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Abstract

Recent work has demonstrated the emergence of seman-

tic object-part detectors in activation patterns of convolu-

tional neural networks (CNNs), but did not account for the

distributed multi-layer neural activations in such networks.

In this work, we propose a novel method to extract dis-

tributed patterns of activations from a CNN and show that

such patterns correspond to high-level visual attributes. We

propose an unsupervised learning module that sits above a

pre-trained CNN and learns distributed activation patterns

of the network. We utilize elastic non-negative matrix fac-

torization to analyze the responses of a pretrained CNN to

an input image and extract salient image regions. The cor-

responding patterns of neural activations for the extracted

salient regions are then clustered via unsupervised deep em-

bedding for clustering (DEC) framework. We demonstrate

that these distributed activations contain high-level image

features that could be explicitly used for image classifica-

tion.

1. Introduction

Convolutional Neural Networks (CNNs) provide state-

of-the-art performance in a wide variety of computer vision

applications including image classification [20, 10], object

detection [8, 19], action recognition [23], and segmentation

[16]. Deeper, wider, and more complex CNNs are solving

vast number of challenging problems in an end to end man-

ner. Despite the undeniable success of CNNs, explaining

their inner workings of such networks remains a challenge.

Recent attempts on understanding/explaining the inter-

nal representation of the CNNs are mainly focused on in-

verting and visualizing the mined information in CNNs’

features [17, 4, 27, 3]. Perturbing the input and analyz-

ing the network activations is another interesting approach

which has been used in similar applications [1, 18]. Our

objective in this paper is to go beyond activation analysis

of single neurons, and study the patterns of activations in a

deep CNN.

Our approach identifies regions of the input image that

a trained CNN deems as important or salient. We denote

these sub regions of the input image as ‘visual attributes’.

In other words, visual attributes are objects/parts that are

implicitly represented in activation patterns of a pre-trained

CNN. Zhou et al. [28], for instance, showed that a CNN

trained for scene classification implicitly learns features for

object detection (e.g. beds, couches, etc) and Gonzalez-

Garcia et al [9] showed that CNNs indirectly learn semantic

parts. The core idea behind our proposed method is to orga-

nize these implicit attributes in an unsupervised fashion in

order to be able to explain the meaning of these distributed

activations. The term ‘distributed activations’ denotes the

multilayer neuronal activations in a deep network.

Our proposed method consists of four main phases. In

phase one a top-down approach is utilized to pinpoint the

salient parts of the input image based on the network acti-

vation patterns. In short, we use elastic non-negative matrix

factorization (NMF) together with an of-the-shelf blob de-

tector to obtain multi-scale salient regions of the input im-

age. The NMF components of activation provide localized,

tightly clustered, and blob-like regions that correspond to

different semantic attributes in the input image. In phase

two, a bottom-up approach probes the CNN and extracts

hierarchical responses of the network to individual visual

attributes. More precisely, for salient patches of different

size, we perform global average pooling (GAP) [10, 29]

at different convolutional layers of the network and extract

fixed size multi-layer features. Note that the extracted GAP

features represent various patterns of activations in the net-

work. In the third phase, an iterative unsupervised learning

approach is applied to the features extracted from all visual

attributes to identify the core activation patterns learned by

the network. In the final phase, the input image is summa-

rized by a feature indicating the presence of various core

patterns of activations in the network. This feature is an ex-

plicit representation for various distributed activation pat-

terns that are present in the network and we denote it as the
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‘bag-of-neural-activations’ features.

The rest of the paper is structured as follows. In the next

section, we review related work on understanding the inter-

nal representation of trained CNNs. In Section 3, we for-

mulate the problem and provide detailed explanation of the

proposed method. Our experimental results are included in

Section 4. Finally, we conclude our work in Section 5.

2. Related work

A large body of recent work has focused on understand-

ing the internal representation of trained CNNs. Zhou et

al. [28] studied the activation patterns of a CNN trained for

scene classification and showed that various object detec-

tors emerge from the activation patterns. In other words,

the activation patterns in the CNN encode features for vari-

ous objects and can be used to detect them; even though the

network was not specifically trained for an object detection

task.

