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Abstract

This paper addresses the problem of automatically infer-

ring personality traits of people talking to a camera. As in

many other computer vision problems, Convolutional Neu-

ral Networks (CNN) models have shown impressive results.

However, despite of the success in terms of performance,

it is unknown what internal representation emerges in the

CNN. This paper presents a deep study on understanding

why CNN models are performing surprisingly well in this

complex problem. We use current techniques on CNN model

interpretability, combined with face detection and Action

Unit (AUs) recognition systems, to perform our quantita-

tive studies. Our results show that: (1) face provides most

of the discriminative information for personality trait infer-

ence, and (2) the internal CNN representations mainly ana-

lyze key face regions such as eyes, nose, and mouth. Finally,

we study the contribution of AUs for personality trait infer-

ence, showing the influence of certain AUs in the facial trait

judgments.

1. Introduction

Humans continuously perform evaluations of personal-

ity characteristics of others. First impressions on person-

ality traits, despite being inaccurate, play a crucial role in

many essential decisions in our everyday lives, such as the

results of the elections [1, 18], or court verdicts [6, 4]. These

personality trait inferences are driven by informational cues

with an evolutionary incentive[22].

This paper addresses the problem of automatic apparent

personality trait inference. More specifically, we present a

study on interpreting the representations learned by Convo-

lutional Neural Network (CNN) models trained to regress

personality trait scores from video frames.

The automated modeling of first impressions on person-

ality has recently attracted the interest of the computer vi-

sion community (see Section 2 for an overview), specially

since the publication of extensive databases and public chal-

lenges [15, 3]. In particular, we use in our work the First
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Figure 1. Apparent Personality Trait Regression (Big Five) from

video frames.

Impressions dataset [15], that is the most recent and large

database for apparent personality trait estimation. This

database is a collection of 10, 000 video clips of people fac-

ing and speaking in English. The videos are labeled ac-

cording to the ’Big Five’ apparent personality traits of the

speakers. These five personality traits, scored in a contin-

uous 0 − 1 scale, are Extraversion, ranging from friendly

(1) to reserved (0), Agreeableness, ranging from authen-

tic to self-interseted Conscientiousness, ranging from orga-

nized to sloopy, Neuroticism, ranging from comfortable to

uneasy, and Openness to Experience, ranging from imagi-

native to practical.

In this paper we take as a baseline the work of Zhang et

al. [23], which present the CNN model that a won the last

edition of the ChaLearn Looking At People (LAP) 2016:

First Round Challenge on First Impressions [15]. While

Zhang et al. presented a CNN architecture that combined

video frames and audio, we focus on video frames, dis-

carding the audio information, and perform a deep study on

the interpretability of CNN models trained exclusively from

video frames to perform apparent personality trait regres-

sion. Figure 1 illustrates the problem, showing two video

frames, randomly selected from two different videos, with

the corresponding ground truth scores of the Big Five. More

details on the Chalearn and the First Impression dataset are

provided in Section 2.1.

Deep learning models are often perceived as black boxes

able to learn complex non linear classification boundaries.

Despite of their staggering success, the interpretability of
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the resulting models is limited. Similarly, we know that

humans infer personality traits in a few milliseconds [21],

but the attention mechanisms that drive these decisions re-

main still unidentified. The knowledge of the regions of the

image more influential for each inference [12] could be of

extreme utility to shape these judgments.

In this paper we use the recent techniques presented in

these works of Zhou et. al [24, 25] for visualizing the re-

gions of the images that contain information for recognizing

the apparent personality traits. The CNN architectures used

in our study are described in Section 3. In a first quantita-

tive study our results show that the informative region of the

video frame clearly overlaps with the face of the speaker.

We reproduce state-of-the-art results on a cropped training

set, where only facial features are present. The visualiza-

tion of CNN’s unit responses reveal that specific facial fea-

ture detectors (i.e. eyebrows, eyes, nose, mouth) automati-

cally emerge from the intermediate layers of the CNNs, al-

though no training information was provided for these re-

gion’s identification. Thus, even though there is a diverse

set of informational cues (audio, video, text semantics and

context), we experimentally show that, in the state-of-the-

art model, the face accounts for the most part of the accu-

racy, and contains enough information to achieve the same

accuracy for apparent personality trait regression. Finally,

the last set of experiments present a discussion on the rela-

tion of Action Units and Personality Trait inference.

