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Abstract

Specular highlights provide information about the shape

of an object. Its characteristics are mostly unwanted in

computer vision due to violation of the Lambertian assump-

tion, which most algorithms require. Instead of neglecting

this ubiquitous phenomenon we harvest it to extract surface

normals with very high accuracy. Compared to photomet-

ric stereo our method works with multiple views and a fixed

light source. We only require a low number of observation

from a small part of the specular lobe to reconstruct the

normal and reflection parameters.

This is achieved by jointly optimizing the normal and the

light transport of surfaces points. This work is a proof of

concept to demonstrate the feasibility of acquiring highly

accurate surface normals from specular reflection, which

can be combined with conventional methods. The model is

tested and evaluated on synthetic as well as real world data

acquired by a cross light field setup.

1. Introduction

Conventional approaches of 3D reconstruction often as-

sume Lambertian surfaces. This means that the intensities

observed from different viewing directions remain constant.

If specular highlights occur, they are only visible for a small

fraction of viewing angles. However, at these angles the ob-

ject geometry cannot be fully recovered with conventional

methods. Instead of disregarding these areas we want to in-

corporate the additional information provided by specular

highlights.

In light-field recordings the surface orientation and

material properties are encoded in the intensity distribu-

tion of the reflected light. The bi-directional reflectance

distribution function (BRDF) describes the material spe-

cific characteristics of light absorption and distribution

dependent on the ingoing and outgoing light. It can be

approximated by mathematical models, with varying

complexity depending on the specific use case.

Figure 1: a) Original center view image. b) Color coded

ground truth surface normals. c) Reconstructed surface nor-

mals. White areas were omitted, since there was not enough

signal to calculate reliable estimates. d) Angular error in de-

gree.

We propose a novel alternating non-linear optimization

scheme to infer BRDF parameters and surface normals at

the same time. Only local data is used and we make no

further assumptions about neighboring regions.

We developed the an algorithm for normal and BRDF

parameter extraction which exploits densely sampled light

fields. We recover surface normals with high accuracy in

areas where we have specular highlights. Our results are

achieved by using a light field cross setup (see Figure 2), but

are not limited to these. Besides spacial information, light

fields also provide angular information about the scene,

which is needed for the BRDF determination. In addition
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they handle occlusions particularly well [6]. We explic-

itly handle occlusions which could otherwise corrupt our

model.

2. Related Work

The first methods treating specularities in computer vi-

sion were concerned with the detection of specular high-

lights and the resulting exclusion of the detected areas [2, 7,

12]. To determine surface normals, it is common to use pho-

tometric stereo based methods, where objects are acquired

from the same position under changing light conditions. A

special case of this approach is shape from shading. Here

a single image is used to determine the surface normal for

known surface parameters.

Photometric stereo, first proposed by Woodham [23],

uses the information that the intensity varies with the angle

between the surface normal and the direction of the incom-

ing light. Using enough measurements with different light

positions, the surface normal can be constrained to a unique

solution. Other work also includes specular highlights in

their photometric stereo approaches [9, 14].

Early examinations of the information in specular high-

lights available for a moving observer with a static light

source were conducted by Zisserman et al. [24]. They con-

cluded that the information contained in the specular high-

light by two or more images is sufficient to solve the con-

vex/concave ambiguity, but could not further constrain the

curve generated by the moving observer on the surface. Ra-

mamoorthi and Hanrahan [17] describe the reflected light

fields as a convolution of the BRDF and the lighting and

the process of recovering the scene geometry as deconvo-

lution. Jin et al. [11] proposed another approach which

utilizes a rank based cost function in a multi-view stereo

setting. Other multi-view methods exploit multiple orienta-

tions in epipolar images, or similar features [4, 22, 5, 19].

Similar to our proposed method is the work of Adato et

al. [1] but it is restricted to mirror like surfaces. They use

the apparent displacement of the surface highlight in a an

optical flow frame work. Nair et al. [15] incorporate reflec-

tions and material properties in their stereo framework, but

they do not actually handle lighting. Instead they attribute

all shading effects to the diffuse color.

