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Abstract

We generalize Richardson-Lucy (RL) deblurring to 4-D

light fields by replacing the convolution steps with light field

rendering of motion blur. The method deals correctly with

blur caused by 6-degree-of-freedom camera motion in com-

plex 3-D scenes, without performing depth estimation. We

introduce a novel regularization term that maintains paral-

lax information in the light field while reducing noise and

ringing. We demonstrate the method operating effectively

on rendered scenes and scenes captured using an off-the-

shelf light field camera. An industrial robot arm provides

repeatable and known trajectories, allowing us to establish

quantitative performance in complex 3-D scenes. Quali-

tative and quantitative results confirm the effectiveness of

the method, including commonly occurring cases for which

previously published methods fail. We include mathemat-

ical proof that the algorithm converges to the maximum-

likelihood estimate of the unblurred scene under Poisson

noise. We expect extension to blind methods to be possi-

ble following the generalization of 2-D Richardson-Lucy to

blind deconvolution.

1. Introduction

The tradeoff between light gathering and sensitivity to

motion blur makes effective image capture in low light or

on mobile platforms difficult. This is commonly an issue in

robotics applications, e.g. unmanned aerial vehicle (UAV)

and autonomous underwater vehicle (AUV) deployments in

which cameras are in constant motion and light is often

limited. Handheld photography is also affected, especially

on low-end cameras with low light sensitivity, but also on

higher-end devices operating in low-light scenarios.

The possibility of removing blur post-capture is enticing,

and deblurring is a well-explored topic with previous work

addressing the cases of spatially invariant blur [3, 13, 16]

Figure 1. (left) Motion blur in 3-D scenes takes on a complex va-

riety of shapes; (right) We introduce a light-field generalization of

Richardson-Lucy deblurring which deals correctly with complex

3-D geometry and 6-DOF camera motion. No depth estimation is

performed, only the camera’s trajectory is required.

or planar projective motion [20]. These approaches have in

common that they do not apply to general 3-D scenes, where

parallax motion results in a complex scene-dependent spa-

tially varying blur kernel – see Fig. 1 for example. Previ-

ous generalizations to light fields have similarly restricted

scene geometry [3], or restricted camera motion to a plane

and relied on explicit 3-D shape estimation, a potentially

error-prone process in the case of a blurry input [18].

In this work we introduce a method for deblurring light

fields of arbitrary 3-D geometry and under arbitrary cam-

era motion. The proposed approach is a generalization of

the Richardson-Lucy (RL) deblurring algorithm [13, 16] in

which 2-D convolution is replaced with light field render-

ing. The resulting algorithm, depicted in Fig. 2, employs

light field interpolation to render novel views and simu-

late motion blur – no model of the scene’s geometry is

employed. Our approach is elegant and non-obvious, as

all previous attempts at LF motion deblurring have arrived

at very different and severely limited solutions compared
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Figure 2. Generalizing the Richardson-Lucy algorithm by replac-

ing convolution with light field rendering of motion blur.

with ours. Ours is the first example, to our knowledge, of

a method dealing with nonplanar scenes and 6-degree-of-

freedom (DOF) camera motion without explicitly estimat-

ing scene geometry.

We show results for rendered light fields and light fields

captured using a commercially available lenslet-based cam-

era. Quantitative experimental results require repeatable

and known camera trajectories, for which we employ an in-

dustrial robot arm capable of sweeping the camera through

arbitrary 6-DOF trajectories. Extensive qualitative and

quantitative results confirm the method operates robustly

over a range of geometry and camera motion, including

commonly occurring cases for which previously published

methods fail.

We include a detailed and insightful mathematical proof

that the algorithm converges to the maximum-likelihood es-

timate of the unblurred scene under Poisson noise. We also

introduce a novel regularization term enforcing equal par-

allax motion in vertical and horizontal dimensions which,

combined with previously published regularization based

on total variation, significantly improves deblurring results.

Complex 3-D scenes generally yield blur that varies in

direction and magnitude on a per-pixel basis, complicating

the use of 2-D methods and requiring expensive per-pixel

motion models. The proposed method requires only a de-

scription of the camera’s trajectory, which for short expo-

sure times is well approximated by a 6-D constant-velocity

vector. Its low dimensionality makes the proposed method

less computationally complex in the case of known camera

motion, and attractive for generalization to blind deconvo-

lution.

As with conventional Richardson-Lucy deconvolution,

the proposed method is not blind. However, we expect this

work to form the basis for blind deblurring, e.g. by follow-

ing the generalization of 2-D Richardson-Lucy to blind de-

convolution [7].

