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Abstract

The last years have seen a quick rise of digital photogra-

phy. Plenoptic cameras provide extended capabilities with

respect to previous models. Multi-focus cameras enlarge

the depth-of-field of the pictures using different focal lengths

in the lens composing the array, but questions still arise on

how to select and use these lenses. In this work a further

insight on the lens selection was made, and a novel method

was developed in order to choose the best available lens

combination for the disparity estimation. We test different

lens combinations, ranking them based on the error and the

number of different lenses used, creating a mapping func-

tion that relates the virtual depth with the combination that

achieves the best result. The results are then organized in

a look up table that can be tuned to trade off between per-

formances and accuracy. This allows for fast and accurate

lens selection. Moreover, new synthetic images with respec-

tive ground truth are provided, in order to confirm that this

work performs better than the current state of the art in ef-

ficiency and accuracy of the results.

1. Introduction

The idea of plenoptic imaging was introduced by Lipp-

mann in 1908 in [13], but only recent developments have

made it possible to actually build devices that are capa-

ble of capturing the so-called plenoptic function. In re-

cent years the interest towards such devices is growing, and

many different approaches are appearing. The micro-lens

array based cameras, that are in fact equivalent to an array

of cameras, as proved in [6], have mounted an array of mi-

cro lenses between the main lens and the sensor extending

the capacity of the device to capture the light field in only

one shot.

A specific subset of these cameras is characterized by

the use of different micro lenses, particularly with differ-

ent focal lengths, and they exploit this aspect obtaining

for example a wider depth of field. Multi-focus plenoptic

cameras were recently introduced in 2012 by Georgiev and

Lumsdaine in [5] and a detailed technical explanation of

the multi-focus properties is present in [7], but they quickly

attract interests in scientific research as shown by the publi-

cations addressing these specific cameras.

Different topics were tackled, like a robust automated

calibration in [11] and [7], the lens selection and cost func-

tion description using semi global matching in [4], a faster

feature matching approach in [3] and the whole pipeline un-

til the 3D rendering in [9], but also in industrial application,

as shown by the fast growth of companies exploiting the

technology.

Such cameras can be used for entertainment as Lytro

[14] is doing, or for inspection and modelling, like Raytrix

[17] is doing, but also for photography related taks, like the

most recent approach brought by the Light company [12],

consisting of a pocket-size camera that emulates the perfor-

mance of a DSLR camera using multiple lenses with differ-

ent focal lengths.

Our approach targets one of the mostly used models that

accounts for three different types of lenses (with three dif-

ferent focal lengths) provided by Raytrix, but has the ad-

vantage of being quite flexible and could be applied to all

devices that use different lens types and need a strategy to

accurately and efficiently select each time which one to use.

1.1. Structure of the Paper

Section 2 reviews related works, to give the reader an

overview of the state of the art techniques related to the

topic; in Section 3 we show the specific case of the plenop-

tic cameras that we are using, and we make an assumption

about the disparity estimation with a detailed motivation;

in Section 4 we go through the first step of the proposed

approach, that uses ground truth generated data to evaluate

different combinations; in Section 5 we combine the results

into a specialized structure that allows an easy and efficient

execution of the lens selection algorithm; finally, Section 6

compares the results obtained against the previously known

techniques both with synthetic and real data (acquired with

a Raytrix camera) and Section 7 provides a conclusion and
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some possible future developments. Appendix A is used

to give the reader further insight on how synthetic and real

data are generated.

2. Related Work

Many approaches have been proposed to address the

challenge of creating accurate disparity maps from image

captured with a plenoptic camera: we focus on the aspects

that make this camera unique in his genre, the micro lenses

array and more specifically the lenses and the characteris-

tics of their usage.

To reconstruct the image from the light field as captured

by the lens array, one needs to select multiple adjacent

lenses and compute depth (or disparity) from them. The

depth is needed to collect the correct light rays for the sharp

real image.

The lens selection problem remains an open challenge

of high importance, because it addresses the very nature of

the cameras: the micro-lenses array that allows the cam-

era to capture the light field in only one shot and controls

the trade-off between lateral and spatial resolution, which

adapts each camera for specific purposes like refocusing or

estimating the disparity map and reconstructing the three

dimensional geometry of the scene.

