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Abstract

The quantity and diversity of data in Light-Field videos

makes this content valuable for many applications such

as mixed and augmented reality or post-production in the

movie industry. Some of such applications require a large

parallax between the different views of the Light-Field, mak-

ing the multi-view capture a better option than plenoptic

cameras. In this paper we propose a dataset and a com-

plete pipeline for Light-Field video. The proposed algo-

rithms are specially tailored to process sparse and wide-

baseline multi-view videos captured with a camera rig. Our

pipeline includes algorithms such as geometric calibration,

color homogenization, view pseudo-rectification and depth

estimation. Such elemental algorithms are well known by

the state-of-the-art but they must achieve high accuracy to

guarantee the success of other algorithms using our data.

Along this paper, we publish our Light-Field video dataset

that we believe may be of special interest for the commu-

nity [1]. We provide the original sequences, the calibration

parameters and the pseudo-rectified views. Finally, we pro-

pose a depth-based rendering algorithm for Dynamic Per-

spective Rendering.

1. Introduction

Since the introduction of the concept of integral pho-

tography [20], tremendous advances on Light-Fields have

been done on the computational photography community.

In particular, the availability of plenoptic cameras such as

Lytro1 or Raytrix2 has originated the bloom of new research

on the field during the last years, being now a very ma-

ture topic. Besides plenoptic cameras, Light-Fields can

also be captured with camera arrays [33], robotic arms

[19] or hand held cameras [7]. However, each acquisi-

tion system samples the plenoptic function (light rays in

1www.lytro.com
2www.raytrix.de

the three-dimensional space) [2] very differently. Indeed,

plenoptic cameras produce great angular resolution at the

cost of reducing the spatial resolution. On the contrary,

multi-view systems have good spatial resolution but usu-

ally do not have many available views. Existing multi-view

Light-Field systems with a great number of views are gen-

erally impractical due to the amount of data and the com-

plexity of the capturing system. So, in general, plenop-

tic cameras capture dense and narrow-baseline Light-Fields

and multi-view systems capture sparse and usually wide-

baseline Light-Fields. While all Light-Field acquisition

systems share the same theoretical principle, depending on

the application, one type of acquisition or another would be

preferred. Indeed, the baseline, the resolution and the num-

ber of views makes each acquisition system very specific

and suitable for the needs of a given application. As a con-

sequence, due to the data variability, processing algorithms

need to be specifically tailored for each acquisition system.

Besides the spatio-angular resolution, another particularity

of the Light-Field acquisition systems is the capacity to cap-

ture video.

In terms of applications, the availability of wide-baseline

Light-Field videos opens the door to new possibilities com-

pared to conventional cameras. For example, 3D Television

(3DTV), Free-view Television (FTV) [36], or mixed and

augmented reality as proposed by MagicLeap3 or Microsoft

Hololens4. In particular, Light-Field videos are fundamen-

tal when the inserted content is not Computer Generated

(CG) and the goal is to produce a plausible and immersive

experience.

In this paper we focus on camera arrays as a video Light-

Field capturing system. In particular we present a 4×4 syn-

chronized camera rig. Our system belongs to the multi-view

category and shares the same assumptions than [10] con-

cerning the captured scenes. This is, we assume to capture

Lambertian textured surfaces. However, we would like to

make the difference between the general multi-view frame-

3www.magicleap.com
4www.microsoft.com/microsoft-hololens
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work in [10] and a Light-Field multi-view setup. The dif-

ference remains in the density of views (and the number of

light rays imaging each point of the scene) which requires

different algorithms in order to optimally process the data.

2. Related Work

Existing Light-Field datasets, [14] [33] [25] [18] [26],

either synthetic or from real acquisition systems (plenop-

tic cameras, camera arrays or gantries) are essentially still

Light-Fields. The only exception is the video Light-Field

dataset recently proposed by Dabala et al. [6] which turns

out to be the closest work to ours, since it also presents a

pipeline for camera rigs. Our pipeline, though, takes into

account color homogenization and the precise geometric

position of the cameras given by calibration, which allows

to relax some constraints on the depth estimation. The pa-

per of Basha et al. [3] also deals with multi-view video. The

authors propose to jointly estimate the 3D motion (scene

flow) and the 3D reconstruction of the scene captured with

a camera rig assumed to be calibrated and having a small

baseline.

