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Abstract

The plenoptic function, also known as the light field or

the lumigraph, contains the information about the radiance

of all optical rays that go through all points in space in

a scene. Since no camera can capture all this information,

one of the main challenges in plenoptic imaging is light field

reconstruction, which consists in interpolating the ray sam-

ples captured by the cameras to create a dense light field.

Most existing methods perform this task by first attempting

some kind of 3D reconstruction of the visible scene. Our

method, in contrast, works by modeling the scene as a set of

visual points, which describe how each point moves in the

image when a camera moves. We compute visual point mod-

els of various degrees of complexity, and show that high-

dimensional models are able to replicate complex optical

effects such as reflection or refraction, and a model selec-

tion method can differentiate quasi-Lambertian from non-

Lambertian areas in the scene.

1. Introduction

The light field has received much interest during the past

decades, not only in the academic field, but also among con-

sumers thanks to the availability of commercial plenoptic

cameras such as Lytro and Raytrix. The concept was in-

troduced from the study of the 5D plenoptic function [1],

that returns the radiance along any ray going through any

3D point in the scene. If the region where the light field is

measured contains no object, the radiance is the same for all

points that lie on the same ray, so that the light field only has

4 dimensions. The optical device used to measure the light

field (usually a plenoptic camera, or a set of standard cam-

eras) samples the 4D ray space, just as a traditional camera

samples the 2D space of rays going through a 3D single

point. Reconstructing the light field consists in recovering

the missing parts of the light field given the measured sam-

ples. In this work, we propose better local representation of

the light field, which leads to a better reconstruction. The

reconstructed light field can then be used to synthesize a

novel view, as seen by a virtual camera that was not used to

produce the initial ray samples.

Light field reconstruction is usually done by taking ad-

vantage of the epipolar constraint to estimate dense dispar-

ity maps [24]. This depth information is then jointly pro-

cessed with source images to create a novel view [21, 17].

However, the epipolar constraint and the fact that a light

ray may correspond to a given depth are based on strong as-

sumptions made on the scene itself, which should be formed

of solid shapes with an almost Lambertian reflectance. Real

scenes may contain specular reflections, semi-transparent

medium, refraction, or even inhomogeneous refractive in-

dex (as in mirages). If the original sampling of the 4D light

field is dense enough, as happens in dense camera arrays or

in so-called plenoptic cameras, the Lambertian assumption

may be sufficient to locally describe the light field, and to

approximate it in a small neighborhood of the original rays.

However, as the light ray samples become more sparse, or

if the novel view contains rays that lie outside of the 4D

region of the ray space containing samples, any deviation

of the real scene from the Lambertian assumption may be

amplified and cause visual artifacts or non-realistic novel

views.

We observe that deviations from the Lambertian assump-

tion are mainly of two kinds. Some points belong to a solid

shape but have a non-diffuse or anisotropic reflectance.

These points belong to a surface, which may even be tex-

tured, and have a given depth, and the optical rays spanned

by these points follow the rules of perspective projection

and epipolar geometry: only their radiance deviates from
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(a) (b) (c)
Figure 1. Geometric distortions of the light field. A visual point X, corresponding to a scene point, as seen by three cameras as three rays

p1, p2 and p3. (a) No distortion: all rays belong to a single pencil of lines and intersect at the 3D point. (b) Refraction by a change of

optical medium bends the light rays. Rays do not necessarily intersect and triangulation fails to locate the point in space. (c) Likewise,

mirror surfaces distort the rays, which may not intersect at a single 3D point.

the Lambertian assumption. Other non-Lambertian points

in the images may correspond to complex optical paths,

where the optical rays are affected by a series of reflec-

tions (or specular reflections), refractions (as when the rays

switch between mediums of different refractive index, such

as air, water and glass), or continuous variations of the re-

fractive index. Although in some specific cases the reflec-

tion or refraction surfaces, and even the 3D points may be

reconstructed [4], the general problem has too many un-

knowns since each optical ray may encounter many differ-

ent material transitions. The common characteristic of this

second kind of points is that they do not follow the common

rules of perspective projection or parallax: when the eye or

the camera moves to the left, an image point may move to

the right (which is the expected behaviour), but may also

move to the left, up or down, thus violating the epipolar

constraints.