The proposed method has some important limitations: it

assumes motion blur caused by camera motion or by rigid

motion of scene elements, and without extension will not

deal with blur induced by relative motion between scene el-

ements. We also assume knowledge of the camera’s motion

as acquired from an inertial measurement unit (IMU) or vi-

sual odometry, and require that the light field camera be cal-

ibrated and its imagery rectified to allow accurate rendering.

Blind deblurring, in which the motion of the camera and the

deblurred image are jointly estimated, is left as future work.

Although the tradeoff between exposure time and light gath-

ering has been addressed in the context of exposure manip-

ulation [1, 15], we focus here on the possibilities offered by

light field cameras with conventional exposure regimes.

2. Related Work

Classic deblurring approaches operate in 2-D, assuming

a constant blur kernel across the image [13, 16]. In gen-

eral, however, nonuniform apparent motion due to com-

plex scene geometry results in highly variable motion blur.

Adapting to such scenarios requires varying the blur ker-

nel across the image, a process equivalent to estimating the

scene’s geometry.

Moving beyond two dimensions, Tai et al. [20] demon-

strate a modification of the RL deblurring algorithm [13,16]

to incorporate planar projective motion. Their method out-

performs spatially invariant blur kernels, though it deals

poorly with scenes exhibiting large depth variations, as

these break the planar motion assumption. We extend this

work using light field rendering and regularization tech-

niques, lifting the planar motion assumption and correctly

handling arbitrary scene geometry.

Joshi et al. address spatially varying blur by instrument-

ing the camera with an IMU [10]. This improves deconvo-

lution by providing an initial camera motion estimate, but

their method imposes a constant-depth assumption making

it inappropriate for scenes with large depth variations.

Xu and Jia [22] address depth variation by performing

depth estimation from a stereo camera. The depth estimate

is broken into layers, and these drive a set of point spread

function (PSF) estimates. Their method requires two cam-

eras and explicit depth estimation from blurry input images,

and limits processing to a set of layers, rather than dealing

naturally with smooth depth variation.

Levin [11] presents a blind method that segments images

based on the statistics of image derivatives, and deblurs each

segment with a 1D blur kernel estimate. Because it is based

on segments, the method does not deal well with the con-

tinuously varying blur commonly associated with smooth

depth variation or camera motion. The rich relationship be-

tween camera motion, 3-D scene structure and blur shape is

ignored.

Chandramouli et al. [3] address blind deconvolution of

light fields with decimated spatial sampling. Their method

approximates the scene as 2-D, assumes a Lambertian

scene, and is not easily extended to handle depth variation.

Our method by contrast operates correctly on 3-D scenes

with spatially varying blur, and is not limited to Lambertian

scenes.
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Snoswell and Singh decompose the blurred light field

into discrete planes in a process akin to the discrete focal

stack transform [14,18]. Each depth plane is independently

deblurred, then recombined based on a global depth esti-

mate. This technique relies on forming an accurate depth

estimate from the blurred input image, and this fails in low-

texture areas and for large amounts of blur. The per-plane

deblurring is carried out using 2-D deconvolution, limiting

the method to in-plane camera motion. Our method, by con-

trast, operates directly on the input light field, does not rely

on a depth estimate, and works with 6-DOF camera motion.

We employ regularization based on anisotropic to-

tal variation, which has previously appeared in various

forms [8, 9, 21]. We also propose equiparallax regulariza-

tion, enforcing equal rates of apparent motion in pairs of

light field dimensions. To our knowledge, this form of reg-

ularization has not been previously published.

Concurrently with our work, Srinivasan et al. [19] intro-

duced a blind deblurring algorithm that jointly estimates the

deblurred light field and the camera’s trajectory. Although

it does not handle camera rotation, it may be possible to

generalize their method to handle 6-DOF motion.

3. Plenoptic Richardson-Lucy

The RL deblurring algorithm [13, 16] is typically ex-

pressed in terms of convolutions, as

It+1 = It ·

(
B

It ⊗ k
⊗ k̃

)

, (1)

where the division and multiplication are element-wise.

Here B is the blurry input image, ⊗ denotes convolution,

k is the PSF of the blurring process, and k̃ reverses k along

each of its dimensions.

In this work, as in [20], we generalize the blurring pro-

cess by replacing the denominator It⊗k with a generic for-

ward blur operation, and the second convolution ⊗k̃ with a

generic reverse blur operation, as depicted in Fig. 2.