2. Related Work

Personality trait inferences based on first impressions

were first studied in the field of Psychology. Their basis

were stablished by several researchers performing factor

analysis on textual data [5], which concluded in a model

consisting on the aforementioned five traits [9]. In [13] au-

thors focused the trait judgments on facial images. They

used a data driven approach to model a basic set of traits,

which were experimentally validated showing a strong cor-

relation along two axis (dominance and valence).

These results attracted the attention of the computer vi-

sion community. Rojas et al. [16] proposed both an appear-

ance (HOG descriptors) and a structural approach (based

on distance among fiducial landmarks) to automate the in-

ference of facial trait judgments. Biel et al. [3] introduced a

first large video database where the personality traits could

be identified, and showed a significant correlation effect be-

tween personality traits and facial expressions present in

videos. Vernon et al. [19] proposed one of the first ap-

plications of neural networks to classify personality traits.

They used 65 numeric attributes from 179 fiducial landmark

points, allowing a fast identification of the key objective at-

tributes for classifying social trait impressions. Joo et al.

[11] proposed a ranking SVM modeling on intermediate

features to predict facial trait judgments, and focused on

Figure 2. Sample videos from First Impressions dataset that il-

lustrates the different personality traits (figure from [15], pending

permission).

the test of election outcome forecasting (strongly correlated

with competence and trustworthiness traits).

2.1. ChaLearn and First Impressions Dataset

The ChaLearn First Impressions provides a large corpus

of annotated videos [15, 8] and it is one of the most popu-

lar benchmarks for apparent personality trait inference. The

First Impressions dataset [15, 8] consists of 10,000 clips ex-

tracted from more than 3, 000 different YouTube HD (720p)

videos of people facing and speaking in English to a cam-

era. These 10,000 clips are divided into three different sub-

sets: 6, 000 clips for training, 2, 000 clips for validation and

2, 000 clips for testing. Each clip lasts 15 seconds. The

videos are labeled according to the Big Five personality

traits in a continuous 0 − 1 scale. Figure 2 shows some

video frames illustrating different personality traits scores.

In the past competition of this challenge, Zhang et al.

[23] proposed a CNN architecture that discards fully con-

nected layers, and aggregates convolutional layers using l2

normalized average and max-pooling. Subramaniam et al.

[17] developed a bi-modal approach using both audio and

image features. They used a LSTM recurrent neural net-

work for end-to-end training. Güçlütürk et al. [10] used

a Deep Residual Learning for learning the personality in-

ferences, reaching the 3rd place in the Challenge. A more

detailed review of these methods can be found in [15, 8].
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Figure 3. a) CNN architecture used for video modality in [23]; b)

Our modification of the CNN architecture to add the Class Activa-

tion Map (CAM) module. More detailed information about CAM

is given in Figure 4 and Section 3.1.

3. CNN Architectures

This work takes as a reference the CNN architecture pro-

posed in [23]. This model, which was proposed by the team

NJU-LAMDA, won the last edition of the ChaLearn Look-

ing At People (LAP) 2016: First Round Challenge on First

Impressions [15].

The architecture proposed in [23] consists of two sepa-

rate models for still images and audio, processing multiple

frames from the video and employing a two-step late fu-

sion of the frame and audio predictions. However, since our

work is focused on the interpretability of the video modal-

ity, the audio modality will not be considered and we use in

this work only the model for still images.

The scheme of this model is shown in Figure 3.a. This

architectures in named DAN+, and it is an extension of the

Descriptor Aggregation Networks (DAN) [20]. In contrast

to DAN, DAN+ applies max pooling and average pooling

at two different layers of the CNN. These poolings are fol-

lowed by L2 normalizations and the outputs are concate-

nated before feeding them to a fully connected layer. A pre-

trained VGG-face model [14] is used, replacing the fully-

connected layers and fine-tuning the model with the First

Impressions dataset.

To understand how DAN+ works to predict the person-

ality traits, we make a modification at the last layers of the

network, that allows to visualize the regions of the image

that support the decision of the network. The scheme of

this modified CNN is shown in Figure 3.b. Specifically, we

substitute all the layers after the average pooling and the
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Figure 4. Class Activation Map [25] scheme.

max pooling after pool5 by the Class Activation Map mod-

ule proposed in [25] (summarized in next subsection). We

also removed the average pooling and the max pooling after

relu5 2 to avoid feature concatenation.