In [17, 4], the authors propose methods for inverting

CNN feature representations to obtain images which con-

tain the information preserved by the network. In another

approach, Zeiler & Fergus [27] introduced a method to vi-

sualize image patterns that activate each hidden unit in a

CNN. Furthermore, Generative networks [5, 3] have also

attracted much attention recently as they could be used to

visualize and understand convolutional networks.

Other approaches alter the input images (e.g., by block-

ing a small portion of the image) and study the differences

between corresponding CNN outputs to decode semantic

value of the alternation [18, 1]. Bazzan et al. [1] for in-

stance, use a pre-trained CNN and mask-out parts of the

input image and analyze the recognition score (i.e. network

response); in this manner they are able to localize the object

in the input image. Alternatively, Zhou et al. [29] used

global average pooling to model convolutional activation

patterns and localized objects recognized by the network in

this manner.

Our proposed method is more related to the methods pro-

posed by Gonzalez-Garcia et al [9], and Zhou et al [28].

Zhou et al. [28] extracted regions of an input image which

correspond to highest activations in different units of a CNN

and asked workers on Amazon Mechanical Turk (AMT) to

identify the common theme or concept that exist between

these top scoring regions. In a similar approach, Gonzales-

Garcia et al [9] asked human annotators whether the image

regions with highest activations cover the same visual con-

cepts. The mentioned methods, utilize corresponding image

regions with highest activations of each unit of a CNN. In

contrast to the mentioned methods, we propose to model

the pattern of activations in a group of units as opposed to

single units. Our major contributions in this paper are:

1. Proposing an approach for obtaining salient regions of

an image using the activation patterns of a pre-trained

deep CNN via NMF

2. Unsupervised learning of distributed patterns of neural

activations in a CNN

3. Proposed method

We provide an unsupervised scheme for identifying the

learned key distributed neural activations of a Convolutional

Neural Network (CNN). We start by identifying the regions

of the input image that are deemed salient by the network,

and then analyze the network’s activation patterns in these

salient regions. Our method consists of four steps: 1) ex-

traction of salient regions of the input image, 2) represent-

ing distributed neural activations as multi-level GAP fea-

tures, 3) unsupervised clustering of distributed activation

patterns, and 4) producing a bag-of-neural-activations fea-

ture that complements the CNN features. Figure 1 illus-

trates the steps involved in mining the key distributed acti-

vations from a pretrained CNN. Figure 1 (a) demonstrates

the extraction of salient attributes, while 1 (b) illustrates

the unsupervised extraction of the key activation patterns.

The convolutional activations shown in Figure 1 (a) are the

output of the pretrained network at the last convolutional

layer and before the last max/average-pool. Each step is

described below.

3.1. Salient attribute extraction

We first identify salient regions of an input image. Vari-

ous publications have recently addressed the problem of uti-

lizing CNNs for saliency prediction [12, 15]. These meth-

ods often train a CNN to focus (i.e. larger activations) on

regions of an image that are considered salient by humans

(i.e. humans fixate on those regions). Our goal in this Sec-

tion, however, is different in the sense that we are interested

in finding the salient parts of an input image as perceived

by the pre-trained CNN, not by humans. This step is cru-

cial in our framework as it parses the input image into small

regions containing salient parts from which the distributed

neural activations will be extracted.

The over arching idea here is to decompose the convo-

lutional responses of the final layer of a CNN, and repre-

sent it as a linear combination of several components. If

these components are sparse and spatially localized, then

they can be used to parse various regions of the input image.

To achieve this goal we use elastic Nonnegative Matrix Fac-

torization (NMF) [2, 7], which is shown to provide compo-

nents containing localized, tightly clustered, and blob-like

regions [21, 11]. In short, given a pretrained CNN and an

input image, we apply elastic NMF [2, 7] to the activation

patterns (i.e. last convolutional layer) of the CNN to obtain

and extract principal activation patterns for the input data.
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Figure 1: Schematic of the unsupervised learning of distributed patterns of activations in a deep CNN. Given a deep CNN (in

this case VGG19 [20]) we first extract image parts that the CNN deems salient (a), then an unsupervised method is utilized

to identify the key patterns of distributed activations (b). Image patches are resized for visualization purposes.

Note that since we do not use the fully connected layers of

the CNN at this stage, the size of the input image could vary.