Based on these observations, we propose to focus on the

reconstruction of the 4D light field itself, rather than on try-

ing to explain the observed light field by reconstructing 3D

surfaces and materials in the scene. When a 3D point that

lies on a Lambertian surface is observed in the images, and

if we suppose that there are no occlusions, the set of all op-

tical rays that go through this 3D point, which form a pencil

of lines, have the same radiance. The image of this point

in any camera is given either by projecting the 3D point in

the camera, or by taking the ray from the pencil of lines that

goes through the camera optical center. Let us now suppose

that the scene is static, and we observe a point in a camera

that has a more complex behaviour due to reflections or re-

fractions: its apparent motion in the image when the point

of view changes slightly may not be consistent with paral-

lax or epipolar geometry. We call it a visual point, and it

consists of a two-dimensional set of rays, called a line con-

gruence [18], which is more general than the pencil of lines:

for a given camera optical center, the image(s) of this visual

point corresponds to the element(s) of the line congruence

that goes through the optical center. There is usually only

one image, but there may be several, if there are several

possible optical paths between the source and the optical

center.

In this work, we propose to extract several rays corre-

sponding to the same visual point by matching images (us-

ing optical flow), and then to fit simple linear line congru-

ences to these visual points, corresponding to various levels

of complexity. In our model, the radiance can also be a

linear function of the ray parameters, thus modeling varia-

tions both in position and photometry. This can then be used

to reconstruct missing rays in the light field, for example

to compute all rays that go through a given camera optical

center and render a novel view. To validate our approach,

we perform experiments with sparse challenging light field

datasets where we render novel views and compare with

reference images. We also discriminate between several

plenoptic models thanks to both qualitative and quantitative

results.

Our main contributions are: a novel sampling technique

and parametrization of the plenoptic space; an optimiza-

tion process to fit complex models to the sampled plenop-

tic space, allowing more accurate reconstruction of spec-

ularities, transparencies and refractions; a new continuous

rendering technique that satisfies most desirable proper-

ties an ideal image-based rendering (IBR) algorithm should

have [5].
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2. Related Work

Light Field Reconstruction The light field (also called

the lumigraph) was initially used as an intermediate repre-

sentation of the 4D radiance signal, which then could be

processed to produce effects such as novel view synthesis,

refocusing, matting, etc. [14, 9]. When sampling the 4D

light field, there is a trade-off between angular and spa-

tial resolution [6], which can be compensated by interpo-

lation [8]. One way to interpolate the sparse samples in the

4D light field is to use a geometric proxy, which is a more

or less precise reconstruction of the 3D scene, but comput-

ing a precise 3D reconstruction may turn out to be expen-

sive [11, 12, 24], and this usually relies on the assumption

that the scene is Lambertian, i.e. the radiance of a 3D sur-

face point does not depend on the viewpoint. In this paper

we do not explicitly reconstruct the scene geometry, since

we only use pairwise ray matches between views, as given

by optical flow, which may not correspond to the projec-

tions of an actual 3D point. Our goal is to handle generic

scenes by using a more general model of the 4D plenoptic

function [1].

Reconstructing reflective and specular scenes Interpo-

lating the “flowed light field” as a way to render any view-

point of the captured scene was experimented in [7]. How-

ever, they did not try to model the visual points of the scene,

and only perform bilinear interpolation of the optical flow

to synthesize a new view. In a computer graphics perspec-

tive, Zhou et al. [29, 28] model the non-Lambertian reflec-

tions by a Phong BRDF model. Tuning the Phong expo-

nent allows them to model different types of shining sur-

faces (Lambertian, duller and specular) thus reducing the

sampling rate of the light field required for novel view syn-

thesis. Sulc et al. [23] separate the diffuse component from

the specular component, which is estimated from the spec-

ular flow. It requires a precomputed disparity map based on

the first order structure tensor [24]. Like other previously

cited methods, it does not handle refractive surfaces.

Reconstructing refractive and transparent scenes In

the context of light field, several papers already provide so-

lutions to deal with transparent, translucent, or refractive

surfaces, and sometimes even reconstruct them explicitly.

Wetzstein et al. [25] suggest the use of a single camera with

a lenslet array, and a lightbox is used in a way similar to

photometric stereo, using varying colored light sources to

encode spatial and angular domains. Iffa et al. [13] propose

to split the optical flow into parallax flow and refractive flow

(due to light deflection) with a single plenoptic camera shot.

They solve a classic optical flow problem for every pair of

computed flow at once, using a system of linear equations

with a divergence-curl regularizer well known in the fluid

flow tracking literature. A drawback is that it requires a

highly textured background (which is not required by our

method). Maeno et al. [15] introduced light field distor-

tion features to describe and recognize an object composed

of a refractive surface and a textured background, using a

commercial plenoptic camera. Alterman et al. [3] use large

displacement optical flow between two views to deal with

refractions only. Like us, they propose a multi-view trian-

gulation approach, although they only model Lambertian

points seen through refractive media.