Previously proposed methods about lens selection al-

ways assume some geometrical information about the pixel,

whose disparity or depth has to be computed, and are used

to refine the estimation: they can be divided in two cate-

gories:

1. Using the geometrical information, limit the lenses

range and check on every lens the amount of defocus

blur and the minimum overlapping in order to under-

stand if they could positively affect the estimation.

2. Divide the world into slices on the z-direction and as-

sign at every slice a certain range of lenses.

The first approach was proposed by Fleischmann and

Koch in [4], with an adaptive strategy that uses a first es-

timate of the disparity to select lenses, discarding the ones

where the overlapping was without a certain threshold: their

first estimation is efficient, but the adaptive strategy always

involves some computational effort and does not reach the

highest precision in the lens selection.

As an example of the second approach we pick the most

recent paper on the topic from Ferreira and Goncalves [3],

where they divided the space into four quartiles. When a

point seemed to belong to a certain sector, they assigned the

lenses range and a predetermined combination: the idea of

dividing the space into slices is functional in terms of per-

formances, since it does not involve further computations,

but it lacks in accuracy, since they use only four different ar-

eas and three different combinations, and they discard many

lenses just because of the difference in the focal lengths,

while those still may contain useful information.

The proposed approaches for the lens selection seem not

to reach the optimal solution, lacking in terms of either ac-

curacy or performances, mainly because of two issues that

are common to this kind of data:

1. To predict which lenses should be used for a point or

a lens, some geometric information about the position

of that point should be known, and the accuracy of this

information greatly affects the final result.

2. It’s challenging to capture images with ground truth to

evaluate different methods, due to the particularity of

the cameras.

We address both problems and propose our solution in

the following.

3. Initial Lens Selection

In this paper we deal with a very specific version of the

multi-focus plenoptic cameras: the approach was developed

using the Raytrix cameras with three different focal types

and the lenses arranged in the hexagonal grid as shown in

[4] and in Fig. 1.

The approach we propose is flexible, and it can be

adapted to all multi-focus plenoptic cameras, where the

lenses of different focal types need to be selected for the

disparity mapping or any other application.

The method is mainly divided into two steps:

• First, we compute a virtual data set consisting of differ-

ent known depth planes. Using this calibration data we

test lens combinations that are optimized with respect

to efficiency and accuracy.

• Next, we create a look up table structure where data is

stored and can be used efficiently during runtime.

We will discuss this in detail respectively in Section 4

and 5.

The mentioned calibration process is highly time-

consuming, but it has to be performed only once and then

the results will be stored in order to be used in every suc-

cessive execution, in a similar way to a calibration process,

allowing an efficient computation at runtime.

Before continuing, we briefly describe two concepts that

are important for the rest of the paper.

Virtual Depth

The concept of virtual depth, introduced in [16], is de-

fined as the number of different lenses in a row that image

a point, so a point with virtual depth N , would be imaged

by N different lenses belonging to the same line, i.e. N

different horizontal viewpoints.
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Figure 1: The lens grid of a multi-focus plenoptic camera:

in this case a Raytrix camera with three different focal

lengths is depicted. The numbers 0, 1, 2 indicate the focal

type of each lens, and the coordinates (x, y) are relative to

the central lens. Picture taken from [4]

.

Intuitively, the virtual depth is inversely proportional to

the disparity: we can express that in mathematical terms in

Eq. 1

V D =
K

d
∝

1

d
(1)

Where V D stands for the virtual depth, d for the dispar-

ity and K for a constant factor that is related to the metric

calibration parameters of the lens array.

Disparity Estimation

Many techniques that compute the disparity are avail-

able. Based on the literature, we choose to use semi global

block matching algorithm first introduced in [8] and used

in [4], since it achieves better results as compared to the

feature matching approach implemented in [3].

More sophisticated approaches exploiting the multi-view

nature of these images will be inspected in future research.

3.1. Initial Virtual Depth Creation

Our method is based on the relation between a disparity

and the combination of the lenses (that will lead to a re-

fined version of the disparity), hence we need to compute a

first hypothesis on the position of the point in space, which

does not have to be completely accurate. Since at this point

we can trade accuracy for computational speed, we choose

Fleischmann and Koch’s [4] idea, making an initial guess

using a small number of lenses and a block matching ap-

proach.