More precisely, let X = [xk]
m
k=1 ∈ R

d×m denote the

vectorized CNN responses of the last convolutional layer

(e.g. the ’conv5 4’ of VGG19), where m is the number of

convolutional kernels at the last layer (e.g. m = 512 in

VGG19), and d is the number of nodes per convolutional

kernel and scales with the size of the input image. Then the

NMF is formulated as,

argmin*W,H

1

2
‖X −HW‖2F +

γ(λ)(‖W‖1 + ‖H‖1) +

1

2
γ(1− λ)(‖W‖2F + ‖H‖2F )

s.t. W ≥ 0, H ≥ 0 (1)

where ‖.‖F is the Frobenius norm, ‖.‖1 is the elementwise

L1 norm, columns of H ∈ R
d×r are the non-negative com-

ponents, W ∈ R
r×m is the non-negative coefficient matrix,

r is the rank of matrix H , which corresponds to the number

of extracted components, and λ and γ are regularization pa-

rameters. We use a coordinate descent solver to find H and

W .

Note that the objective function in Eq. 1 does not have

an explicit regularizer to enforce spatial smoothness of com-

ponents, however, it has been shown that NMF components

often exhibit blob-like high spatial connectedness [21, 11].

We use this characteristic of the extracted components, H ,

to identify salient regions of the input image. After up-

sampling each component (i.e., resizing to the original im-

age size to counter the effect of pooling layers) we process

Figure 2: The input image to CNN, the NMF components

applied to the last convolutional layer, detected blobs, and

the corresponding salient patches are demonstrated.

it by a Laplacian-of-Gaussian blob-detector [14] to extract

regions of the input image that are considered salient by

CNN. Figure 2 summarizes above process, and shows the

NMF components and the extracted blobs for an input im-

age. Notice the spatial connectedness and blob-like nature

of the NMF components. Finally, we should point out that

the extracted patches are at different scales and their sizes

vary.

3.2. Distributed neural activations via GAP features

We would like to obtain a representation for the dis-

tributed activations of the CNN for each extracted patch.
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Figure 3: Extracting the multi-scale global average pooling

(GAP) feature from image patches.

The challenge here is two fold: 1) obtain the responses of

the CNN for the various size input patches, and 2) find a

compact representation for these activations. Note that re-

sizing the patches is not a feasible solution as it would in-

troduce scale variability and unnecessary smoothness due

to interpolation. To address these issues we follow the

ideas presented in fully-convolutional neural networks [13]

and GoogLeNet [22] and use global average pooling (GAP)

over different layers of the CNN. Our approach here can be

considered as an extension of the GAP-CNN introduced by

Zhou et al. [29].

Having in mind that our goal is not to train a new

CNN but to explain the distributed activations of a pre-

trained CNN, we probe the activation patterns of the CNN

at different layers and construct a multi-scale feature for

the extracted patches. More specifically, we perform av-

erage pooling at each layer of the network right before the

‘max pooling’, normalize the GAP features, and concate-

nate them to obtain a representation for distributed activa-

tions of the network (See Figure 3). The proposed feature

captures the response energy of various convolutional ker-

nels at different layers, and provides a succinct representa-

tion of the CNN. The normalization is needed so the scale of

average poolings at different layers are the same (i.e. range

is zero to one). Figure 3 illustrates the extraction of the pro-

posed multi-scale GAP feature from an input image patch

using VGG19 [20].

3.3. Unsupervised clustering of salient attributes

Given the GAP features, which represent distributed

neural activations of the CNN, from all extracted salient

patches, we utilize an unsupervised learning framework

to cluster these activation patterns. There exist many op-

tions for unsupervised clustering including k-means, spec-

tral clustering, sparse and elastic subspace clustering tech-

niques [26, 6], and deep unsupervised clustering techniques

[25, 24]. In this work, we use the unsupervised deep embed-

ding for clustering (DEC) [24] to cluster the GAP features.