We restrict our attention to the case of motion blur in-

duced by camera motion in a static scene, or equivalently

by rigid scene motion. Even under this assumption, blur is

conventionally difficult to simulate due to the nonuniform

apparent motion associated with 3-D scene geometry. To

address this we make use of light field rendering to simu-

late motion blur without estimating or making assumptions

about the scene’s geometry.

The light field was first introduced to allow efficient

rendering of novel views [12]. Because camera motion-

induced blur can be simulated as the summation of views

along a camera trajectory, light field rendering is easily ex-

tended to simulating motion blur. The camera’s trajectory

P is broken into N individual views, and each view is ren-

dered through any of a range of light field rendering tech-

1: function DEBLUR(I0, Path)

2: I ← I0
3: loop

4: IB ← BLUR(I, Path)
5: R← I0/IB
6: R← BLUR(R, REVERSE(Path))
7: I ← RI ⊲ I converges to deblurred image

8: end loop

9: end function

10: function BLUR(I, Path)

11: F ← 0
12: for N V iews in Path do

13: F ← F+RENDER(I, V iew)

14: end for

15: return F
16: end function

Figure 3. The Light Field Richardson-Lucy Algorithm

niques. We employ one of the simplest, quadrilinear in-

terpolation [12], as it requires no depth estimation. Reverse

blurring is achieved by reversing each dimension of the sim-

ulated camera trajectory to yield the inverse trajectory P̃ .

Pseudocode for the resulting algorithm is shown in Fig. 3.

It is known that when the RL algorithm converges it

yields the maximum-likelihood estimate of the unblurred

scene under Poisson noise [17]. In the following section we

show that our modified algorithm retains this property.

3.1. Derivation

Here we consider the problem of restoring light fields

corrupted by motion blur and Poisson noise. We study light

fields embedded in R
4, whose real-valued intensities are de-

fined on a closed domain Ω ⊆ R
4. Let L : Ω 7→ R

+ denote

the unknown and blur-free light field and let B̄ : Ω 7→ R
+

denote the observed light field degraded by motion blur ac-

cording to the following model

B(w) =

∫

w+γw

L(w)ds, w ∈ Ω. (2)

That is, the measured intensity along a given light ray is the

result of integrating the light field intensities along the entire

trajectory taken by each such ray. Here γw : [0, 1] 7→ Ω
parametrises the path of an individual light ray at w ∈ R

4.

We only consider regular curves arc-length parametrized of

class C∞, for which we have

∫

γw

ds = 1. (3)

To avoid boundary effects we let Ω = R
4.
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Under Poisson noise the conditional probability density

function for an individual light ray at w ∈ Ω is given by

P (B̄(w)|L, γw) =
B(w)B̄(w)

B̄(w)!
e−B(w). (4)

For an entire light field the log likelihood can be written

L(B̄|L, γ) := log

(
∏

w∈Ω

P (B̄(w)|L, γw)

)

(5)

=

∫

Ω

B̄(w)log[B(w)]−B(w)− log[B̄(w)!]dw. (6)

Note that since B(w) is linear in L it follows thatL(B̄|L, γ)
is a concave function. Finding L is then stated as the max-

imum a posteriori estimator of (4), or equivalently as the

maximizer of (6).

We can write,

L(w) = arg max
L(w)≥0

∫

Ω

B̄(w)log[B(w)]−B(w)
︸ ︷︷ ︸

f(L)

dw. (7)

The Lagrange function of (7) becomes,

F (L,Λ) = f(L) +

∫

Ω

Λ(w)L(w)dw, (8)

Λ : Ω 7→ R
+ (9)

and the corresponding KKT-conditions

∂F

∂L
(w) + Λ(w) =0, (10)

L(w) ≥0, (11)

Λ(w) ≥0, (12)

Λ(w)L(w) =0, ∀w ∈ Ω. (13)

Or equivalently

L(w)
∂f

∂L
(w) =0, if L(w) > 0 (14)

∂f

∂L
(w) ≥0, if L(w) = 0. (15)

The partial derivative of f with respect to L becomes

∂f

∂L
=

∂

∂L

(∫

Ω

B̄(w)log[B(w)]−B(w)dw

)

(16)

=

∫

Ω

B̄(w)

B(w)

∂

∂L





∫

w+γw

L(w)ds



−
∂

∂L





∫

w+γw

L(w)ds



 dw

(17)

=

∫

Ω

B̄(w)