Oxholm et al. use a multi-view setup to infer geome-

try and reflectance properties by means of a probabilistic

model[16]. In contrast to our method the need a full illumi-

nation model, whereas our method only needs the position

of the strongest light source, which can be inferred by many

different methods.

Jachnik et al. use SLAM based methods to recover the

specular and diffuse components of surfaces to apply aug-

mented reality[10]. However they assume planar surfaces

and do not provide surface normal accuracies.

Wang et al. proposed a BRDF invariant theory to re-

Figure 2: Cross light field setup.

cover shape from light fields[20]. Their method generates

depth and surface normals from input images, but relies on

quadratic shape priors and smoothness constraints in neigh-

boring regions.

Methods similar to ours, also use reshifting to avoid

the correspondence search for better depth estimates.[18]

However, their approach only works on dielectric materials,

since they can not handle light color changes caused by the

material.

3. Overview

To infer surface normals in 3D space one must sample

viewpoints in two linearly independent directions. The in-

tensity variation along one viewing direction constrains the

surface normal in one dimension. Therefore, we use an or-

thogonal second direction, which is given by a cross-shaped

camera array, to constrain the surface normal in two dimen-

sions. A possible setup can be seen in Figure 2. In our

approach we use the intensity distribution as observed from

both acquisition directions. The resulting intensity distribu-

tions for each surface point obtained by the light-field acqui-

sition has sufficient information to achieve high-accuracy

surface normals and determine BRDF parameters.

We can picture the different intensity distributions as cuts

through the 3D specular lobe. This means that we can still

deliver estimates, even if only a part of the specular lobe is

visible.

The processing pipeline is depicted in Figure 3. As input

the method requires the calibrated camera and light source

positions, as well as approximate disparity estimates. To

calculate an initial disparity map we use the structure tensor

method proposed by Wanner et al. [21].

Thus, we define light fields by using the Lumigraph no-
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Figure 3: Process of simultaneously estimating surface normals and BRDF parameters.

tation [8, 13]. The Lumigraph is defined using two parallel

planes Π and Ω. The first plane Ω denotes image coordi-

nates (x, y) ∈ Ω. The second plane Π contains the focal

points (s, t) ∈ Π of all cameras. In our special case for

a cross shaped light field we sample along s and t inde-

pendently, so we substitute both directions by k ∈ s, t for

simplicity.

L : Ω×Π → R (k, x, y) 7→ L(k, x, y). (1)

To slice out an epipolar plane image (EPI), we fix the

image dimension corresponding to the camera direction, i.e.

for the horizontal direction we fix y = y∗ and t = t∗. Thus

an EPI is defined as

Sy∗(k, x) := L(k, x, y∗). (2)

EPIs encode, besides the depth information, also the in-

tensity distribution, along each orientation line, needed to

determine material properties.

Regarding the surface points visible in the center view,

we use the disparity, to map the input intensities to an image

stack L′(k, x, y) where L′

x∗,y∗(k) represents the intensity

distribution for a single surface point as observed from dif-

ferent views (see section 4). A second stack is generated ac-

cordingly using the disparity as input data. This way, occlu-

sion maps can be computed as well, as detailed in subsec-

tion 4.1. They prevent the algorithm from mixing fore and

background information. By regarding the unoccluded in-

tensity values, we can identify surface points which exhibit

specular characteristics by measuring the intensity change

along the views, see subsection 4.2.

Finally, we optimize the BRDF parameters and the sur-

face normal independently for each pixel, for the regions

where we identified specular intensity variations, see sub-

section 5.2. Our method works on the following assump-

tions:

• We assume an approximate disparity map, in our im-

plementation we utilize the structure tensor.

• The cameras, as well as the light source is calibrated in

terms of location and camera intrinsics.

• The light transport is dominated by the single-bounce

reflection of a point light source.

• At least two independent viewing directions are

needed, e.g. by using a cross setup.