3.1. Class Activation Map

In [25], the authors propose a simple technique, Class

Activation Map (CAM), to visualize class-specific discrim-

inative regions. The architecture of the CAM module is

shown in Figure 4. This module follows the last convolu-

tional layer of a CNN. It includes a Global Average Pooling

(GAP) right before to the classification or regression layer.

As shown in Figure 4 the output of the last convolutional

layer is a collection of 2D feature maps. Each map is com-

posed of the response of a specific unit of the convolutional

layer at the different locations. We denote by coordinate

indexes {x, y} the different 2D locations of these feature

maps. Thus, given the i-th map, denoted in the figure by

uniti, the Global Average Pooling of this map results in the

following feature

fi =
∑

x,y

uniti(x, y) (1)

With this set of {fi}i=1:N features, the final classifica-

tion or regression is done by

F (
∑

i=1:N

wifi) (2)

where F is the classification or regression function and

wi is the learned weight corresponding to the feature fi. For

example, in Figure 4, F would be the regression function

for Agreeableness. The interesting aspect of this architec-

ture is that, additionally to the classification or regression

response of the CNN, we can also have a visualization of

the image region that highly supported the CNN decision.

Specifically, this visualization corresponds to the weighted

sum of the unit maps of the last convolutional layer, as

shown in the bottom part of Figure 4.
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4. Experiments

As previously stated, the winner CNN model for the last

ChaLearn challenge on First Impressions combined video

frames and audio. However, since our expertise is on im-

age analysis, in this work we focus on the performance and

interpretability of CNN models that deal just with visual in-

formation. In particular, the motivation of our experiments

is to address the following questions: (1) Is it possible to

obtain state-of-the-art results using just the video frames?,

(2) Taking as input just video frames, what region of the im-

age provides most of the information to the model?, and (3)

Given a CNN model trained with the relevant visual infor-

mation, can we interpret its internal representation? The fol-

lowing subsections address, sequentially, these three ques-

tions.

4.1. Video plus Audio vs. just Video

The original technique from [23] achieves an accuracy

of 0.913 by combining video and audio modalities. This fi-

nal accuracy is computed as the mean accuracy along each

personality trait (for all input videos) between the predicted

continuous values and the continuous ground truth values.

Per each predicted continuous value, the accuracy is com-

puted as 1 − d, where d is the absolute distance among the

predicted value and the ground truth value.

In this first experiment we use the same architecture from

[23] but only over the video modality (see Figure 3.a) and

with a lighter downsampling (only 10 frames per video have

been used both in training and testing instead of the 100

frames per video from [23]). The obtained mean accuracy

slightly decreases to 0.909. Notice that using just video

frames we can achieve results dramatically close to the re-

sults obtained with the video and audio combination.

The results of the original technique and this first experi-

ment are collected in Table 1 (first and second rows, respec-

tively). Since the decrease in performance is very low, we

performed the downsampling in all of our experiments to

avoid computational cost.

4.2. Finding the Discriminative Regions in the Video
Frames

We use the architecture of Figure 3.b to obtain the Class

Activation Maps (CAM) for each personality trait. These

CAMs are generated for the 50 images that give the highest

predicted value for each personality trait. Figure 5 shows

the CAMs obtained for the agreeableness personality trait.

Notice that the higher support regions (in red) clearly over-

lap with the face of the person. After observing CAMs for

the different personality traits, we noted that the network

mainly focuses on the faces region areas to discriminate

among the different personality traits and predict their val-

ues.

Figure 5. Discriminative localization (Class Activation Maps) ob-

tained for the 20 images that give the highest predicted value for

the agreeableness personality trait in the test subset.

We evaluated this observation quantitatively by apply-

ing a face detection algorithm [2] and computing the over-

lap between the bounding box of the face detected and the

highest activated area of the CAM. More precisely, let us

denote Mface the mask that corresponds to the bounding

box of the face detected and MCAM the mask that results

from binaryzing the CAM using as threshold 0.8N , where

N is the maximum value that CAM takes. Then, the overlap

between Mface and MCAM is computed as:

overlap =
Mface ∩MCAM

MCAM

The reason why we compute the overlap as a recall

measure instead of as a Jaccard measure (intersection over

union) is that we want to penalyze the region areas of

MCAM that are outside the Mface but without penalyzing

the fact that MCAM may not cover the whole Mface.