Nevertheless we reviewed different possibilities for this

task: without changing the estimation method, we can se-

lect different combinations of lenses to reach a better results

without loss of performances, as seen in Fig. 2:

Inner Ring First Ring Cross

Spiral Hexagonal Double Line

Figure 2: Different combinations of lenses that could be

used for the initial virtual depth creation. They are chosen

because of their structure around the central lens, and the

gray colors represent their focal type: lenses with same

color belong to same focal type.

The choices were made to tackle some particular charac-

teristics of the lens grid: inner and first ring are most likely

to be used because of the smaller baseline, being able to

estimate disparity for both close and far objects.

Since the inner ring consists in lenses that have differ-

ent focal lengths, they are not reliable, but necessary for

close objects, whose virtual depth is small. The first ring,

that contains only lenses with same focal type, thus with the

same amount of defocus blur, should be more reliable.

We evaluated the different combinations on two datasets

with respective ground truth, the first one also used in [4] to

evaluate the results and the second one introduced to have

more structure in the scene, in order to obtain both visual

and numerical data to support our choice.

The visual feedback of both datasets is in line with the

theoretical assumptions: the disparity computed with the

inner ring is quite accurate for close points, but highly noisy

for background points.

The opposite happens for the first ring, that addresses the

far point in the correct way, but misses the correspondence

for points with small virtual depth, as clearly visible in Fig.

3 and Fig. 4 where the centers of the micro images referring
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The scene Inner Ring

First Ring Hexagonal

Figure 3: Evaluation on the first dataset consisting of four

planes at different distances on the z-axis, to highlight

errors at different disparities; only three of the

combinations are shown here.

The scene
Inner Ring

First Ring Hexagonal

Figure 4: Evaluation on a more complex dataset where two

objects show some structure, to see how each combination

deals with border and objects close to each other.

to points close to the camera are not correctly computed,

due to a large baseline.

We then see that the new proposed combinations use a

mixed combination of both rings to address a larger depth

of field, at a price of a lower accuracy.

Combinations with less lenses were tried with the scope

The disparity maps are shown in colored version for an easier visual-

ization: red color means high disparity, and blue indicates lower disparity

values. The two datasets are synthetically generated as explained in Ap-

pendix A.2.

of reducing the computational cost and increase the perfor-

mances, but as shown the estimation with only four lenses

is noisy and would affect negatively the final estimation.

Combinations with the same number of lenses show a

better quality, particularly the best results are achieved for

the hexagonal strategy, that uses six lenses as depicted in

Fig. 2 (Hexagonal): two lenses with different focal lengths

(white and gray) and four lenses of the same type around

the central one. The double line combination achieves even

more accurate outcomes, but at a price of a higher number

of lenses.

Combination Four

Planes

Objects Average Lenses

Avg. Std. Avg. Std. Avg. Std.

Inner Ring 0.305 0.568 0.427 0.851 0.366 0.710 6

First Ring* 0.359 0.664 0.319 0.666 0.339 0.665 6

Cross 0.267 0.438 0.319 0.671 0.293 0.555 4

Spiral 0.254 0.402 0.284 0.562 0.269 0.481 6

Hexagonal 0.244 0.387 0.282 0.392 0.263 0.390 6

Double Line 0.237 0.364 0.273 0.570 0.255 0.467 8

Table 1: Combinations and respective errors. Values are

expressed in pixels and the disparity range is [0.5, 12.5].

We report here more combinations, to show how different

approaches would deal with the problem.

* = combination used in [4]

The errors reported in Table 1 are computed using a sim-

ple absolute difference function, taking into consideration

only valid pixels: for every micro-image only the pixels

contained in a circle with a diameter slightly smaller than

the image side are taken into account, with the exact value

of the diameter set during the calibration process to avoid

vignetting errors.

We print both average and standard variation to give

an idea of how the error is distributed: a smaller variance

would translate into a more robust outcome, that would

be preferable in our case, since large error could lead to

a wrong lens selection and thus to a wrong final estimation.