B(w)

∂

∂L





∫

w+γw

L(w)ds



 dw −

∫

w+γw

ds (18)

=

∫

w+γ−

w

B̄(w)

B(w)
dw − 1. (19)

With γ−
w : [0, 1] 7→ Ω denoting the direction reversal of the

curve γw, i.e. γ−
w (t) = γw(1− t). The last equality follows

from (3), the arc-length parameterization of γw. Inserting

(19) in (14) yields

L(w)

∫

w+γ
−

w

B̄(w)

B(w)
ds = L(w). (20)

The RL algorithm can then be derived as the fixed-point

iteration of (20). We arrive at the familiar multiplicative RL

iteration

Ln+1(w) = Ln(w)

∫

w+γ
−

w

B̄(w)
∫

w+γw
Ln(w)ds

ds. (21)

The convergence of the iteration (21) can be established

from the work of [17]. Adhering to the analysis therein, it is

straightforward to show that Ln+1(w) ≥ Ln(w). From the

concavity and boundedness of L(w) it can then be proven

that (21) will converge to a solution to (7). We refer the

reader to [17] for details.

3.2. Regularization

The inclusion of priors on the light field L(w), in the

form of a regularizing term R(w,L(w),∇L(w)), into the

generalized RL iteration (21) is as straightforward as in pre-

ceding work [20]. Let (7) now instead be

L(w) = arg min
L(w)≥0

∫

Ω

B̄(w)log[B(w)]−B(w)]

+ ρR(L(w))dw, (22)

with the constant ρ defining the weight of the regularization

term. The equivalent KKT-condition to (14) then becomes

L(w)

[

∂f

∂L
(w) + ρ

(
∂R

∂L
(w)−∇ ·

∂R

∂∇L
(w)

)

︸ ︷︷ ︸

E(w)

]

=0.

(23)

Using (19) we can write (23) as

L(w)

∫

w+γ
−

w

B̄(w)

B(w)
ds = (1− ρE(w))L(w), (24)

arriving at the regularized variant of the multiplicative RL

iteration for light fields,

Ln+1(w) =
Ln(w)

1− ρE(w)

∫

w+γ
−

w

B̄(w)
∫

w+γw
Ln(w)ds

ds. (25)
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3.2.1 Anisotropic Total variation

Regularization by total variation is well established as a

means of suppressing image noise amplification by min-

imizing the magnitude of gradients in the deblurred im-

age [2, 6]. We employ a generalization to 4-D total varia-

tion for light fields, including anisotropy introduced to re-

flect the limited range of epipolar slopes typical of light

fields [8, 9, 21].

Here we consider smoothed anisotropic total variation

regularizers of the following form,

Rtv(∇L) =

∫

Ω

√

∇L(ω)TD∇L(ω) + ǫ dω, (26)

with ǫ > 0 and where directional sensitivity is described by

the positive definite tensor D ∈ S4×4
++ . For this choice of

regularizing term, E(ω) in (23), then becomes

Etv(ω) = ∇ ·
D∇L(ω)

√

∇L(ω)TD∇L(ω) + ǫ
. (27)

3.2.2 Equiparallax

It is well established that epipolar slopes in horizontal and

vertical light field dimensions must be equal – this is a

consequence of apparent motion occurring at the same rate

across horizontal and vertical camera positions. The conse-

quences of this “equiparallax” have been exploited to for-

mulate highly selective noise rejecting filters for light fields

in the frequency domain [5]. In this work, we construct a

regularization term that enforces the equiparallax constraint

in order to further suppress noise amplification and to en-

force valid light field geometry in the deblured imagery.

In [5] it was shown that for Lambertian scenes without

occlusion boundaries the following constraints on the par-

tial derivatives of the light field must hold,

∇sL(w)

∇uL(w)
=
∇tL(w)

∇vL(w)
, (28)

with ∇uL,∇vL 6= 0, and the dimensions s, t, u, v fol-

lowing the well-known two-plane light field parameteriza-

tion [12]. From this we derive the regularizer

Rep(∇L) =

∫

Ω

√

g(ω)2 + ǫ dω, (29)

g(ω) = ∇sL(ω)∇vL(ω)−∇uL(ω)∇tL(ω), (30)

resulting in an E(ω) as in (23) given by

Eep(ω) = ∇ ·
g(ω)

√

g(ω)2 + ǫ

[
∇vL(ω)
−∇uL(ω)
−∇tL(ω)
∇sL(ω)

]

. (31)

4. Experiments

4.1. Implementation Details

Because we are working with relatively short expo-

sure durations, the camera’s trajectory can be well ap-

proximated using a constant velocity given by the vector

v = [Tx, Ty, Tz, Rx, Ry, Rz]. Although this limits our im-

plementation of the proposed method to constant-velocity

cases, the method is more general in that it is capable of

handling any camera trajectory P (n) that can be approxi-

mated as a set of N discrete poses.