As a result of computing the overlap between the bound-

ing boxes of the detected faces and the CAMs we obtain that

72.80% of the CAMs have at least an overlap of 0.9 with the

detected face. The average overlap is 0.76. With this, we

conclude that the face provides most of the discriminant in-

formation. This result motivates the experiments presented

in the next subsections, that focus on the face.

4.3. Focusing on Faces

Once the CAMs revealed that faces are the most discrim-

inative regions of the video frames, we trained the same

CNN architecture just on the cropped faces, instead that

training on the whole video frame. The faces are cropped

using the same face detector as in previous section [2]. The

estimated location of the eyes (given by the same detec-

tor) is used to align and normalize all the images from the

dataset, crop the faces and resize them to 224 × 224 pix-

els. The average image is recomputed over the train and

validation subsets before retraining the model.

The result of retraining the model focusing only on faces

and discarding all the context (i.e. the background) is a

mean accuracy of 0.912, which slightly outperforms the
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Meth MA O C E A N

[23] 0.913 0.912 0.917 0.913 0.913 0.910

img 0.909 0.909 0.911 0.909 0.910 0.905

face 0.912 0.910 0.914 0.915 0.912 0.907

Table 1. Results for our image baseline approach (img, see Sec-

tion 4.2), our face approach (face, see Section 4.3) and original

approach from state-of-the-art [23]. MA refers to Mean Accuracy

and O, C, E, A and N to accuracy for each personality trait: Open-

ness, Conscientiousness, Extraversion, Agreeableness and Neu-

roticism, respectively.

Figure 6. Discriminative localization (class activation maps) ob-

tained for the 20 images that give the highest predicted value for

the agreeableness personality trait in the test subset.

mean accuracy over the model trained using the whole im-

age (i.e. with both faces and context). Table 1 (third row)

shows the results for each personality trait and compares it

with our baseline approach from Section 4.2 as well as the

state-of-the-art technique [23]. From this table, we can also

observe that the improvement in the prediction is along all

five personality traits. Furthermore, the mean accuracy is

almost as good as the original approach from [23], which

uses both video and audio modalities.

We also use CAM to visualize, in this case, the regions

of the face that provide the most discriminative information.

Figure 6 shows again the CAMs obtained for the agreeable-

ness personality trait, but now just on the face of the person.

From the visualization of the CAMs for the different per-

sonality traits, we can observe that the network mainly fo-

cuses on the faces region areas corresponding to the eyes

and the mouth to discriminate among the different personal-

ity traits and predict their values. However, there are no sig-

nificant differences between the CAMs resulting from the

different personality traits. Therefore, the same region ar-

eas are considered to discriminate among them.

4.4. Interpretability of the Face CNN for apparent
personality trait regression

In [24], it is proposed to visualize the images that pro-

duce the highest activation given a unit of a specific layer

and segment them using the estimated receptive field to

a)

b)

c)

d)

e)

f )

g)

h)

i)

j)

Figure 7. Visualization of the 10 images that produce the highest

activations for 10 different units in conv5 3 layer (one unit per

row).

view which part of the image each unit of the convolutional

neural network pays attention to.

One of the goals of our work is to understand better

the model trained for the prediction of the personality traits

and visualize whether some semantic detectors also emerge

from this network. This is done following the same method-

ology as in [24]. Therefore, for each unit and for each im-

age processed by the network, the activations are obtained.

Then, most confident images for each unit (the ones that

produce the highest activations) are segmented and visual-

ized. Figure 7 shows the 10 most confident images for the

first 10 units of the last convolutional layer, i.e. conv5 3.

We observe that the units seem to be related with seman-

tic regions such as eyes, nose, mouth etc. Since the faces are

now aligned, we can use the average face to create masks of

the different face parts, and perform a quantitative study on

what regions of the face the units show higher responses.

Figure 8, at the left, shows the average face computed us-

ing all the training set in a in 14× 14 grid, that corresponds

to the resolution for the last convolutional layer of our net-

work. In Figure 8 (right) we mark the regions used to gen-

erate the masks for mouth (in purple), nose (in red), eyes (in

blue) and eyebrows (in orange).

To obtain the semantics of the internal units automat-

ically, the following process is performed for each unit.

