klampfl, and P. Mac-

Neille. Bayesian ors of ands for interpretable classifica-

tion with application to context aware recommender systems,

2015. 1

53

[33] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste,

W. Di, and Y. Yu. Hd-cnn: hierarchical deep convolutional

neural networks for large scale visual recognition. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2740–2748, 2015. 5

[34] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Advances

in neural information processing systems, pages 3320–3328,

2014. 1

[35] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson.

Understanding neural networks through deep visualization.

arXiv preprint arXiv:1506.06579, 2015. 1

[36] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European conference on com-

puter vision, pages 818–833. Springer, 2014. 1

[37] T. Zhang, B. Ghanem, and N. Ahuja. Robust multi-object

tracking via cross-domain contextual information for sports

video analysis. In 2012 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

985–988. IEEE, 2012. 1

[38] Y. Zhang, J. Duchi, and M. Wainwright. Divide and conquer

kernel ridge regression. In Conference on Learning Theory,

pages 592–617, 2013. 2

[39] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal com-

ponent analysis. Journal of computational and graphical

statistics, 15(2):265–286, 2006. 2

54