The constant-velocity assumption allows for a simplifi-

cation in the blur processes: For a trajectory defined over

the unit time step, we set the pose P (−0.5) = −v/2 and

P (0.5) = v/2. This fixes the deblurred image to the center

of the trajectory, i.e. P (0), and allows the use of identical

forward and reverse blur operations.

An important parameter of the deblurring process is the

number of steps N to take in approximating the camera’s

trajectory. Unless otherwise stated, all experiments em-

ployed N = 10 steps. Also important are the number of

iterations over which of the RL algorithm is run. We found

that most deblurring occurred within the first ten iterations,

but that there was occasionally improvement up to 50 iter-

ations, especially with regularization enabled. In general,

results are shown for 50 RL iterations. Regularization was

employed with an equiparallax gain of ρep = 0.05, and a

total variation gain of ρtv = 0.01 with an anisotropy of 8

favouring edges in the u, v dimensions.

4.2. Rendered Scenes

We begin by establishing the ability of the algorithm to

deal with complex 3-D geometry under different types of

camera motion. For this we employed a raytracer1 to gen-

erate a variety of scenes and simulated camera motions.

Motion blur was simulated during the raytracing process

by integrating views along a camera trajectory. This was

done during light field creation using conventional raytrac-

ing techniques, ensuring that motion blur simulation was

not carried out using the light field rendering process built

into the deblurring algorithm.

The rendered light fields have 15× 15× 256× 256× 3
samples, for which our unoptimized MATLAB implemen-

tation took about 2 minutes per iteration on an 8-core i7-

4790 CPU at 3.60 GHz.

We identified four characteristic motion classes, depicted

in Figs. 4–6, and for each class we compared the output of

the proposed algorithm with relevant competing methods.

Note that all displayed results correspond to the central view

of the light field. To facilitate discussion we assign z as the

optical axis of the camera, with x pointing to the right and y
up. Numerical results are the error relative to an unblurred

1http://dgd.vision/Tools/LFSynth
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(a) IN Tx (32.1 dB) (b) LF-RL Tx (33.6 dB) (c) 2D-RL Tx 9 pix (22 dB) (d) 2D-RL Tx 5 pix (25.4 dB)

(e) 2D-RL Tx 2 pix (30.7 dB) (f) Wiener Tx 9 pix (20.2 dB) (g) Wiener Tx 5 pix (23.8 dB) (h) Wiener Tx 2 pix (30.2 dB)

Figure 4. (a) Translation in x yields scene-dependent spatially varying motion blur. (b) The proposed algorithm converges on a deblurred

result without forming an explicit scene model. (c-h) 2-D methods cannot handle the spatially varying blur, with 9-, 5- and 2-pixel kernels

each only addressing subsets of the image.

view of the scene, taken as −20 log10(RMSE ), for a maxi-

mum pixel magnitude of 1.

The first motion class is translation in the x, y plane,

for which parallax motion yields a variety of effective blur

magnitudes, and prevents the effective application of con-

ventional deblurring algorithms. Shown in Fig. 4 is trans-

lation in x, correctly deblurred by the proposed method,

but only partially deblurred by 2-D methods which must

be tuned to specific subsets of the image. Shown are ex-

amples for 9-, 5- and 2-pixel 2-D blur kernels, correspond-

ing roughly to the blur lengths of the inset scene features.

Note that projective RL [20] would also fail here because

the scene is not well approximated as a plane.

The second motion class is nodal rotation excluding ro-

tation about z, yielding approximately constant projected

motion throughout the scene. Note that nodal rotation is not

possible throughout the entire light field, due to the spatial

extent of the camera array, but we are visualizing the cen-

tral view of the light field for which nodal rotation is possi-

ble. Shown in Fig. 5 is rotation about the vertical axis, Ry ,

yielding constant blur throughout the central view. As seen

in the figure, both the proposed method and conventional

2-D deblurring algorithms correctly deblur this scene.