4. Preprocessing

To compute the intensity changes of object points in an

efficient manner, we need to address all pixels related to

a specific surface point. This principal is similar to the

reshifting in EPI processing as introduces by Diebold and

Goldluecke [6]. The specific shifting is given for the hori-

zontal light field by

I ′(k, x, y) = I(k, x+ d · (c− k), y), (3)

which maps all related pixels to a vertical line, which is

easy to access for further processing, see Figure 4. The

variable c corresponds to the index of the center view and

d to the disparity of the center view at (x, y). The verti-

cal viewing direction is handled analogously. It is impor-

tant to note here, that the method is especially well suited

to smooth, texture-less regions. Here, erroneous disparities

have a low impact on the accuracy of the normal estimation,

since even if intensity information from neighboring surface

points are mistakenly used, the material properties change

slowly compared to the error in the disparity. These areas

are particularly difficult for conventional methods, which

rely on structural information, such as strong image gradi-

ents. This way we can utilize even approximate disparities.

In the case of strong material changes we expect precise dis-

parity measurements of the structure tensor, and expect that

these methods complement each other particularly well.

4.1. Occlusion Handling

To get useful intensity variations from the surface points

along I ′(k), occlusions need to be treated carefully. To this

end we handle these explicitly. Due to the dense informa-

tion provided by the light field this can be done by exam-

ining the approximate disparity maps which are denoted

by d(k, x, y). The disparity maps are shifted in the same

way as image intensities to calculate occlusion boundaries.

Given

d′(k, x, y) = d(k, x+ d · (c− k)), y), (4)
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we can identify occlusions easily by looking for strong

changes along d′(k). To this end we apply a Gaussian

derivative filter g on d′(k) and threshold it depending on

the noisiness of our input disparity. Our occlusion map Γ is

then given by

a(x, y) =
∂

∂k
(g ∗ d′(k, x, y)) (5)

Γ(k, x, y) =

{

1, if a ≥ to

0, otherwise
, (6)

where to is a threshold depending on the noise ratio in the

disparity map. This way we can incorporate even multiple

occlusions in our framework.

4.2. Specular Highlight Detection

Since we can only extract reliable information from re-

gions with specular highlights, see subsection 5.1, we need

to decide for which regions of the image we should carry

out our analysis. To this end we test if the intensity vari-

ation along I ′(k) is above a certain threshold ts which is

calculated analogous to Equation 5. Then, we only apply

our algorithm at locations where our confidence mask χ is

one, see Figure 1 c), where the masked regions are white.

a(u, v) =
∑

k

∂

∂k
(g ∗ I ′(u, v, k)) (7)

χ(u, v) =

{

1, if a(u, v) ≥ to

0, otherwise
. (8)

5. Reflectance Model

The governing equation for the light transport is the ren-

der equation. It describes the amount of light emitted from

a point x on the surface in direction of the observer. In the

following we denote the directions from the surface point to

the observer with the normalized vector v and the direction

to the light source with l. Using this notation the rendering

equation in a point x is given by

L(v) = Le(v) +

∫

Ω

fr(v, l)L(l) (n · l) dl, (9)

where we integrate over all incoming light directions. The

individual terms are given in the following:

• L(v) denotes the amount of light emitted from x in the

direction of the observer v.

• Le(v) is the emission term. If Le(v) > 0 we have a

light source at x.

• The material interaction term fr(v, l) is described by

the BRDF with incoming direction l and reflecting di-

rection v.

Figure 4: a) The orientation in the horizontal EPI directly

relates to the disparity of the input image. b) Reshifting

the EPI by the extracted disparity allows to investigate the

intensity distribution by moving along the views which are

here along the y-direction. c) Similarly the disparity for all

views can be viewed in a ”disparity EPI”. d) Reshifting

it leads to a straight forward computation of occlusions by

looking at gradients in the y-direction.

• L(l) describes how much light is reaching x from the

direction l.

• The scalar product n · l denotes the shading term,

where n is the surface normal.

This equation describes the radiation on a unit sphere. To

account for the inverse-square law we need to divide by the

distance r the light has traveled to the object surface point.

Assuming that we have only one dominant light source and

no significant contributions due to multiple bounce reflec-

tion the equation simplifies to

L(v) =
L0

r2
fr(v, l) (n · l), (10)

where L0 is the amount of light coming from a single light

source.