Analyzing both visual and numerical results, we select

the hexagonal combination, that seems to solve at the best

the trade-off between performances and accuracy.

We use this selection in the rest of the paper, so that ev-

ery time we refer to the initial disparity guess, we mean the

value obtained as explained above with the hexagonal com-

bination.

4. Optimizing the Lens Selection

Based on the previously discussed assumption, we are

now ready to proceed to the second step: having an initial

guess of the point position allows us to create a direct map-

ping from this information to the best possible relative com-
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bination of neighbouring lenses to fully exploit the charac-

teristics of the micro lens array.

The novelty of this approach consists in the creation of a

ground truth set of data by simulating the array of cameras:

we set the position of our camera and we generate the im-

ages of a plane at a certain distance z from the camera, as

if it was capture from a multi-focus plenoptic camera, using

the right focal length for each micro-lens. To see the de-

tails about the creation of these synthetic planes, we refer to

Appendix A.2.

Moving this synthetic plane from close to far with re-

spect to the camera allows us to create a test set for all dif-

ferent positions that a point could assume in space and its

corresponding ground truth, since we know the exact dis-

tance between plane and the virtual camera position.

Figure 5: Representation of the planes and the lenses.

At this point we also want to stress that our specific cam-

eras use lenses with three different focal lengths, so we need

to evaluate the error and the combinations per each lens

type, i.e. taking into account the amount of defocus blur

of each particular lens.

An important parameter that has to be tuned is the dis-

tance between each plane: evaluating our combinations on

planes that are too close to each other will result in erro-

neous selection, since our initial disparity guess cannot be

particularly accurate, and using planes too far away will use

the same combination for points that could benefit from a

different one.

Our choice is to use the virtual depth measurement, as

explained above, which has the advantage of being scale-

independent, and extends the flexibility of our approach,

also leaving space for particular application when the range

of the scene has specific constraints and we are not inter-

ested in the whole depth of field of the camera.

We have chosen to use textured planes because of their

spatial structure, being able to divide the world space in

slices, and since the disparity estimation is not based on

the structure, but just on the intensity of the pixel, textured

planes fit our requirement for this task.

4.1. Comparisons among Combinations

The planes dataset was used to run all the disparity esti-

mation, and every different combination was evaluated us-

ing the same error function explained above, absolute differ-

ence with respect to the ground truth, discarding the border

of the lens.

We evaluated several combinations through the whole

range of the scene, and here we report the ones that gave

the most significant outcomes.

s1, NL=6 s2, NL=6 s3, NL=12 s4, NL=12

s5, NL=12 s6, NL=18 s7, NL=18 s8, NL=24

s9, NL=30 s10, NL=42

Figure 6: Different combinations: central lens is always

shown in black, and for the other lenses every color

represents a different focal type.

The number of lenses (NL) is also reported.

As expected, the combinations that use adjacent lenses

report better results on the close range (from 2 to 4 virtual

depths) but show a large error when the distance from the

camera increases, resulting useless in those cases; the op-

posite happens for the combinations that use lenses with a

larger baseline, as they need at least between 4 or 5 virtual

depths to start working properly.

Once we calculated the results, we can sort them based

on the average of the error in the disparity image and pick

the best combination for every value of virtual depth. One

can see that different combinations obtain similar results

in the central area, where many different combinations are

possible and many correspondences are available, thus in-

creasing the difficulty of a correct choice.

Our idea is to develop two possible combinations for

each slice: one which would give the most accurate result

and one which would use the lowest possible number of

lenses given a certain error threshold, in order to boost per-

formances keeping a low error.
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Best Combinations Perform. Accuracy
VD LT CBs CB NL CB NL