The third and fourth motion classes are rotation about

and translation along z. The former yields geometry-

independent blur, which can be well addressed by the pro-

jective deblurring algorithm of Tai et al. [20], or by a scene-

independent spatially varying 2-D deconvolution. The lat-

ter, translation about z, yields scene-dependent blur similar

to translation in x, y. Examples of these two motion classes

are depicted in Fig. 6, with the proposed algorithm cor-

rectly handling both. No meaningful results can be obtained

from spatially invariant 2-D deconvolution in these cases,

but projective RL deals correctly with the rotational case,

as seen in the bottom row. Note that the projective RL im-

plementation we used yielded a rotational offset which we

removed in order to maximize the numerical performance.

Results for the proposed method are shown for a second

rendered scene in Fig. 7. Noteworthy is that for all charac-

teristic motion classes, and across complex scene geometry,

the proposed method was able to correctly deblur the scene.

We expect this to hold for arbitrary combinations of motion

classes, subject to the limits of motion discussed in follow-
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(a) IN Ry (26.9 dB) (b) LF-RL Ry (32.1 dB)

(c) 2D-RL Ry (29.2 dB) (d) Wiener Ry (28.6 dB)

Figure 5. (a) Rotation about y yields spatially invariant blur, and is

therefore well addressed by (b) our method and (c,d) 2-D decon-

volution methods. We suspect the strong regularization afforded

by the light field explains our method’s superior results.

ing sections. The impact of omitting regularization is shown

in Fig. 8.

4.3. Robot­Mounted Camera Experiments

The proposed method requires knowledge of the cam-

era’s motion – development of a blind method is expected to

be possible following the generalization of 2-D Richardson-

Lucy to blind deconvolution, and is left as future work.

As such, to validate the method on real-world imagery, we

mounted a commercially available lenslet-based light field

camera – a Lytro Illum – on an industrial robot arm, as de-

picted in Fig. 9. The arm was programmed for a range of

motion classes and rates, including the four characteristic

classes described in the previous section.

4.3.1 Calibration

Accurate rendering of motion blur requires calibrated and

rectified light fields. This was accomplished using the Light

Field Toolbox for Matlab [4]. We found it necessary to

exclude a border of 2 pixels near lenslet edges during the

(a) IN Rz (29.2 dB) (b) IN Tz (32.6 dB)

(c) LF-RL Rz (33.8 dB) (d) LF-RL Tz (32.6 dB)

(e) PROJ-RL Rz (23.4 dB) (f) PROJ-RL Tz (16.9 dB)

Figure 6. (a) Rotation about z yields spatially varying but scene-

independent blur, while (b) translation along z yields spatially

varying scene-dependent blur; (c-d) our method is capable of deal-

ing with both these cases, while 2-D methods cannot; (e) Projec-

tive RL deals correctly with rotation about z, but not (f) translation

along z, due to the scene-dependent blur.

calibration process, due to limitations of the lens distor-

tion model employed in the toolbox. We fixed the camera’s

zoom to its widest field of view, and selected the hyperfocal

distance as the focal setting.

The rectified light fields have 15 × 15 × 626 × 434 × 3
samples, though we discard a border of 1 pixel yielding a to-

tal of 13 samples rather than 15 in the first two dimensions.
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(a) IN Tx (21.7 dB) (b) IN Ry (19.8 dB) (c) IN Tz (19.4 dB) (d) IN Rz (16.9 dB)

(e) LF-RL Tx (27.5 dB) (f) LF-RL Ry (26.1 dB) (g) LF-RL Tz (23.3 dB) (h) LF-RL Rz (22.4 dB)

Figure 7. Validating the proposed method over four classes of motion: (a) translation in x, y, (b) nodal rotation in x, y, (c) translation in

z and (d) rotation about z. (e-f) The proposed method has correctly dealt with all cases including spatially varying and scene-dependent

blur, even in the presence of occlusions.

Figure 8. For the same light field depicted in Fig. 7g, omitting

regularization yields characteristic ringing and noise amplification

(22.0 dB).

Because these are much larger than the rendered light fields,

runtime was longer, with our unoptimized MATLAB imple-

mentation taking about 5 minutes per iteration on an 8-core

i7-4790 CPU at 3.60 GHz.

The arm was programmed by setting two endpoints for

each motion class, and the arm was set to linearly oscillate

Figure 9. A commercially available light field camera mounted on

an industrial robot arm produces repeatable and ground-truthed 6-

DOF camera motion.

between them over a range of velocities. For translation in

x, y and rotation about x, y, we found the imagery to be rel-

atively insensitive to slight errors in the arm’s movement.