Summary Existing light field reconstruction methods

have three main drawbacks. First, most methods are lim-

ited by the camera and scene setup (plenoptic cameras, light

boxes, highly textured background). Apart from plenop-

tic cameras, other designs include camera arrays [26],

which enabled the constitution of the Stanford Light Field

Archive. Although we use these datasets in our experi-

ments, our method can be applied to data captured by any

plenoptic camera or by any set of cameras arranged in a

generic configuration. Second, their goal is often an explicit

representation of the scene geometry, which permits a better

interpolation of the light field, but should not be necessary.

In fact, an error on the scene reconstruction may have a dra-

matic impact on the light field reconstruction. Our method

works directly on light field interpolation, without an ex-

plicit scene reconstruction. Third, only one issue is tackled

at a time: either they try to separate the diffuse component

from the specular one, or they deal with refractive surfaces.

But both problems are never addressed simultaneously. Our

method works by modeling any peculiar light behaviour,

which we locally deal with by a better approximation of

the light flow.

3. Overview

Our method is composed of several key steps. We first

compute the optical flow between pairs of adjacent views

to create a set of color and position samples attached to a

single visual point, which we call the light flow. Each sam-

ple in this set is a ray defined by the 4 parameters giving its

orientation in space (section 4) and its radiance. When the

capture device is a set of cameras, each ray passes through

the optical center of the camera that sees it, and the radiance

is taken from its pixel color value.

Then, we fit a line congruence model to each sample set

(section 5), which aims to explain the motion of the visual

point in the 4D light field parametrization. The 3-parameter

model corresponds to all rays passing through a single 3D

point, and we also devise linear congruence models with

4 or 6 parameters, in order to predict phenomena such as

refraction, reflection, or optical index variations. A model

selection method handles the trade-off between the com-
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plexity of the model (in term of number of parameters) and

the error residual, in order to avoid data over-fitting.

Finally we synthesize a novel view by interpolating the

projection of the visual points in the new camera sensor

plane (section 6). For each visual point, its position in

the target image is found by intersecting the line congru-

ence model with the optical center of the target camera.

The scene is rendered by accumulating colors of every vi-

sual point, a technique known as splatting in the computer

graphics literature. The color to splat is estimated by fitting

a linear model to the color samples of the visual point.

4. Plenoptic Sampling and Parametrization

The plenoptic space is the space of light rays that pass

through a scene, through any point and in any direction. We

assume that in the region of space where we want to recon-

struct the light field, the radiance along a ray is constant.

As in [14], we use the 4D light field parametrization of rays

called light slab, where the coordinates (u, v, s, t) are ob-

tained by intersecting the 3D ray with two parallel 3D ref-

erence planes, where (u, v) and (s, t) are the coordinates

of these intersections within each plane. Let us note I the

radiance of this ray, represented by 3 more coordinates, cor-

responding to its RGB color components. Each ray is thus

described by 7 coordinates.

Let us consider a 3D point in space. The set of rays that

emanate from this this point is a 2-dimensional set of lines,

called a line congruence. Since all lines go through the same

point, this congruence is reduced to a 2D pencil of lines.

In most cases, the optical paths between this 3D point

and the region where we want to reconstruct the light field

is free of occluders and is of homogeneous optical index.

In this case, the pencil of lines is not modified by the op-

tical medium (figure 1a). However, if there are refractions,

reflections, or variations of the optical index, the pencil of

lines is distorted into a more generic line congruence (fig-

ures 1b, 1c). Such a line congruence, noted P , describes

the 2D set of rays in the plenoptic space that corresponds

to what we call a visual point. The 7-dimensional coordi-

nates of rays that belong to the same line congruence are

strongly correlated. For instance rays corresponding to a

Lambertian 3D point seen through free space (figure 1a)

have a constant radiance, and coordinates (u, v, s, t) span

a plane in 4D parametrized by the Cartesian coordinates of

the 3D point. The line congruence is fully represented by

a point in a 3D space and its radiance (i.e. 3+3 parame-

ters). More complex line congruence models described by

a higher number of parameters may describe more compli-

cated optics [19], and in this paper we restrict ourselves to

linear models presented in section 5, which can be used to

describe faithfully the local geometry of these line congru-

ences.

Figure 2. Propagation of geometric uncertainty from the image

plane of the camera to the 2-plane parametrization. Σxx is the

original matching uncertainty in the image plane. Σss and Σuu

are the variances of the marginal distributions of s and u respec-

tively.

Sampling A camera image contains sample rays that go

through the image plane and the optical center of the cam-

era. Usually, in the line congruence that corresponds to a

visual point, only one ray meets the optical center of a cam-

era, so that several cameras are required to get several sam-

ple rays from the same visual point.