Pipelines for plenoptic cameras have also been proposed

[13] [29] [5] but due to the different nature of plenoptic

Light-Field data compared with camera rigs, the algorithms

are sorely different.

Geometric calibration is a well studied problem [12] but

it is generally not addressed by multi-view pipelines even

if it is of paramount importance for the accuracy of the se-

quel processing. Camera manufacturers do not provide this

information neither, specially when their cameras are used

to build camera rigs. Previous work on multi-camera cali-

bration includes [31] that studies a calibration method for

planar camera arrays and [34] that assumes a more gen-

eral camera setup but imposes a rigid constraint between

the viewpoints. Other techniques specifically developed for

Structure from Motion (SfM) such as Sparse Bundle Ad-

justment [21] can also provide multi-view calibration.

Regarding color calibration, when the cameras are not

known, a family of algorithms using image correspon-

dences allows to tonally stabilize videos [9] or to color ho-

mogenize different cameras of the same scene [32]. With

the same philosophy, [23] uses spatio-temporal correspon-

dences for multi-view video color correction. Nevertheless,

in our pipeline we exploit the fact that we have full knowl-

edge of our cameras and the capture setup. So we have an

approach more similar to [17] in which a method for cali-

brating large camera arrays is presented.

Camera arrays have more capabilities compared to con-

ventional images or video as it has been proved in a num-

ber of related papers. For instance, tracking through occlu-

sions [16], multi-object detection [28], reconstructing oc-

cluding surfaces [30] [27] or creating All-In-Focus images

[35]. Another application of multi-view systems concern

Synthetic Aperture refocusing but the reduced number of

available views creates angular aliasing. In [15] an algo-

rithm for fast realistic refocusing for sparse Light-Fields is

presented.

All the above applications share the fact that they es-

timate and exploit the depth map of the captured scene.

More precisely, in [27], depth estimation is formulated as

an energy minimization problem with an intensity consis-

tency and a smoothness term. In [35] a Light-Field visibil-

ity term is also considered in the energy. In [30] different

cost functions for large camera arrays are compared in terms

of robustness to occlusions. It is interesting to point out that

most of the proposed methods estimate the depth for a view-

point that is not necessarily one of the available viewpoints

in the Light-Field. We have observed that this strategy is

more prone to errors and instead we estimate a depth map

for each available view-point in the Light-Field.

Finally, in Lu et al. [22] a survey on multi-view video

synthesis and editing is presented.

3. Pipeline

In this paper we consider the 2 plane parameterization

as in [11][19]. So, the 4D Light-Field L(s, t, u, v) is pa-

rameterized such that each view (s, t) has pixels (u, v). We

also consider that the light rays coming from the same scene

point should be captured with the same radiance in the dif-

ferent views when the object is Lambertian. This is, corre-

sponding pixels from different views should have the same

color. As a consequence, we have included in our pipeline

a color homogenization step. Besides, our camera rig has

carefully been calibrated. Calibration parameters are used

to project the images to a reference plane while removing its

distortion. We call such images pseudo-rectified images to

differentiate them from epipolar rectified images. Our strat-

egy has the advantage that point correspondences between

images can be found with simple translations without the

need to deproject in the space and project in a new view

each image point, which accelerates our pipeline consider-

ably.

Our pipeline also includes a depth estimation step, which

provides a depth for each camera. Our algorithm is multi-

scale and uses all images for estimating each depth map.

Finally, we propose a real time algorithm for Light-Field

rendering which estimates intermediate (virtual) views of

the light-field, so the captured Light-Field sequence can be

watched with a dynamic parallax.

3.1. Capture

Our camera rig is made of 16 cameras whose sensors

are manufactured by CMOSIS (CMV2000) and packaged

by IDS. The 16 cameras are controlled through the UEye

API. Our multi-view Light-Field video is fully synchro-

nized. Fig. 1 shows our camera setup.
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Figure 1. Our camera rig setup.