For rotation and translation about z, however, we found

small errors in the arm’s motion yielded several-pixel devi-

ations from the ideal. For these types of motion, each path
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(a) IN Tx (b) IN Tz (c) IN Rz

(d) LF-RL Tx (e) LF-RL Tz (f) LF-RL Rz

Figure 10. Imagery captured with a commercially available light field camera mounted on an industrial robot arm, showing (a) translation

in x, (b) translation along z and (c) rotation about z. (d-f) In all cases the method has reduced visible blur, dealing correctly with scene-

dependent and spatially varying blur. We attribute the lower performance near the edges of (e) to edge effects associated with this relatively

large camera motion. Note the marked improvement in the robo-ducky’s textural details, and the checkerboard details in (f).

endpoint was manually adjusted to maintain a fiducial at the

center of the image, resulting in close-to-ideal imagery.

Example light fields measured using the arm-mounted

camera, and the corresponding deblurred light fields, are

shown in Fig. 10. The leftmost example shows horizontal

motion at 75 mm/sec over a 1/10 sec exposure; the center

example shows translation towards the scene at 75 mm/sec

over a 1/5 sec exposure; and the final example shows ro-

tation about z at 0.6545 rad/sec over a 1/10 sec exposure.

Note the recovery of edge detail, especially in the robo-

ducky’s texture, and the checkerboards in the rightmost im-

age. Note also the artifacts near occlusions in (d), for which

further investigation is indicated.

4.3.2 Validating Calibration and Rendering

As a means of validating the arm and camera calibration,

we collected images of scenes over a range of camera ve-

locities, paired with still frames of the same. The motion

blur simulation step was then applied to the still frames,

and compared with the corresponding measured blur. This

doubles as validation of the light field rendering of motion

blur on which the proposed method relies.

The arm was set to travel between 0 and 100 mm/sec,

for an exposure time of 1/20th of a second. The scene in-

cluded two checkerboards, one a few cm from the camera,

and one about 3 m away. Examples of a blurry image, cor-

responding to an arm velocity of 75 mm/sec, and station-

ary view, are shown in Figs. 11a and 11b. The still frame

was passed to the motion blur simulation, producing the re-

sult shown in Fig. 11c. Visually, this is a close match to

the behaviour seen in the directly observed blur: the fore-

ground checkerboard shows similar blur levels, while the

background checkerboard remains mostly unchanged.

As confirmation of the simulated blur extent, intensity

plots of the measured blur, still frame, and simulated blur

from Fig. 11 are shown in Fig. 12 – the extent of the plot is

depicted in red in Fig. 11b. Note that the still frame shows

relatively sharp edges, while the measured and simulated

blur show virtually identical shapes. The measured blur

trace has been shifted horizontally to align with the sim-
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(a) Blurry (b) Still

(c) Simulated Blur (d) Deblurred LF-RL

(e) Deblurred 2D-RL 20 pix (f) Deblurred 2D-RL 2 pix

Figure 11. Validating calibration of the camera and arm: (a) a se-

ries of blurry images is paired with (b) still views of the same;

(c) simulating blur from the still image using the model-free light

field blur simulation confirms correct calibration of the camera and

arm, and operation of the blur process. See Fig. 12 for intensity

plots of (a-c), and Fig. 13 for plots of edge energy over a range

of camera velocities. (d-f) Depict deblurring results using the pro-

posed method and 2D-RL tuned to 20- and 2-pixel blur kernels,

respectively; These results confirm the efficacy of the proposed

method compared with 2-D methods, which do not address scene-

dependent blur.

ulated blur, because the still and blurry images were not

measured from exactly the same locations.

This step also allowed us to experimentally establish the

range of motion possible in deblurring. The camera’s ef-

fective baseline and field of view limit the available range

of simulated translation and rotation. Starting from a still

frame collected in the previous step, we simulated blur over

increasing values of translation and rotation, observing the

extents of the light field as seen in the central image. We

found maximum translations in x, y of up to 3.95 mm and in

z of up to 7.5 mm, beyond which the field of view narrowed

significantly. For rotations, we found that up to 0.06 rad in

x or y resulted in a loss of less than 20 pixels at the image

border, with larger rotations causing larger borders. Rota-

tion about z is effectively unlimited, though image edges

tend to be impacted due to the non-square aspect ratio.