The idea behind DEC [24] is to transform the data into

a linear/nonlinear embedding space with richer data repre-

sentation and cluster the data in that space. The embedding

and the clusters are then learned simultaneously in an itera-

tive fashion. More precisely, let the GAP features extracted

from salient patches be {zi ∈ Z}Ni=1, instead of cluster-

ing in Z, DEC transfers the data to a lower-dimensional

space,V, via fθ : Z → V and finds cluster centroids

{µj ∈ V }Kj=1 in V . Here, we define the mapping, fθ, to

the embedding space in its most general form as a paramet-

ric function with parameters θ; fθ can be chosen to be as

simple as a linear mapping or as complex as a deep neural

network.

Given an initial estimation of the mapping fθ (i.e. ran-

dom initialization of θ) and the initial cluster centroids

µj |
K
j=1, let Q ∈ R

N×K with elements qi,j , denote the soft

assignment of the GAP+CNN features to the cluster cen-

troids. The student t-distribution or Gaussian distribution

could be used as a kernel to define such a soft assignment.

We followed the work of Xie et al. [24] and utilized the

student t-distribution :

qi,j =
(1 +

‖vi−µj‖
2

ρ
)−

ρ+1

2

∑K
k=1(1 +

‖vi−µk‖2

ρ
)−

ρ+1

2

(2)

where ρ is the degree of freedom of the distribution, and

vi = fθ(zi). Ideally one would like to obtain clusters with

high confidence (i.e. tight clusters with well-separated cen-

troids). Let P ∈ R
N×K be the unknown ideal soft data

assignment matrix. Then one can define a loss function for

learning the function parameters, θ as a dissimilarity mea-

sure between P and Q, for instance the Kullback-Leibler

(KL) divergence:

KL(P |Q) =

N∑

i=1

K∑

j=1

pi,j log(
pi,j
qi,j

) (3)

or similarly the cross entropy function. Note that Q depends

on the mapping parameters θ. Hence if the ideal soft data

assignment matrix, P , was known then the function param-

eters could have been optimized with respect to the above

loss function. Xie et al. [24] propose to estimate P from Q
at each iteration using,

pi,j =
q2i,j/fj∑K

k=1 q
2
i,k/fk

(4)

where fj =
∑N

i=1 qi,j . Note that P pushes probabilities

toward 1 and 0, and also prefers balanced clusters (clusters

with same number of members). Finally, having an esti-

mation for P at each iteration we use stochastic gradient

descent (SGD) to minimize Eq. 3 with respect to the param-

eters embedding parameters θ. This will lead to the iterative

unsupervised clustering scheme presented in Algorithm 1.
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Algorithm 1 Deep Embedding for Clustering

1: Initialize θ
2: repeat

3: vi = fθ(zi), for i = 1, ..., N
4: Calculate µj , for j = 1, ...,K using K-means

5: Calculate Q from Eq. 2

6: Estimate P from Q using Eq. 4

7: θ ← θ − ǫ∂KL(P |Q)
∂θ

8: until Achieving a local minima

The outcome of the unsupervised deep embedding

method is a mapping, fθ, that embeds the input GAP fea-

tures into a discriminant subspace, together with the key

distributed activations (i.e. cluster centers), µj for j =
1, ..., k.

3.4. Bag of neural activations

In the final phase of our proposed method, we obtain

a feature that represents the presence of various key dis-

tributed activations in an image. For a given input image,

we identify its salient regions with elastic NMF, extract its

GAP features from the M identified salient regions vi for

i = 1, ...,M (M could vary for different input images),

map the features to the embedding space via fθ, and obtain

their cluster membership. Using the cluster memberships,

we generate the histogram of key distributed neural activa-

tions presented in an image. We denote this K-dimensional

feature vector as ‘bag-of-neural-activations’.

Finally, to measure the importance of the distributed neu-

ral activations in the network, we perform classification

solely based on the bag-of-neural-activations that explicitly

represent the existence of various distributed neural activa-

tion patterns. Moreover, to understand the amount of infor-

mation overlap between the bag-of-neural-activations and

the deep CNN features (i.e. the last fully connected layer)

we concatenated these features and performed classification

based on the concatenated feature. The end to end system

is shown in Figure 4. A test input image goes through the

CNN and our proposed system. The final classification ac-

curacy is shown for the CNN, the bag-of-neural-activations,

and the concatenated features obtained from both systems.