3.2. Color homogenization and Demosaicking

Let RAWc : Ω ⊂ N2 → N3 be the c-th captured raw

image. In particular,

RAWc = (RAW r
c , RAW g

c , RAW b
c ) , (1)

where RAW g
c (u, v) = RAW b

c (u, v) = 0 if (u, v) is a red

pixel in the Bayer pattern (and respectively for green and

blue pixels).

Our goal is to homogenize the color of all captured im-

ages with respect to a reference camera c0. In order to do

so, we describe here all the steps that need to be done before

and after capturing the sequences.

• Black level setting - The black level is a hardware pa-

rameter that allows to control the pixel sensitivities in

total darkness. It is important to tune this parameter for

each camera to correctly capture intensities in low light

conditions. Indeed, if the black level is set to 0, the sen-

sor looses information because it records an intensity

of 0 in dark scenes instead of low intensities. In order

to avoid this to happen, we set our camera rig in total

darkness (covering the cameras) and we increment the

black level of each camera until 95% of pixels record

an intensity different of 0. We have observed that after

this manipulation, the black level hardware parameter

of each camera is close to 4 and all captured images in

total darkness have an intensity between 0 and 10.

• Bias map estimation - After the black level setting,

we capture a dozen of raw images in total darkness

for each camera c. Averaging such captured images

for each camera c, we obtain the bias map Bc, which

records the minimum count for each pixel.

• Aperture rig calibration - In order to calibrate the

apertures of the cameras, we first set the desired aper-

ture on the reference camera c0. Afterwards, a flat illu-

minated led panel covered with a diffuser (white scene)

is placed in front of the camera rig, so all cameras ob-

serve it while white raw images Wc are captured with

Figure 2. Left: Captured white scene with exposure time of 2ms.

Images are demosaicked for the sake of visualization. Before cor-

rection the cameras capture a greenish color with many differences

for each camera. Right: raw white images after bias and gain

map correction. The corrected intensities have been clipped to

[200, 210] to better evaluate the similarity. Vignetting is also cor-

rected by applying the gain map.

the same exposure time. After subtracting the corre-

sponding bias map to the raw white images, the aver-

age intensity µc is computed:

µc =
1

|Ω|

∑

(u,v)∈Ω

∑

ch=r,g,b

(
W ch

c (u, v)−Bch
c (u, v)

)
.

(2)

Finally, the aperture rings of the other cameras c 6= c0
are tuned until µc

µc0
= 1± 0.02.

• Gain map estimation - When the apertures of all cam-

eras are homogeneous, we capture new raw white im-

ages for each camera Wc,i, i = 1, · · · , N and we com-

pute the gain map as:

Gc(u, v) =
1

N

N∑

i=1

Wc,i(u, v)−Bc(u, v)

µc0

. (3)

Then, the raw image corrected with the bias and gain

maps is computed as

RAW c =
RAWc −Bc

Gc

, (4)

The resulting image is vignetting-free and homoge-

neous in colors with the remaining images. Fig. 2

shows the 16 captured images with our rig of a white

scene before and after bias and gain correction. Note

that the intensity values of all cameras after correction

are very similar and independently of the color chan-

nel, meaning that all color channels are homogeneous.

However the bias and gain correction may not be suffi-

cient to have homogeneous colors with a different ex-

position. Indeed, the gain map is estimated with a ref-

erence exposure time but not all cameras have the same

response with a different exposure. For this reason, we

have a last step in our color homogenization method.

• Color correction - In order to be robust to the different

exposures, we measure the average µch
c of each color
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Figure 3. 16 patches side by side from all cameras corresponding

to 4 different colors in the MacBeth color chart.

channel ch and each camera c for different exposures

exp. Then, we estimate the regression line via least

squares fitting of µch
c (exp) for each ch and c. Let αch

c

and βch
c be the slope and offset of each regression line.

In this manner, the color corrected raw images are de-

fined as

R̂AW
ch

c (u, v) = αch
c ·RAW

ch

c (u, v) + βch
c . (5)

After color homogenization, the images R̂AW c are de-

mosaicked using the algorithm in [8] which has proved to

outperform with respect to the state-of-the-art. In the se-

quel, the resulting demosaicked images are noted Icolorc .