2

0 s1 s1 6 s1 6

1 s1 s1 6 s1 6

2 s1 s1 6 s1 6

3

0 s1 s1 6 s1 6

1 s1 s1 6 s1 6

2 s1 s1 6 s1 6

4

0 s2, s3 s2 6 s3 12

1 s2, s3, s8 s2 6 s3 12

2 s2, s3 s2 6 s3 12

5

0 s2 s2 6 s2 6

1 s2, s3 s2 6 s3 12

2 s2, s3, s8 s2 6 s3 12

6

0 s5, s2, s7 s2 6 s5 12

1 s4,s6,s2,s3 s2 6 s3 12

2 s10, s3, s8, s9 s3 12 s8 24

7

0 s5, s2, s7 s2 6 s5 12

1 s2, s3, s7 s2 6 s3 12

2 s2, s3, s8 s2 6 s8 24

8

0 s5, s2, s7 s2 6 s5 12

1 s5, s2, s7, s9 s2 6 s9 30

2 s2, s8 s2 6 s8 24

9

0 s5, s7 s2 6 s7 18

1 s10, s2, s7 s2 6 s7 30

2 s10, s2, s3, s8 s2 6 s8 24

10

0 s2, s7 s2 6 s7 18

1 s5, s6, s3, s9 s3 12 s9 30

2 s2, s3, s8, s9 s2 6 s7 18

11

0 s2, s7 s2 6 s7 18

1 s3, s10 s3 12 s3 12

2 s2, s3, s7, s8 s2 6 s8 24

12

0 s6, s9 s6 18 s9 30

1 s3, s9 s3 12 s9 30

2 s2, s3, s8, s9 s2 6 s9 30

13

0 s6, s9 s6 18 s9 30

1 s3 s3 12 s3 12

2 s2, s3, s8 s2 6 s3 12

14

0 s6, s2, s7, s9 s2 6 s9 30

1 s3 s3 12 s3 12

2 s2, s3, s8 s2 6 s3 12

Table 2: Outcomes of the lens selection step: the best

combinations that satisfy Eq. (2) are grouped in the third

column; choices for best performance and accuracy are

shown in the columns on the right side.

Legend

VD Virtual Depth

LT Lens Type

CB Combination

NL Number of Lenses

Table 3: Legend for Table 2

To retrieve such combinations, the outcomes are ranked

for accuracy, then all combinations that satisfy Eq. (2) are

grouped and sorted this time based on performance, using

the total number of lenses used for the estimation.

µfj ,i < 1.5µmin,i (2)

Where µfj ,i is the mean of the error for the j-th combina-

tion and for virtual depth i and µmin,i is the minimum error

for virtual depth i achieved by any of the combinations.

The results reported in Table 2 show the difference be-

tween the lens types and their need of different combina-

tions in order to reach the highest accuracy.

The reported best combinations have similar outputs, so

other choices are also possible, based on particular scenes

or different parameters when acquiring or generating the

scene, or also introducing different constraints on errors or

maximum number of lenses. However, in our case we found

these combinations to be the best.

The idea we want to highlight here is the fact that every

lens, based on his focal type, could benefit a different patch

of lenses for the disparity estimation: moreover, as the vir-

tual depth increases, combinations that exploit lenses with

higher baseline seem to achieve more accurate estimations.

Finally, it can be noticed that the different amount of blur

highly affects the estimation of disparity images: as also

found in [3], most of the lenses that will actually be used

belong to the same lens type of the central lens.

5. Storing the Lens Selection

Once we gather the results of our simulation, we need to

store them in a way that allows us to use it in every next

execution of the software: many structures could be used

for this purpose, but our choice has fallen on a structure that

resemble the characteristics of a look up table, that allows

us to retrieve the best possible combination for each lens

and lens type.

5.1. Choice of the Structure

The look up table structure seems to be the best solution

is this case for different reasons, namely:

• Efficiency: once we have computed the initial guess,

the computational effort needed to retrieve the relative

position of the lenses of a particular combination from

a virtual depth value is only a fetching instruction

• Flexibility: using virtual depth we have a measure

that is scale-independent and the same structure can

be used for all subsequent acquisitions.

• Different choices available: depending on the spe-

cific task, the user may want a different outcome; if

quality of the results is the primary concern, the best

combination of available lenses is selected, but if the

operation to be performed has more speed constraint

and needs a quicker execution, a parameter controlling
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the choice, changes the selection towards the quick-

est combination (i.e. the combination that uses lowest

number of lenses and still achieves an error lower than

a certain threshold)

5.2. Creation of the Structure

Based on these ideas, we created a structure that can

manage the trade-off between accuracy and performance,

storing both combinations at the same time, and giving as

output only one of them when needed

Figure 7: Look up table structure, with an example of a

point with an initial guess of V Di, belonging to lens with

focal type 1, with parameter α optimized for accuracy.