We repeated the blur simulation experiment over a range

of velocities, measuring edge energy and noise / ringing

Figure 12. Intensity plot along the still, blurry and simulated blur

images shown in Fig. 11. The location of the plot is highlighted in

red in Fig. 11b. There is good agreement between the simulated

blur and measured blur, confirming correct calibration of the cam-

era and arm velocity. Quantification over a range of velocities is

shown in Fig. 13.

(a)

(b)

Figure 13. Quantifying performance of the proposed method: the

checkerboard experiment depicted in Fig. 11 was repeated over

a range of camera velocities, measuring (a) edge energy in the

checkerboard, and (b) standard deviation in the white regions ad-

jacent to the checkerboard. Blue and red traces show good agree-

ment between measured and simulated motion blur. Green traces

establish consistent improvement of the imagery using the pro-

posed method without dramatic amplification of noise or intro-

duction of ringing, while the unregularized results in orange show

a dramatic increase in noise and ringing. Note that the blur simu-

lation is limited to 79 mm/sec, explaining the decrease in perfor-

mance above that speed.
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content. Edge energy was taken over the visible area of

the closer checkerboard pattern, as the mean of the square

of the first difference in the horizontal direction. Noise en-

ergy was measured as the standard deviation over a 16×160
pixel white patch adjacent to the checkerboard. The results

are shown as red and blue traces in Fig. 13, with between

3 and 5 image repetitions of each nonzero velocity image.

Note that the edge energy in measured and simulated-blur

images match closely, while the noise level is about constant

for both. Because of the motion limits discussed above, ve-

locities beyond 79 mm/sec are not well represented in the

blur simulation, and this is reflected in the deviation in edge

energy seen above that speed.

4.3.3 Deblurring Performance

We applied the proposed algorithm, both with and without

regularization, to the checkerboard images gathered in the

blur validation experiment. An example of the output is

shown in Fig. 11d. Though not perfect, it is clear that all

elements of the scene have been treated correctly, with a

significant reduction in visible blur. A 2-D RL algorithm

was also tested, for blurs of 20 and 2 pixels, and as seen in

the bottom row of Fig. 11 this resulted in favourable results

for foreground or background elements, but not both.

Numerical results for the proposed method are shown in

the green and orange traces in Fig. 13, again with between 3

and 5 repetitions per image. The green trace corresponds to

light field RL with total variation and equiparallax regular-

ization, while the orange omits the regularization stage. Al-

though the non-regularized method has yielded more edge

energy, it has also increased the noise level – this is essen-

tially the amplification of noise and the introduction of edge

artifacts characteristic of unregularized deblurring. The reg-

ularized result, on the other hand, does not appreciably in-

crease the noise level for velocities below 80 mm/sec, but

does significantly improve edge content. This lines up well

with a qualitative assessment of the results.

5. Conclusions and Future Work

We presented a method for deblurring light fields of ar-

bitrary 3-D scenes with arbitrary camera motion. This is

the first published example, to our knowledge, of an al-

gorithm capable of dealing with 3-D geometry and 6-DOF

camera motion without requiring an explicit 3-D model of

the scene.

We introduced a novel regularization term enforcing

equal rates of apparent motion in horizontal and vertical

light field dimensions, and included a mathematical proof

that the algorithm converges to the maximum-likelihood es-

timate of the unblurred scene under Poisson noise.

A commercially available lenslet-based camera mounted

on a robot arm gave us precise control of the camera’s mo-

tion, allowing validation of the method on real-world im-

agery. Both qualitative and quantitative results over ren-

dered and real-world imagery confirmed the efficacy of the

method over a range of camera motions.

The method relies on prior, accurate knowledge of the

camera’s trajectory, and so generalization to blind deconvo-

lution is an obvious next step. The extremely low dimen-

sionality of the blur model – limited to six numbers in the

case of a constant-velocity trajectory – makes promising the

possibility of an optimization-based blind deconvolution al-

gorithm.

Validation in the presence of speculars and transparency

would be interesting. Because light field rendering deals

correctly with these elements, we expect the method to per-

form well in their presence. A detailed analysis of the regu-

larization parameters would also be useful.

Some interesting limitations arose in validating the

method, most noteworthy being undesirable patterns aris-

ing near occlusion boundaries, e.g. in Fig. 10d. It is un-

clear whether this is the result of miscalibration of the cam-

era’s velocity or optics, rendering artifacts due to the use of

quadrilinear interpolation, or whether this reflects a funda-

mental limitation of the method.

Finally, a promising line of work could combine the

methods explored here with other ideas from computational

imaging, in particular modulated exposure regimes like flut-

ter shutter [15].
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