Let us consider a ray in a reference image. The corre-

sponding rays in the other images can be obtained from the

optical flow, but any other point matching method that is

not constrained by the epipolar geometry can be used (non-

Lambertian points do not respect the epipolar constraint).

The optical flow is only computed between neighbors in the

camera setup (see Figure 7), so that we can assume that the

appearance between the two views is not too different. A vi-

sual point is thus represented by the list of its position and

radiance in images where it is visible. Considering that op-

tical flow is dense, we have as many vectors or sample set as

pixels in source images. Each image point is then converted

to a 4D light slab as explained below.

Ray parametrization Given a source camera described

by its optical center C, its rotation R, and its matrix of in-

trinsic parameters K, the 4D light slab representation of an

image point x is obtained by intersecting the 3D ray go-

ing through x and C = (Cx, Cy, Cz) with the two parallel

planes. Without loss of generality, we can assume the two

planes are of equation z = 0 and z = 1. Let s = (s, t)
be the intersection with the plane of equation z = 0 and

u = (u, v) be the intersection with the plane of equation

z = 1. The direction vector of the ray r = (rx, ry, rz) can

be obtained as

r = R⊺K−1

(

x

1

)

, (1)
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and the light slab coordinates are

s = Cx − Cz

rx
rz

, t = Cy − Cz

ry
rz

, (2)

u = Cx + (1− Cz).
rx
rz

, v = Cy + (1− Cz).
ry
rz

. (3)

Uncertainty of measurements In the classic triangula-

tion problem, the 3D point model is fitted to the data (image

points) by minimising the reprojection error. The errors are

usually considered to be Gaussian and isotropic in each im-

age plane with an identical variance. In our case, we need

to fit a line congruence model to a set of rays parametrized

by (s, t, u, v), given the matching error, which is also mea-

sured in the images. Therefore we need to express the co-

variances of the intersections with the two planes (s, t) and

(u, v). This covariance is derived by propagating the uncer-

tainty from the image point to the planes. The covariance

of (u, v, s, t) is noted Σu,s. The covariance matrices of the

marginal errors on s and u are noted Σss and Σuu respec-

tively. The Jacobian matrices of the parametrization are

∂u

∂x
= (1− Cz).Jr,

∂s

∂x
= −CzJr, (4)

with Jr = ∂r
∂x

= 1

rz
(I2| − r)R⊺K−1(I2|02)

⊺. We note

S = JrΣxxJ
⊺

r
the uncertainty on the direction vector of

the ray. The covariance matrix Σxx represents the match-

ing uncertainty of the optical flow. Although we used a fixed

point matching uncertainty in our experiments, most opti-

cal flow method also output a quality image that could be

used to modulate this uncertainty (which may be for exam-

ple larger in texture-less areas).

It should be observed that the matching uncertainty

grows when a match between two rays is computed from

chained optical flows. Assuming that this error is normally

distributed, the covariance matrices of the flows add up, and

the covariance of the chained flow is proportional to the

number of flows: Σxx for direct matches, 2Σxx for matches

computed using a chain of two optical flow matches, etc. In

our setup, since we compute optical flow from neighbor-

ing views only, views that are distant from the reference

view have a larger matching error, and contribute less to the

model than closer views (Figure 7).

Finally, we obtain the covariance matrices of the

marginal errors

Σuu = (Cz − 1)2S, (5)

Σus = Σsu = (Cz − 1)CzS, (6)

Σss = C2

zS (7)

and the covariance matrix of the joint distribution.

Σu,s =

(

Σuu Σus

Σsu Σss

)

. (8)

Figure 3. A linear geometric model of the pencil of rays P is fitted

to the data. Sample rays of three views are noted p1, p2 and p3.

The associated covariances of the joint geometric distribution are

noted Σu,s,1, Σu,s,2 and Σu,s,3. They weight the contribution of

each view in the optimization process.

Σu,s is a real symmetric matrix of rank 2, and the associated

2-dimensional linear subspace spans the set of rays that go

through the optical center of the source camera. Thus, Σu,s

represents an error on a point that lies on a 2D plane in the

4D light field space.

The uncertainty of the radiance measurement is derived

from the matching uncertainty of the optical flow. The co-

variance matrix of the radiance error has the expression

ΣI,s =

(

ΣII ΣIs

ΣsI Σss

)

, (9)

where the covariance matrices of the marginal errors are

ΣII = ∇IΣxx∇I⊺ (10)

ΣIs = −Cz∇IΣxxJr
⊺ (11)

ΣsI = −CzJrΣxx∇I⊺ (12)

Σss = C2

zJrΣxxJr
⊺. (13)

5. Plenoptic Space Modeling

Given the 4D data we obtain thanks to the optical flow

and the parametrization previously detailed, we are able to

fit a geometric model. We first detail the simple model of

the line congruence corresponding to a 3D point X, which

is a pencil of lines. Then we derive linear geometric models

of line congruences with more than 3 parameters.