In a calibrated cross light-field setup we know the posi-

tion of the light source and our cameras which allows solv-

ing for n by means of a nonlinear solver. The computation-

ally most expensive part comes from the BRDF. We test our

concept on the rather simple Blinn-Phong model which is

given by

fr = kd + ks(n · h)m, (11)

where h is the half-way vector between the incident light

ray and the outgoing ray to the observer. The other pa-

rameters kd, ks and m are non-physical and describe the
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reflectance of the material. The parameter ks and kd denote

the specular and diffuse term. The exponent m defines the

sharpness of the specular peak and must be positive.

5.1. Joint Estimation of Surface Normals and BRDF
Parameters

Given the visible maximum of the intensity of one sur-

face point, as observed by a linear camera array, we can con-

strain the surface normal by the plane spanned by the object

point and the different cameras. Given a second maximum

by a linearly independent camera array we tighten that con-

straint to get the complete 2D surface normal. An analytical

solution for this problem exists, but has the disadvantage,

that both highlight maxima must be visible. To circumvent

this restriction and to leverage the information contained in

the light field, we optimize the surface normals of one sur-

face point jointly with the BRDF parameters taken into ac-

count all observations. This way we can take advantage of

even slight intensity variations from the tails of the specular

highlights and do not require the observation of the specular

peak in both viewing directions. Of course some part of the

specular region must still be visible. In essence there are

three different situations, see Figure 5b:

1. Along both viewing directions no intensity changes

are visible. Thus, we cannot estimate the surface nor-

mal because we only see the diffuse part of our sur-

face point. Since we have no specularities, while our

method can not compute normals in this case. How-

ever, conventional methods can be applied in these

cases without problems.

2. One viewing direction exhibits some intensity varia-

tion. We can say that the surface normal must be on

one curve constraint by our model and can exclude all

normals which would lead to an intensity variation in

the second viewing direction. So basically, the wider

the peak the lesser the surface normal error.

3. Both viewing directions exhibit some intensity varia-

tion. In theory, the surface normal is uniquely identifi-

able.

5.2. Initialization and Optimization

It is very important to choose a reasonable initial guess

to ensure convergence to the global optimum. We initialize

the surface normals by the half-way vector between the light

source and the central camera. If the surface normal coin-

cides with the half-way vector we have the largest possible

BRDF peak, compare Figure 5b. The BRDF parameter kd
and ks are initialized to match very roughly the given inten-

sity distribution by calculating

ks = max(I ′(k)), (12)

kd = min(I ′(k)). (13)

To avoid ambiguous solutions we remove the common

constraint of ks + kd ≤ 1 and set the amount of incoming

light L0 as well as the fall of term r−2 equal to one. So

the outgoing light will be completely determined by ks and

kd. For each pixel we have as many measurements yi as

viewpoints k. Thus, we minimize

argmin
n,kd,ks,m

∑

i

‖yi − Li(v)‖ , (14)

where i is the index variable for each view, where we have

no occlusion with respect to the center view. To ease the

solving procedure the surface normal is parametrized in

spherical coordinates θ and φ. We first keep the BRDF pa-

rameter constant and vary only the surface normals. In a

second step we vary the BRDF parameters and the surface

normal jointly. This way we force the solver to explain a

constant intensity distribution by moving the surface nor-

mal in contrast to simply reducing ks. This uses informa-

tion where we have no intensity variation and can exclude

a range of surface normals which otherwise would create a

visible highlight.

6. Experiments

Synthetic Evaluation For the evaluation of our algorithm

we used rendered images obtained with Blender [3]. Our

cross array consists of 101 cameras in horizontal as well as

in vertical direction. In Figure 7 we show how the angular

error decreases with the number of views. To evaluate the

error in the BRDF we use the following metric to quantify

a relative error:

e =
∑

i

√

(

pi,real − pi,est

pi,real

)2

, (15)

where pi stands for the i-th BRDF parameter.

The evaluation of the synthetic data shows that many

surface normals have an angular error of less than 1◦ and

almost all areas have an angular error of less than 5◦ (Fig-

ure 1). Surface normals where the intensity variation is not

above a certain threshold, were not calculated.