In order to measure the accuracy of our colorimetric cor-

rection we have captured a MacBeth color chart. After cor-

recting the images with the aforementioned processing, we

have measured the color average of 25 × 25 homogeneous

patches for each color in the MacBeth color chart. We have

measured the standard deviation among all views. We have

observed that the red channel has a slightly less accurate

homogenization (σr = 2.2 compared to σg = 0.8 and

σb = 0.9). See Fig. 3 illustrating the color correction for

some of the MacBeth colors.

Note that the described method needs to be done once

for all. Then, the bias and gain maps, as well as the 16 × 3
slopes and offsets α and β are registered and used during

each capture. However, if the aperture has to be changed,

the homogenization of the aperture needs to be done again

before the capture. It is worth noting that the procedure for

color correction defines a linear correction which follows

the assumption of linear sensitivity of the pixels. It is also

interesting to point out that our method aims to homogenize

the colors and intensities of all cameras with respect to a

reference camera but we have not tried to calibrate our rig

to a referent illuminant. In the case that we require such

a calibration, it would be enough to calibrate the reference

camera with the desired illuminant before we run our ho-

mogenization method.

3.3. Calibration and Geometry Processing

Our rig has carefully been arranged trying to place the

cameras in the same plane, having parallel principal axis

and being equidistant (same horizontal and vertical base-

line). However, the manual alignment not being perfect, a

calibration has been implemented in our pipeline. Intrin-

sic and extrinsic parameters are estimated with Sparse Bun-

dle Adjustement, based on the software package in [21].

The cameras are calibrated to fit a distorted pinhole projec-

tion model similar to the one proposed in [4]. In particular,

the calibration module considers a set of corner pixel posi-

tions computed from several checkerboard captured images.

Considering a camera, we denote P = [R T] ∈ R3×4

the camera pose matrix in the World coordinate system and

Q = [R−1 − R−1T] ∈ R3×4 its extrinsic matrix. Now

if Xw is a 3D point in the World coordinate system and X

is the corresponding point in the camera coordinate system,

then Xw = P ·
(

X

1

)
and X = Q ·

(
Xw

1

)
.

Let K =



f γ cu
0 λ · f cv
0 0 1


 be the intrinsic matrix of

the camera, where f is the distance from the optical cen-

ter to the sensor expressed in pixels, (cu, cv) is the principal

point, λ is the aspect ratio, and γ is the skew coefficient.

Let W be the distortion warping operator that affects 3D

points projections in the cameras coordinate system. The

radial distortion is expressed as a polynomial function in

the plane z = 1m as W
(
p
q

)
= (1 + a1r

2 + a2r
4)
(
p
q

)
, where

r =
√

p2 + q2.

Then, given a 3D point Xw in the World coordinate sys-

tem, its projection in pixel coordinates (u, v) in the camera

image plane is determined by



u
v
1


 = K ·

(
W
(
p
q

)

1

)
(6)

where 

p
q
1


 ≡ Q ·

(
Xw

1

)
. (7)

Note that, using homogeneous coordinates



p
q
1


 ≡



x
y
z


 ⇐⇒

{
p = x

z

q = y
z

(8)

Image Pseudo-Rectification:

After calibration, K, W and Q are known for each camera c

which allows to determine for a given depth z correspondent

points in different images using Eq. 6 and Eq. 7. However,

the projection and deprojection process has a high compu-

tational complexity due to the non linear distortion. In order
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to accelerate our pipeline, our images are warped such that

corresponding points between images are found with simple

translations. This assumption stands in our setup because

our cameras are almost coplanar.

Formally, let Icolorc be the original color images that

have been color corrected and demosaicked, where c =
(s, t); s, t = 0, . . . , 3; is the camera index of the camera

placed at the s-th column and t-th row of the camera ar-

ray. From Icolorc we compute the so-called pseudo-rectified

views Ic, which are the projections onto a reference cam-

era c0 at a reference depth z0 of the original images Icolorc .