Geometric model Let P be the pencil of lines that pass

through X = (x, y, z). For every line q = (u, v, s, t) pass-

ing through X we have

q ∈ P ⇐⇒

{

u = αs+ βu

v = αt+ βv

, (14)

with

α =
z − 1

z
, βu =

x

z
and βv =

y

z
. (15)
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We find an estimation of X by solving the linear system

above for α, βu and βv , which is equivalent to the classic

triangulation of a point. The number of parameters defines

the dimensionality of the visual point. We name this model

3g, refering to the 3 geometric parameters that define it.

We can easily extend this model to line congruences that

follow a linear equation, as in eq. (14), but may not pass

through a point in the 3D space. In a more generic way we

can write:

q ∈ P ⇐⇒ u = As+ b. (16)

In the previous case where all rays intersect in a 3D point

in space, A = αI22 and b = (βu, βv). We introduce two

other models, 4g:

A =

(

αu 0
0 αv

)

, b =

(

βu

βv

)

, (17)

and 6g:

A =

(

αus αut

αvs αvt

)

, b =

(

βu

βv

)

. (18)

Computing the 3, 4 or 6 geometric parameters of the line

congruence can be posed as a least square problem. We

are given a set of K 4D samples {p1, . . . ,pK} and we try

to fit a model (with 3, 4 or 6 parameters) by minimizing

the sum of squared Mahalanobis distances to the data sam-

ples, given the rank-2 covariance of the measurement error

on each data sample Σu,s. It is possible to define a Maha-

lanobis distance with this matrix only if the residual vector

lies in the subspace spanned by the eigenvectors associated

to the two non-null eigenvalues µ1 and µ2. This assump-

tion provides additional constrains on the construction of

the residual.

Expression of the residual Let p = (pu, pv, ps, pt) be a

sample ray, corresponding to a point in a camera, and let

r = (ru, rv, rs, rt) be its residual error: q = p + r ∈ P .

We recall that P is the line congruence associated with the

visual point. r is constrained to lie in the subspace spanned

by the two eigenvectors e1 and e2, associated respectively

with µ1 and µ2. Our goal is to find the parameters of the

model that minimize the squared Mahalanobis norm of r.

On one hand we have

p+ r ∈ P ⇐⇒

(

pu + ru
pv + rv

)

= A

(

ps + rs
pt + rt

)

+ b (19)

and on the other hand

r = r1e1 + r2e2. (20)

By substitution, we obtain the expression of the residual in

a basis of eigenvectors:
(

r1
r2

)

= (Eu −AEs)
−1

(

A

(

ps
pt

)

+ b

)

, (21)

with

Eu =

(

e1,u e2,u
e1,v e2,v

)

and Es =

(

e1,s e2,s
e1,t e2,t

)

. (22)

The cost function For each sample pk, k ∈ [1,K] in the

sample set, let rk be its residual and µk,1 and µk,2 the eigen-

values associated with the sample pk. The cost function, is

‖f(A,b)‖2 =

K
∑

k=1

‖fk(A,b)‖2
Dk

, (23)

where

‖fk(A,b)‖2
Dk

= r
⊺

kD
−1

k rk, with Dk =

(

µk,1 0
0 µk,2

)

.

(24)

In the case of the 3g model, it can be shown that this op-

timization is equivalent to a classic triangulation with bun-

dle adjustment. But instead of minimizing the sum of the

squared reprojection error, we minimize the sum of squared

errors of the rays. Each contribution is weighted by the in-

verse of the uncertainty propagated from the image plane

to the line slab parametrization. This formalism is very

valuable because it allows the modelling of complex visual

points, with more than 3 parameters.

Photometric model Assuming that the visual point is

Lambertian, all the rays of the visual point P have the same

color whatever their direction. It means that its radiance

I = (R,G,B) is constant with respect to s and that the

photometric model has thus 3 parameters. Let us name this

model 3p.

In the general case, the Lambertian assumption is not

necessarily verified: the radiance of the visual point de-

pends on the point of view. Similarly to the geometry of

the plenoptic space, we linearize the color I as function of

the angular displacement: I(s) = As+ I0. The number of

parameters to find is 9 (6 for the A matrix, and 3 for I0).

There are 3K scalar measurements (3 channels times the

number of views that see the point). Let us name this model

9p.

Each color sample is weighted by the inverse of the joint

distribution variance, ΣI,s, and the parameters are solved

by least squares.