4. Experimental Results

In our experiments we used two image datasets. The first

dataset is a subset of the ImageNet dataset and is solely

used for a proof of concept of our method. The dataset

contains 6 classes related to autonomous driving, namely,

’car’, ’construction’, ’pothole’, ’bicycle’, ’traffic-cop’, and

’crowd’ with an average 1000 images per class. For the sec-

ond dataset, we used the Stanford car dataset, which con-

tains 16,185 images of 196 classes of cars, where classes

are typically at the level of Make, Model, and Year (e.g.,

2012 Tesla Model S).

Half of the data was used for training and the rest for

testing. For both datasets, we fine-tuned VGG19 networks

[20], which were pre-trained on the ImageNet dataset. The

trained networks served as the baseline for our experiments.

Given the trained CNNs, we follow the steps as shown

in Figure 4. First, the convolutional activations are fed to

an elastic NMF. An NMF component is a weighted sum

of activation responses that satisfies sparseness, spatial co-

herency, and captures salient variations in the activation pat-

terns. In our experiments we observed that the NMF com-

ponents consistently contained semantically meaningful re-

gions of the input image. The number of NMF compo-

nents was chosen based on the average reconstruction er-

ror of activation patterns of the training set. We discovered

that seven components for the first dataset (i.e. part of Im-

ageNet), and five components for the second dataset (Stan-

ford car dataset) satisfied the reconstruction error criteria

(i.e., 95% of variation). Given that the NMF components

demonstrate a blob-like spatial consistency, we used an off-

the-shelf Laplacian-of-Gaussian blob detector [14] on NMF

components to extract salient regions (patches) of the input

image.

For each extracted image region the GAP responses at

different layers of the CNN are extracted. The GAP fea-

tures enable us to obtain a fixed size feature vector despite

variability in the size of the salient regions (See Figure 3).

Using VGG19 and extracting normalized GAP responses at

different layers right before the max pool leads to a feature

vector of size 1472 (i.e., 64+128+256+512+512). Each

element of the GAP feature indicates the average activation

response of the input image with respect to one of the con-

volutional kernels, and therefore it could be considered as a

feature for distributed neural activations.

Next, we cluster the GAP features from all salient re-

gions extracted from training images. To do so we utilized

DEC. For the mapping to the embedding space, fθ, we uti-

lized a linear function fθ(vi) = Wvi. The dimension of

the embedding was cross-validated over the following set

d ∈ {2n : n = 1, ..., 8}, we found out that d = 32 for

both datasets led to the lowest Fisher score. It should be

mentioned that, for the choice of the mapping to the em-

bedding space, fθ, in our experiments we also tested a neu-

ral network of depth three, but we observed no negligible

improvement over the outcome of the linear alternative.

After clustering the GAP features (i.e. the distributed

neural activations) we visualized the corresponding images

to the top 5 cluster members (i.e., closest to the cluster cen-

ter as measured by Q in Equation 2) of 21 sample classes

extracted from the first dataset. It can be seen that these dis-

tributed neural activations correspond to semantically simi-

lar image regions, even though their visual appearance dif-
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Figure 4: Supplementing the VGG19 network with the bag-of-neural-activations features will lead to in average a 42.5%
reduction in classification error. The ‘(’ symbol represents concatenation.

Figure 5: Corresponding images for the top 5 members of sample distributed activation clusters calculated from VGG19 on

part of the ImageNet dataset. The patches are resized to a fix size for the purpose of visualization.
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fers significantly. Figure 5 shows that the distributed acti-

vation patterns in the network implicitly encode visual at-

tributes such as: car wheel, bike wheel, road, construction

crane, legs, hands, and hats while it has not been specif-

ically trained to recognize these visual attributes. These

attributes were not labelled (e.g., with bounding-boxes or

pixel-wise segmentation) in any of the input images used in

our experiments. Figure 6 shows the corresponding images

for the top 5 cluster members for the Stanford car dataset.

It can be seen that our approach decodes a wide variety

of fine-grained attributes, such as headlight shapes, grille

shapes, and vehicle emblems that are implicitly encoded in

the CNN.