First, the N most confident images, i.e. the ones that pro-

duce the N highest activation values, are identified. Then,

the location with the highest activation value is detected for

each one of these N images. Finally, these locations are

aggregated into a spatial histogram that represents the spa-
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Figure 8. Left: Division of the average image into 14 × 14 cells.

Right: Some semantic masks define to identify the face part detec-

tors that emerge from the network automatically.

tial distribution of the highest activation values for that unit.

This process is repeated for each unit of the layer.

Once the spatial histograms have been obtained, we

can automatically connect semantic face regions and areas

where units show their highest response. Thus, for a given

semantic region, e.g. the mouth, the values of the spatial

histograms are added over the region defined by the mouth

mask (purple region from Figure 8-right). This way, for

each unit, we obtain the number of images N ′ out of the N

most confident images that have their highest values located

within the region of interest. As a result, for a given seman-

tic region, if the units are decreasingly sorted according to

their values of N ′, the units that best represent such seman-

tic region are automatically obtained as well as how good

the connection between the semantic region and the unit is

(the bigger N ′ the better).

We used in our experiments N = 50 and we show in Fig-

ure 9 the 5 most confident units for eyes, nose, and mouth

detection.

More generally, we performed a quantitative visualiza-

tion that shows what are the regions of the image that mostly

activate the different units of each layer. To obtain this dis-

tribution we proceed as follows. First, for each unit, the

N most confident images are obtained, i.e. the ones that

produce the highest activation for that unit. Second, the po-

sition of the highest activation is stored as a matrix with all

0s except for such position, which has value 1. Third, the

matrices for the N most confident images are added so that

a spatial histogram of the highest activation locations is ob-

tained for that unit. Then, the spatial histograms are added

along all the units from the same layer. Finally, they are

pooled to a resolution of 14x14 by adding the values be-

longing to the same cell so that all spatial histograms have

the same resolution independently of the layer from which

they have been obtained.

Figure 10 shows these spatial histograms for each con-

volutional layer represented as heatmaps. We can observe

that the deeper the layer in the CNN the spikier the spatial

histogram of the highest activation locations. This can be

interpreted as follows: the higher the layer is, the units are

more specialized in analyzing the eyes, nose, and mouth.

Additionally to the semantic regions of the face, we also

observed that there are other semantic concepts that are de-

tected by some units. For example, we manually identified

some units that respond to eyes with glasses, as shown in

Figure 11. Despite being a concept easy to locate in the

aligned images (a similar mask as the one used for eyes de-

tection could be used), the presence or absence of glasses

should be manually checked along the units that have their

highest activation values distributed over the eyes region

area.

4.5. Action Units for Personality Traits Prediction

Our last set of experients are focused on evaluating the

influence of shown emotion for the problem of personality

trait inferences. We used the same Openface library [2] ap-

plied to crop the faces and generate the face dataset used

in Sections 4.3 and 4.4 to also predict a subset of 17 Ac-

tion Units (AUs) from the Facial Action Coding System

(FACS) [7] (namely: AU1-Inner brow raiser, AU2-Outer

brow raiser, AU4-Brow lowerer , AU5-Upper lid raiser,

AU6-Cheek raiser, AU7-Lid tightener, AU9-Nose wrinkler,

AU10-Upper lip raiser, AU12-Lip corner puller, AU14-

Dimpler, AU15-Lip corner depressor, AU17-Chin raiser,

AU20-Lip stretched AU23-Lip tightener, AU25-Lips part,

AU26-Jaw drop, AU28-Lip suck and AU45-Blink)

We computed the intensity of each AU, and performed a

correlation analysis between personality traits and automat-

ically detected AUs.

The first experiment consists in checking if AU detec-

tors also emerge from the internal units of the network as

done with some semantic regions in Section 4.4. Given an

AU, the N frames {FAU} that have the highest predicted in-

tensity value for such an AU are identified. Then, for each

internal unit, the N frames {Funit} that have the highest ac-

tivation for such unit are obtained. Finally, the internal unit

with the highest intersection between {FAU} and {Funit} is

identified. Table 4.5 shows the results and the significance

levels obtained for N = 50.