Model selection Fitting a model with more parameters

generally leads to a lower fitting error, but when the number

of parameters to estimate gets close to the number of sam-

ples, there is a risk of overfitting the measurement, resulting

in a wrong interpolated motion of the visual point. Model

selection techniques are commonly used to discriminate be-

tween different models varying in fitting performance and
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Figure 4. Geometric model selection by BIC on tarot coarse

dataset. Light grey: 6g + 9p. Middle grey: 4g + 9p. Dark grey:

3g + 9p. BIC discriminates between Lambertian (tarot cards) and

refractive of specular areas (glass ball).

number of parameters. After having estimated the param-

eters of our three geometric models, we apply a Bayesian

information criterion (BIC) [22] to select the best model for

each visual point. Denoting Â and b̂ the matrix and the

vector that contain the estimated parameters, the formula of

the BIC is

BIC = ‖f(Â, b̂)‖2 + n. lnK (25)

where K is the number of samples, n the number of pa-

rameters and ‖f(Â, b̂)‖2
2

is −2 times the log-likelihood of

the estimated parameters. For each sample set we select

the model that minimizes the BIC. Figure 4 shows the re-

sult of model selection performed on the tarot dataset from

the Stanford Light Field Archive. One can notice that the

3g + 9p model is sufficient for most diffuse and opaque ar-

eas such as the tarot cards, but is supplanted by the more

complex geometric models such as 6g + 9p in refractive

areas like on the transparent ball.

6. Rendering

We demonstrate a sample application of our visual point

models by performing novel view synthesis. Given a target

view defined by known camera parameters C, R and K,

and for each visual point of the scene, our goal is to find

the position and radiance of the line from the visual point

that passes through the optical center C. The goal of novel

view synthesis is to find the color of each pixel in the novel

view. To this end, we should find, for each pixel in the tar-

get view, which visual points have a line inside this pixel,

and then mix their radiances (this is usually called backward

warping). In practice, this problem would require a lot of

computation, and we thus prefer forward warping every re-

constructed visual point by computing the line of this visual

point that passes through the camera optical center, and by

painting the pixels accordingly.

For each visual point P , modeled by a linear line con-

gruence, we find the corresponding light ray captured by

the target view as the intersection of the line congruence

Figure 5. Light flow rendering. The black line is the set of rays that

pass through the target camera optical center C, P1 and P2 are

two visual points models. The blue lines represent the linearized

geometric relationship between u and s, the red lines represent

the photometric relationship between I and s. Interpolated rays

(which correspond to points in the camera) are the intersections p1
and p2, and their interpolated radiances are I1 and I2.

(which is a plane in the 4D light field) with the pencil of

lines that corresponds to the camera (see figure 5). For ex-

ample the intersection between the 6g visual point repre-

sented by (αu,, αut, αvs, αvt, βcu, βcv) and the camera with

optical center C = (Cx, Cy, Cz) has s-coordinates

s =

(

αus − αc αut

αvs αvt − αc

)

−1 (

βcu − βu

βcv − βv

)

(26)

with

αc =
Cz − 1

Cz

, βcu =
Cx

Cz

, βcv =
Cy

Cz

. (27)

The u-coordinates can then be computed from either the

linear visual point model or the camera optical center. It is

now easy to derive the associated image point, by projecting

the point (s t) on the camera sensor plane:

x = KR









s
t
0



−C



 . (28)

Likewise we find the color of the ray by substituting of the

s-coordinates in the estimated photometric model (see fig-

ure 5).

Note that some of these points can fall outside of the field

of view of the target, since not all visual points may be vis-

ible in a given view. Once the destination image point is

computed, we splat the color of the visual point onto the

surrounding pixels. Splatting is a well-known technique

of point-based rendering [10] that consists in accumulating

rendered 3D flat primitives (usually disks or ellipsoids) cen-

tered on the 3D point and oriented by a reconstructed nor-

mal. Because we do not have any information about the nor-

mals and rendering elliptical splats usually blurs the image,

we instead accumulate uniform squared splats with bilinear

contributions to neighboring pixels.
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Splatting is normally done in three passes: visibility

computation, blending and normalization. We skip the first

one since computing a z-buffer only makes sense when

depth is defined. Only the 3g model contains information

about depth (z = 1/(1− α)), but even this perceived depth

may be an illusion (as in the “floating coin illusion” which

uses a parabolic mirror). Thus we blend all the visual point

projections in the target view, accumulating RGB color and

contributions in an alpha channel. Finally, we normalize the

image by dividing by the alpha channel.

Epipole consistency As mentioned in [5], a ray that

passes through the center of projection of a source camera

“should be trivially reconstructed from the ray database”.