In Figure 8 we used a constant disparity for each view to

simulate unknown depth. We keep the disparity map con-

stant at roughly the average distance of the bunny. Thus, we

have a greater impact on the accuracy in the background,

where the relative disparity error is larger. Despite the in-

troduced inaccuracies the angular error is rather small (still

around 1◦) for regions with strong specular highlights. Due

to the constant disparity, we could not create a sensible

specular mask, so we omitted the mask completely for the

inaccurate case.

Evaluation on Real World Objects To examine the fea-

sibility of our concept for real world data we used a strongly

26



(a) Center view of the Stanford Bunny. The markers indicate the

positions of the corresponding intensity distributions depicted in

Figure 5b. The red marker identifies a region with Lambertion

reflection, the purple one with specular components only in the

vertical direction and in the last one both intensity maxima are

clearly visible.
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(b) Intensity distribution for different surface normals. Red corre-

sponds to the horizontal camera array and blue to the vertical. The

dashed lines indicates the model initialization, and the solid line

the recovered model. From top to bottom: No intensity variation

visible – the Lambertian case (marked red in Figure 5a). Variation

along the vertical direction visible (purple). Both peaks visible

(blue). The corresponding angular errors for the normal recon-

struction at these points are 54.6
◦, 4.2◦ and 0.5

◦.

Figure 5: Overview of different intensity distributions.
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Figure 6: Analysis of the angular error and the relative error

in the BRDF parameters, dependent on the angle error of the

light direction. We rotated the light direction around the x

and the y-axis up to 90◦. We took 10 different samples and

took the median for each different light orientation.

specular coin (see Figure 10). To capture the data we use a

gantry with two orthogonal axes to capture images in cross

setup. We used 101 images for the horizontal as well as

vertical axis. The surface normals reveal slight scratches.

The intensity distribution together with the fit shows, that

the Blinn-Phong model is not well suited to fully explain

the observed intensities.

7. Conclusion

Specular highlights still pose a great challenge in com-

puter vision and most available approaches ignore the addi-

tional information they can provide. This is mostly due to

the inherent ambiguity of light source, BRDF and shading

terms which influence the light transport and are difficult to

separate.

Our method tackles the separation between diffuse and

specular shading, while at the same time extracting surface

normals to explain the observed images. We achieve ex-

tremely accurate surface normals using only a small angular

range, without the need to directly observe intensity max-

ima.

Our optimization scheme implicitly utilizes the infor-

mation of regions where no specular intensity variation is

present. This is achieved by constraining the normals to

those ranges which cause the specular highlight to fall out-

side of the observed view range.
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Figure 7: Analysis of the angular error, dependent on the

number of views. The precisions increases remarkably up

to 30 views. With more than 150 views discretization errors

play a significant role and we can’t increase the precision

anymore.

Figure 8: Comparison of angular errors for the reconstruc-

tion with correct disparity maps (left) and with a constant

disparity roughly in the plane of the bunny.

8. Outlook

So far our method only makes use of local information.

Introducing smoothness constraints should improve the es-

timates. Towards this end, it would be reasonable to in-

tegrate this BRDF based normal estimation method with a

conventional depth estimation technique, within a unified

framework which jointly optimizes depth, BRDF parame-

ters and surface normals.

We make use of the Blinn-Phong model, but more

complicated visual phenomena, such as the Fresnel effect,

or anisotropic reflecting materials call for more complex,

physically accurate models.

For simplicity we have focused on linear light fields,

however this method is applicable to any at least two-

dimensional distribution of viewpoints. This means that

the framework can be used in a wide range of applications
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Figure 9: Comparison of angular and BRDF error im-

provements for the reconstruction with increasing amount

of noise on the intensity values. Since the optimization may

get stuck to a local minimum more easily in the presence of

noise, we use the improvement yielded by the optimization

with respect to the initialization as metric. The improve-

ment is calculated by p = vinit

vopt
, where v stands for the angu-

lar error or the BRDF error accordingly.

Figure 10: a) Original center view image. b) Color coded

surface normals. White areas were omitted by our specu-

lar detection routine. c) Intensity curves for the horizontal

and vertical view. The straight lines indicate the estimated

model and the dashed line the initialization.

to improve the geometry reconstruction in the presence of

specular reflections.
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