The table has D levels, where D is the number of slices

in which we divide the space (in our case D = 13) that

have LT entries each, where LT is the number of lens types

present in the camera (in our case LT = 3): those entries

contain the relative combination of the lenses to be used for

the estimation, and a parameter α is used to select which

combination (most accurate or best performance) will be

used, as depicted in Fig. 7.

If this approach had to be adapted to a different type of

plenoptic camera, a simple change of the parameters would

be enough to use the same structure in any other case.

5.3. Runtime Execution

Assuming we have calibrated our camera and created the

look up table, we also create our internal mapping from dis-

parity to virtual depth values, knowing that the virtual depth

(V D) is proportional to the inverse of the disparity (d) as

shown in Eq. (1).

The execution at runtime is controlled by a simple

lookup: we feed as input three values, namely the virtual

depth (V D), the lens type (lt) and the parameter control-

ling the trade-off between accuracy and performances.

Figure 8: Graphic representation of the function that

controls the look up table.

The output of such a function is the relative position of

the lenses that should be used to achieve the best results

during disparity estimation.

6. Results

We show some results to evaluate the proposed approach

with respect to the state of the art technique; we use both

synthetic images with generated ground truth to get some

numerical value as an objective evaluation and real images

without ground truth as a visual subjective evaluation.

The achieved results show an improvement of the accu-

racy of the estimation in some problematic areas, namely

border of irregularly shaped objects, smooth textureless ar-

eas and fine structures, that are challenging for the task of

disparity estimation.

We moreover stress the fact that this improvement

is achieved without any additional computational efforts:

while the calibration step and the creation of look up ta-

ble is costly and time-consuming (but it has to be done only

once), at runtime execution the algorithm does not need to

compute any calculation and is able to choose the lenses to

be used with only a simple fetching instruction in the look

up table, resulting in an efficient approach.

Generally the selected combination uses a high number

of comparisons because we are looking for an accurate dis-

parity map, but due to the flexibility of the proposed ap-

proach we can also change the orientation towards a more

performant approach changing the threshold value that cre-

ates the different combination in the look up table, allowing

the targeting of different applications.

6.1. Real scenes

The reported images are excerpts of the full scenes from

Raytrix [17] and focus on certain details that we want to

focus on; we compare them with the previous method im-

plemented in [4] and with the results extracted from the

Raytrix RxLive software [18]: the parameters used to ob-

tain such disparity map per lens are tuned towards a more

dense result, that is not necessarily the best result, but it’s

important in our comparisons to highlight the areas where

the estimation is most challenging, without the successive

filling algorithm.

The first scene, shown in Fig. 9, is the widely used Watch
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Computed with [4] Ours

Scene Avg. Std. Avg. Std.

Four Planes

Lens type 0 0.29 0.56 0.27 0.48

Lens type 1 0.26 0.44 0.23 0.33

Lens type 2 0.26 0.49 0.23 0.35

Platonic

Lens type 0 0.47 0.41 0.46 0.41

Lens type 1 0.44 0.40 0.42 0.40

Lens type 2 0.41 0.40 0.40 0.40

Tomb

Lens type 0 0.28 0.27 0.24 0.25

Lens type 1 0.27 0.25 0.23 0.23

Lens type 2 0.28 0.23 0.22 0.19

Table 4: Mean Error and Standard Deviation for the three

synthetic scenes. Values are expressed in pixels.

scene and gives us a good example of how a different selec-

tion of the lenses can affect the final estimation of challeng-

ing areas, like the textureless background surface and the

textured plane, exhibiting a high level of noise that is re-

duced in our implementation, obtaining a more robust and

smooth estimation.

Second scene, Fig. 10, consists in a more challenging

outdoor scene, with a zoomed area relative to the left hand

of the girl in the front, where the improvement with respect

to the previous approach is quite small, but is possible to no-

tice how the small details that cannot be reconstructed with

enough reliability from the RxLive software are computed

with a high accuracy and detail.