Our rendering algorithm does not exactly fulfill this prop-

erty since the rays forming the visual point do not necessar-

ily belong to the original sample set, i.e. the model does not

exactly fit the data. It would be the case if the fitted model

passed through all the 4D sample points. However, the opti-

mization makes sure that the estimated model is as close as

possible to the sample set by minimizing the Mahalanobis

distance.

Minimal angular deviation An IBR algorithm should

ensure that input views that are close to the target view

should contribute more to the rendered color. Angular de-

viation is a usual measure of ”closeness”. Such a prop-

erty is fulfilled by our algorithm thanks to the fact that we

model the radiance as a linear function of the angular coor-

dinates (s, t). Since a ray that is close to another in angle is

also close with respect to the (s, t) coordinates, its radiance

should be similar.

Resolution sensitivity The color of the visual point can

be interpolated from the input color samples as most IBR

direct approaches do: a weighted average of the source im-

ages. Each weight depends on the capability of the source

view to gather information about the scene. In other terms,

a source view contributes more to the final color if it is close

to the observed visual point, or has a high focal length. This

role is played by the covariance ΣI,s that weights the source

views when fitting the photometric model. The farther the

camera is, or the lower its resolution, the bigger the uncer-

tainty will be. It can be seen as a cone of uncertainty pro-

jected on the plane z = 0. As a consequence, a ray with

a large covariance matrix will contribute less to the model

fitting. Conversely, a camera that is close to the scene or

has a long focal length measures precisely the visual point

which leads to a small covariance.

Continuity This rendering method assures the continuity

with respect to the change of viewpoint. When we move

Figure 6. PUSH/PULL hole filling. Holes are caused by optical

flow dilatation, self-occlusion or very far extrapolation. A very

distant view has been synthesized in this example to highlight

these holes and how the inpainting algorithm fills them.

continuously the target viewpoint, the camera plane moves

continuously in the 4D space, and since the position and

radiance of visual points is computed by intersecting planes

in 4D, the position and radiance also move continuously,

which is also a “desirable” property of IBR [5].

Hole Filling Due to the use of forward warping, areas in

the final image may end up with no radiance information,

resulting in holes (see figure 6). Any hole filling or inpaint-

ing algorithm which is continuous with respect to the in-

put image may be used to solve this problem. We used the

push-pull inpainting algorithm as it was introduced in [9].

It is equivalent to performing isotropic diffusion in the areas

to fill.

7. Experiments

Our method aims to be as generic as possible, and is thus

not limited to a specific camera type or configuration. We

did our experiments on images from a dataset captured with

a camera array [27], and used the original non-rectified im-

ages from this dataset.

We started with a multiview camera calibration made us-

ing openMVG [16], which computes camera extrinsic and

intrinsic parameters and removes camera distortion (which

is not taken into account in our model). The placement of

cameras we use in our experiment, described on the figure 7,

is composed of 24 views arranged in an 3×3 internal square

and a 5 × 5 external square of cameras – we removed the

central view. It was originally a 9× 9 array from which we

removed every second row and column to exacerbate the

sparsity of the light field. Removed views are kept aside for

comparison and numerical evaluation. An open source opti-

cal flow algorithm [20] is run over each pair of neighboring

views, so that we get as many samples as computed flows

(see figure 7). The strategy to fill the sets of samples is the

following:

• we compute the flow from the central view to the views

in the internal square,
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• we append the positions in the internal views to the

respective sample sets,

• the optical flow is computed from the internal views to

the neighboring external views,

• starting from each previous position, new sample posi-

tions are found via the computed flows.

Once the sample ray sets are filled with colors and 2D

positions, converted to 4D via the light field parametrization

(see section 4), we compute the visual point models using

the Ceres Solver [2], which minimizes the L2-norm of the

block residual fk(A,b) =
(

rk,1
√
µk,1

, rk2
√
µk2

)

with the algo-

rithm DENSE QR. Four models are tested to fit the 4D light

field samples: 3g+ 3p, 3g+ 9p, 4g+ 9p and 6g+ 9p. The

first number accounts for the number of parameters of the

linear line congruence model (u as a function of s), while

the second one accounts for the number of parameters of the

photometric model (I as a function of s). A 3g + 3p model

would correspond to a 3D point with a constant RGB color,

which models a Lambertian point. Using our algorithm, we

render the central view, a view in the top left corner between

the internal and the external square, and we extrapolate a

view to the left, outside of the sampled light field region.

Resulting views are cropped to 800× 800 images.