The best identification between AUs and internal units

has been found for AU12 (Lip Corner Puller) and AU15

(Lip Corner Depressor) with units 108 and 220 respectively,

both with an intersection value of 20%. A total of 3 out of

17 AUs show significantly above chance frames intersec-

tion between AU presence and trait prediction. Statistical

significance has been computed according to the following

formula:

p = P (intersection ≥ k) = 1−

(

1−

N
∑

i=k

(

F−N
N−i

)(

N
i

)

(

F
N

)

)U

where F is the number of frames from the whole set, N

is the number of frames selected (N from {FAU} and N
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Figure 9. 5 most confident units for detecting eyebrow, eye, nose, and mouth.

conv5_3

conv1_1 conv1_2

conv5_2conv5_1conv4_3conv4_2conv4_1conv3_3

conv3_2conv3_1conv2_2conv2_1

Figure 10. Spatial histograms of the most frequent activation lo-

cations for each convolutional layer. The deeper the layer in the

CNN the spikier the spatial histogram of the highest activation lo-

cations.

a)

b)

c)

d)

Figure 11. Manual identification of units responding to eyes with

glasses.
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Table 2. Results for automatic identification of AU detectors

emerging from internal units, and statistical significance (paren-

thesis).

Action Unit Most confident unit intersection

AU1 159 6/50 (p<0.439)

AU2 344 7/50 (p<0.086)

AU4 35 6/50 (p<0.439)

AU5 261 7/50 (p<0.086)

AU6 380 6/50 (p<0.439)

AU7 7 5/50 (p<0.974)

AU9 350 6/50 (p<0.439)

AU10 397 7/50 (p<0.086)

AU12 108 10/50 (p<9.32e-5)

AU14 254 6/50 (p<0.439)

AU15 220 10/50 (p<9.32e-5)

AU17 77 6/50 (p<0.439)

AU20 74 7/50 (p<0.086)

AU23 475 9/50 (p<1.10e-3)

AU25 146 6/50 (p<0.439)

AU26 55 7/50 (p<0.086)

AU45 302 6/50 (p<0.439)

from {Funit}), k is the minimum number of frames from

the intersection of {FAU} and {Funit} for at least one of

the units, and U is the number of units from the CNN layer

being analyzed. The statistical significance values from Ta-

ble 4.5 have been obtained from layer conv5 3 (U=512),

using the test subset (F=2000) and selecting 50 frames

(N=50).

We also further explored the trait predictive capabilities

of AUs in images. We used the AU activation as a 17-

dimensional feature vector, and trained a simple linear clas-

sifier on this data. This simple model yields an accuracy

close to 0.886 with this reduced set of features. This result

suggests that there is a dual informational cue when infer-

ring social traits from facial images. Published results from

the state-of-the-art show that a single still image can predict

with high accuracy the trait inference, which is consistent

with the Psychological literature that suggests that trait in-

ferences are performed fastly, in milliseconds, before facial

dynamics take place [1]. Nevertheless, mid-term temporal

cues such as facial action units involved in emotion exposi-

tion have also influence on trait inferences, despite the low

dimensionality of the high level signal.

5. Conclusions

In this paper we focused on the interpretability of deep

learning models for apparent personality trait inferences.

Taking as a reference the state-of-the-art model, and focus-

ing only on the video content, i.e. discarding the audio sig-

nal, we found that facial information plays the key role in

the trait prediction. In the light of this result, we retrained

the model obtaining improved accuracies using only the fa-

cial region.

A recursive application of the visualization tool proposed

showed that specific facial regions play a key role in the

trait predictions. A set of facial part detectors automatically

emerged from the last layers of the CNN with no supervi-

sion provided on this task. Specific units in the last convo-

lutional layer (conv5 3) unsupervisedly specialized on de-

tecting mouth, nose, eyes and eye-brows. This methodol-

ogy can be easily exported to other network architectures,

and provide an explainable visualization to the results of

the CNNs.

Finally we explored the influence of the emotional infor-

mation on the trait prediction. Psychological studies sug-

gest that humans infer trait judgments from a single image

in a few milliseconds. Although the use of still images

on CNNs suffices to obtain state-of-the-art accuracies, we

hypothesized that dynamic information from the emotions

portrayed also influence the trait predictions. We automat-

ically annotated a set of 17 action units found in videos,

and used this information to correlate AU presence and unit

activation in the network predicting the personality traits.

We found above chance relationships between certain units

and AUs activation. In addition we trained a classifier us-

ing only the AU activation as features on the trait judgments

prediction task. These simple attributes yielded fair regres-

sion results denoting the influence of AUs in facial trait

judgments.
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