Fig. 11 finally highlights the smoothness and robust-

ness of the estimation for detailed and highly textured areas,

where the precision is raised and the noise in the estimation

is almost removed.

6.2. Synthetic Scenes

The synthetic images consist in a fundamental step for

this kind of disparity per lens images: up to our knowledge,

no other methods were proposed to produce a numerical

output to measure accuracy of the final estimation.

The images are more trivial and do not yet reach the com-

plexity of a real scene: this is a task that we are currently

addressing for the future to extend our qualitative results,

but are still very helpful for evaluation purposes at the mo-

ment.

The scenes are part of the dataset developed in [10] and

available at the 4D Light field Benchmark website [15], but

due to our settings, they have different point of view and

disparity ranges.

The difference between the two estimations are not large

and can appear unclear at a first glance, but as is visible from

Table 4 our approach slightly reduces the error and obtains

a lower standard deviation, meaning the estimation is more

robust.

7. Conclusion

In this paper we tackled an issue common to multi-focus

plenoptic cameras that represent a still open problem: our

contribution is not only important in terms of positive qual-

ity of the results, but also in terms of the characteristics of

the approach.

It takes from the idea of training the camera to achieve

higher accuracy in the final outcomes, trading a computa-

tionally expensive lens selection phase to be done once al-

lowing a multiple times more efficient runtime execution,

that up to our knowledge was not proposed yet in terms of

lenses estimation.

This approach works in this specific environment due to

our assumption relative to an initial disparity guess and due

to the nature of the problem: the lens selection is performed

on the estimated distance in the z-axis of the point, without

relying on texture or color information, therefore the train-

ing step can be done on planes while the execution process

will most likely be done on different shapes without chang-

ing the outcomes.

Since in the last years these kind of cameras are devel-

oping a high potential for different number of applications,

as pointed out by the recent introduction of the L16 Light

camera that exploit many different lenses with three differ-

ent focal lengths for enhanced photography, hence the lens

selection process is worth a further insight to exploit the full

potential of the cameras.

Secondly, we were able to provide some light field im-

ages for a numerical evaluation, a missing element in the

disparity per lens estimation field, where, as shown in [3]

and [4], apart from a really basic scene, only a visual evalu-

ation was possible.

We start to introduce new images and we look forward to

building a small dataset to allow different estimation tech-

niques to be compared.

Next step would be to focus on the comparison between

those lenses, trying to evaluate which would be the optimal

similarity measure or methodology to be used for that pur-

pose.
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6.1. Real Scenes

3D Model - Watch Disparity computed with pre-

vious approach [4]

Disparity computed with our

approach

Disparity computed with

Raytrix software

Figure 9: Part of the Watch scene.

3D Model - Forest Disparity computed with pre-

vious approach [4]

Disparity computed with our

approach

Disparity computed with

Raytrix software

Figure 10: Part of the Forest scene.

3D Model - Obstkorb Disparity computed with pre-

vious approach [4]

Disparity computed with our

approach

Disparity computed with

Raytrix software

Figure 11: Part of the Obstkorb scene.

Scenes are provided by Raytrix [17].
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6.2. Synthetic Scenes

3D Scene - Four Planes Disparity computed with pre-

vious approach [4]

Disparity computed with our

approach

Ground Truth

Figure 12: The Four Planes scene.

3D Scene - Platonic Disparity computed with pre-

vious approach [4]

Disparity computed with our

approach

Ground Truth

Figure 13: Part of the Platonic Scene.

3D Scene - Tomb Disparity computed with pre-

vious approach [4]

Disparity computed with our

approach

Ground Truth

Figure 14: Part of the Tomb Scene.

The first scene (Four Planes) was produced by O.Fleischmann in [4].

The last two scenes (Platonic and Tomb) are part of the 4D Light Field Dataset [15] and the 3D models were used to generate the images with the

respective ground truth.
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A. Data Generation

Here we report more details about the generation of real

and synthetic scenes with ground truth data.

A.1. Real Scenes

The real scenes were captured using Raytrix cameras.

The 3D models and the disparity maps were extracted using

the RxLive4.0 software provided by Raytrix [17].