Figure 8 shows the resulting central view, aside with the

original image we removed, the absolute difference and the

final residual of 3-parameter model optimization. Apart

from tarot coarse, all results are very close to the origi-

nal images. Most artifacts occur in the glass ball, where

light rays are bended by refraction. The 3-parameter fails to

model the behaviour of the distorted light since rays that

emanate from the same point in the background (diffuse

cards) are unlikely to intersect. Models with 4 and 6 pa-

rameters produce better results, as can attest the figure 9.

The same interpretation can be claimed for specularities on

the treasure chest or on the bracelet. In addition the bracelet

dataset shows that in non-textured regions the model fails

to fit the data samples altered by inaccurate optical flow.

Nevertheless it does not affect the rendering because the in-

terpolated position of the splat is frivolous in low-textured

regions of the image. The figure 9 shows close-ups of syn-

thesized views of the tarot dataset, to demonstrate the ef-

fect of rendering with different models. The more parame-

ters we use, the more faithful to the original images the re-

sults are. This is supported by numerical results in table 1.

Few differences between models are visible when rendering

the central view, but extrapolation clearly discriminates the

consequence of rising the dimensionality of the searched vi-

sual point.

s

t

4        6        8       10      12      14 

12

10

8

6

4

Figure 7. Light field setup for experiments. Cameras from the

Stanford dataset are arranged on the same plane (s, t). Each cell is

a view from the original dateset. Grey cells are views that are used

to sample the plenoptic space. Arrows indicate how the optical

flow is performed. Blue cells are view we synthesize to evaluate

our method. We interpolate views (8, 8) and (11, 11), and extrap-

olate view (14, 8).

View (8, 8) View (11, 11) View (14, 8)

PSNR DSSIM PSNR DSSIM PSNR DSSIM

3g + 3p 26.37 64 23.61 109 24.00 102

3g + 9p 26.34 64 23.65 109 24.85 99

4g + 9p 26.32 64 25.08 89 24.71 96

6g + 9p 26.44 63 25.57 74 27.20 69

Table 1. Numerical results on tarot coarse dataset.

8. Conclusion

This paper presented a novel approach to light field re-

construction, based on a linear approximation of the line

congruences that form the 4D light field. Whereas most

light field reconstruction methods compute first a 3D repre-

sentation of the scene, our method works directly on how

the scene is perceived through the images, without attempt-

ing an explicit 3D reconstruction.

In this representation, each visual point is represented by

geometric and photometric parameters. The geometric rep-

resentation of a visual point is a 2D set of lines, also called

a line congruence, which contains information on how the

point moves in the image when the camera moves. The pho-

tometric parameters contain information on how the radi-

ance of this point varies as a function of the viewpoint. For

example, a point on a Lambertian surface is represented by

a pencil of lines going through the 3D point, and a single

color, which makes 3 geometric and 3 photometric parame-

ters.

We devise models with 3, 4, or 6 geometric parameters,

and 3 or 9 photometric parameters, which can model opti-

cal effects such as reflections, refraction, or variation in the
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Tarot fine PSNR: 35.03 DSSIM: 16

Tarot coarse PSNR: 26.34 DSSIM: 64

Bracelet PSNR: 39.93 DSSIM: 5

Chest PSNR: 35.01 DSSIM: 272

original image result absolute difference final cost

Figure 8. Results on several datasets from the Stanford Light Field Archive. We compare the synthesized result with the original image. We

also display the absolute difference between the two and the final value of the cost function. The model 3g+9p is used in this experiment.

Notice that the highest error values are located on refractive and specular areas. In the bracelet results, the black area in the final cost image

denotes a wrong reconstruction which does not affect the result (low absolute difference error) because of the lack of texture in this area.
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original view 3g + 3p 3g + 9p 4g + 9p 6g + 9p

Figure 9. Results on challenging parts of the tarot coarse dataset. Top row: center view (8, 8). Middle row: top-right view (11, 11). Bottom

row: extrapolated view (14, 8). It exhibits main artifacts that are partially fixed by visual point models with more parameters.

optical index, as well as non-Lambertian surfaces.

Experiments show that the various visual point models

are able to cope with complex optical phenomena that can-

not be modeled by a 3D reconstruction. A model selection

method is able to separate points in the scene that are Lam-

bertian or quasi-Lambertian from visual points that cannot

be modeled by a simple pencil of lines.

The visual point model could be further enriched, for

example by modeling nonlinear line congruences, as those

that can be caused by spherical or cylindrical surfaces. The

rendering algorithm could also take into account the visi-

bility of each visual point, and render a given visual point

only if the rays that were used to compute the model are

close enough to the synthesized viewpoint. Another exten-

sion would be to incorporate the time dimension in our vi-

sual point models, and compute time-varying line congru-

ences, which could be used for novel view synthesis from

asynchronous video sequences or from a set of photographs

taken at different times and from different places.
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