Finally, the bag-of-neural-activations features are con-

catenated to the features extracted from the CNN right be-

fore the softmax classifier. The softmax layer is then re-

trained based in the new concatenated feature. Figure 4

shows the classification accuracy and confusion matrices

based on the VGG19 feature, the bag-of-neural-activations

feature, and the VGG19+ bag-of-neural-activations feature

for the first dataset. For Dataset 1 (ImageNet), combining

the bag-of-neural-activations features with the VGG19 fea-

tures led to a 42.5% reduction in classification error. Note

that we compared the SOA on the same reduced data set and

therefore the comparison is fair.

Furthermore, we repeated the same experiment with

various CNNs. Specifically, we used Residual Networks

[10] of different depth, namely ResNet50, ResNet101, and

ResNet152, which were pretrained on the ImageNet dataset.

We then repeated the classification experiment by comple-

menting the features extracted from the network by the bag-

of-neural-activation features and observed consistent im-

provement for all networks. The results are reported in Ta-

ble 1. We note that Top-N denotes the accuracy when the

true label is in the top N predictions. The evaluation server

for the Stanford car dataset only provided Top 1 classifica-

tion accuracy and hence the Top 2 classification accuracies

are not provided for this dataset.

For the Stanford car dataset we retrained a VGG19 to

classify the 196 classes on the training set. The network

was pretrained on ImageNet. We cropped the images to

the provided bounding box and simply resized the images

to 224 × 224. The classification accuracy of the trained

VGG19 and the VGG19+bag-of-visual-features are also re-

ported in Table 1. The top-two classification results are not

reported as the evaluation server for the dataset only re-

ported the top 1 classification accuracy. On this dataset,

combining the bag-of-neural-activations with the VGG19

features led to a 28.6% reduction in classification error,

which highlights one of the benefits analyzing the dis-

tributed neural activations of a CNN.

Figure 6: Corresponding images for the top 5 members

of sample distributed activation clusters calculated from

VGG19 on the Stanford car dataset. Note that the patches

are resized to a fix size for the purpose of visualization.

5. Discussion

In this paper, we introduced an unsupervised method

for clustering distributed neural activations in a CNN. We

showed that these distributed activations in the network cor-

respond to visually understandable concepts. Moreover, we

demonstrated that an explicit utilization of these implicit

patterns of activations leads to a boost in classification accu-

racy on two datasets. Existing work in the literature has fo-

cused on extracting salient attributes within images by iden-

tifying image regions corresponding to the largest activa-

tions of a single convolutional kernel within a CNN [9, 28].

In contrast, our approach models distributed activation pat-

terns of a CNN to learn key visual attributes implicitly pre-

sented in the network and enhances the robustness of the

CNN through these attributes.

We demonstrated that utilizing an unsupervised learning

method on top of a pretrained CNN allows one to learn ac-
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Classification accuracy

Dataset 1 Dataset 2

Top 1 Top 2 Top 1

BONA 81.9% 93.5% 57.23%

VGG19 85.18 % 93.42% 62.47%

VGG19+BONA 91.49% 97.23% 73.21%

ResNet50 91.11% 96.8%

ResNet50+BONA 92.00% 97.75%

ResNet101 91.96% 96.45%

ResNet101+BONA 92.8% 97.66%

ResNet152 92.02% 97.14%

ResNet152+BONA 92.85% 97.75%

Table 1: Classification accuracy based on our bag-

of-neural-activations (BONA) features calculated from

VGG19, based on features extracted from various CNNs,

and based on the combination of BONA and CNNs’ fea-

tures for the two datasets used in our experiments.

tivation patterns of the network which leads to mining the

high-level visual attributes learned by a CNN. We visual-

ized the corresponding images for top members of each dis-

tributed activation cluster within an embodiment of VGG19

that had been pretrained on the ImageNet and the Stanford

car datasets. We demonstrated that, despite the vast amount

of visual variability in the datasets, the extracted clusters

of distributed neural activations correspond to semantically

meaningful image regions.

Finally, we proposed a new feature based on the multi-

layer distribution of activation patterns, denoted as ‘bag-of-

neural-activations’, and showed that complementing a CNN

with the bag-of-neural-activations feature leads to higher

classification accuracies for both datasets and for different

CNN architectures. The idea of learning distributed activa-

tion patterns within pre-trained CNNs and linking the pat-

terns to semantically meaningful attributes opens the door

to more explainable machine learning systems.
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