A.2. Generating Synthetic Data with Ground Truth

The generation of the ground truth is a more complex

process: since it’s not yet publicly available any dataset with

ground truth of disparity map per lens, evaluations is a chal-

lenging issue.

We provide ground truth images that simulate the image

acquisition, even though they are not completely the same:

the imaging process of Raytrix camera consists in project-

ing the real world scene through the main lens to an inter-

mediate image in a virtual space, that stretches the relative

depths and makes it easier to estimate larger disparities val-

ues. The particularity of their technique is that the interme-

diate image is virtually projected behind the micro lenses

array, in a counter intuitive way not not possible to repro-

duce with other cameras.

Our simulated images use the same idea, recreating the

situation where the a virtual micro lenses array see the in-

termediate image, but this image is in fact in front of the

array of micro lenses. The virtual depth of an image is thus

inverted, meaning that an object with a large virtual depth

would be close to the camera in a real image, and far away in

a synthetic generated image, but since we focus on the map-

ping from virtual depth to lenses combination, these images

fit perfectly our needs.

This idea was already exploited in [4] for a numerical

evaluation, we extended this to scenes that consist in real

benchmark for light field disparity estimation by recreating

them with our synthetic generation pipeline.

Acknowledgment

The work in this paper was funded from the Euro-

pean Unions Horizon 2020 research and innovation pro-

gram under the Marie Sklodowska-Curie grant agreement

No 676401, European Training Network on Full Parallax

Imaging.

Moreover the authors would like to thank O. Johannsen

(University of Konstanz) for sharing some of the scenes

of the benchmark for light field evaluation, A. Petersen

(former Raytrix Gmbh) for sharing scenes captured with

Raytrix cameras and O. Fleischmann (former University of

Kiel) for the contribution in the generation of the synthetic

scenes.

References

[1] M. Damghanian, R. Olsson, M. Sjostrom, A. Erd-

mann, and C. Perwass. Spatial resolution in a multi-

focus plenoptic camera. In IEEE International Con-

ference on Image Processing (ICIP), 2014.

[2] J. R. Bergen E. H. Adelson. The Plenoptic Function

and the Elements of Early Vision. Cambridge, 1991.

[3] R. Ferreira and N. Goncalves. Fast and accurate mi-

cro lenses depth maps for multi-focus light field cam-

eras. In German Conference on Pattern Recognition

(GCPR), 2016. 1, 2, 3, 6, 8

[4] Oliver Fleischmann and Reinhard Koch. Lens-Based

Depth Estimation for Multi-focus Plenoptic Cameras,

pages 410–420. Springer International Publishing,

2014. 1, 2, 3, 4, 7, 8, 9, 10, 11

[5] T. Georgiev and A. Lumsdaine. The multi-focus

plenoptic camera. In SPIE Electronic Imaging, Jan-

uary 2012. 1

[6] T. Georgiev, A. Lumsdaine, and S. Goma. Plenoptic

principal planes. In Imaging Systems and Applications

(IS), OSA Topical Meeting, July 2011. 1

[7] C. Heinze, S. Spyropoulos, S. Hussmann, and C. Per-

waß. Automated robust metric calibration algorithm

for multifocus plenoptic cameras. IEEE Transactions

on Instrumentation and Measurement, 65 (5), May

2016. 1

[8] H. Hirschmüller. Stereo processing by semiglobal

matching and mutual information. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI),

30(2):328–341, February 2008. 3

[9] M. Hog, N. Sabater, B. Vandame, and V. Drazic. An

image rendering pipeline for focused plenoptic cam-

eras. Hal, 2016. 1

[10] K. Honauer, O. Johannsen, D. Kondermann, and

B. Goldluecke. A dataset and evaluation methodol-

ogy for depth estimation on 4d light fields. In Asian

Conference on Computer Vision (ACCV), 2016. 8

[11] O. Johannsen, C. Heinze, B. Goldluecke, and C. Per-

wass. On the calibration of focused plenoptic cam-

eras. In GCPR Workshop on Imaging New Modalities,

2013. 1

[12] Light. https://www.light.co/. 1

[13] G. Lippmann. Epreuves réversibles. photographies
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