More precisely, the pseudo-rectified images Ic are defined

at pixel (u, v) ∈ N2 as

Ic(u, v) = Icolorc (u′, v′) , (9)

where 

u′

v′

1


 = Kc ·

(
Wc

(
p
q

)

1

)
(10)

and



p
q
1


 ≡ Qc ·

(
Pc0

0 0 0 1

)
·



z0 K̂c0

−1



u
v
1




1


 ,

(11)

Wc, Kc and Qc being the distortion, the intrinsic and ex-

trinsic matrices of camera c, Pc0 the pose matrix of the ref-

erence camera c0 and K̂c0 the intrinsic matrix of a virtual

pinhole camera derived from Kc0 which skew coefficient

and aspect ratio are respectively set to 0 and 1:

K̂c0 =



f 0 cu
0 f cv
0 0 1


 . (12)

Note that in order to compute Ic in Eq. 9, the images

Icolorc need to be interpolated since (u′, v′) ∈ R2. In our

pipeline, a Lanczos kernel has been used for interpolation.

Note also that the projection at a reference depth z0 of

each image Icolorc does not ensure the image domains to be

equal. This is, (u′, v′) in Eq. 9 may not belong to the image

domain of Icolorc . In that case, empty pixels are colored

with pure green RGB=(0, 255, 0). Nevertheless, in order to

minimize the number of such empty pixels, the reference

depth z0 has been set to an arbitrarily large distance from

the cameras.

Using Pseudo-Rectified Images:

With the notations above, let Zc0 : N2 → R be the

depth map of the reference camera c0. Then, given a pixel

(uc0 , vc0) ∈ N2 in the pseudo-rectified image Ic0 , its cor-

respondent point (uc, vc) ∈ R2 in Ic can be found with a

simple pixel translation:

(
uc

vc

)
=

(
uc0

vc0

)
+D(uc0 , vc0) ·

(
δuc

δvc

)
, (13)

where D : N2 → R is defined as

D(uc0 , vc0) =

1
Zc0

(uc0
,vc0

) −
1
z0

1
z1

− 1
z0

, (14)

and (δuc, δvc) is the disparity shift which corresponds to the

shift in pixels between the projected point at depth z1 6= z0
and the projected point at the reference depth z0.

Thanks to the coplanar assumption, for each camera c,

the disparity shift (δuc, δvc) is constant over the whole im-

age. Nevertheless, if the cameras are not coplanar, Eq. 13

does not stand. For this reason, since our rig may not be

perfectly coplanar (Fig. 4-(a)), we have evaluated the differ-

ent pixels positions when computing exact pixel correspon-

dences via projection and deprojection (Eq. 6 and Eq. 7)

and the approximate pixel correspondences via pixel trans-

lation (Eq. 13). We have measured that such difference is

only of 0.32 pixels in average at a distance of 1.9m, which

is totally acceptable, knowing the computational complex-

ity drop of using Eq. 13 instead of Eq. 6 and Eq. 7. Fig.

4-(b) shows the largest and the average error per camera.

Therefore, Synthetic Aperture Refocusing can be com-

puted easily. In particular, a refocused image at depth z
can be computed with the provided images Ic for each pixel

(u, v) ∈ N2 as

Sz(u, v) =
1

16

∑

c

Ic

(
u+d(z) ·δuc, v+d(z) ·δvc

)
, (15)

where

d(z) =
1
z
− 1

z0
1
z1

− 1
z0

. (16)

3.4. Depth Estimation

In order to estimate the depth, our pipeline has a multi-

resolution matching approach that estimates a depth map for

each image of the camera rig. The multi-resolution strategy

allows to compute accurately the depth maps in a fast man-

ner.

In this sense, the closest work to ours is [6]. However

our algorithm uses a different similarity measure and does

not impose a coherence matching among all views at each

scale. Compared to other existing depth estimation methods

[30][27][35], our approach is significantly different since

depth estimates are not done for one single and virtual view.

In our experiments we have observed that this is a key factor

on the depth estimation quality.
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(a)

(b)
Figure 4. (a) Shift in z with respect to the camera reference c0 = 5.

The rig is almost coplanar since the biggest shift is 2.73mm. (b)

In the reference camera c0 = 5, position differences (in pixels)

between corresponding exact points (Eq. 6 and Eq. 7) and approx-

imate points (Eq. 13) . The largest errors are located in the border

of the images.

Correspondence matching:

Let us first present the correspondence matching done at

each scale of our multi-resolution algorithm. So, we as-

sume that the images are at the current resolution. Now,

we consider the Zero-mean Normalized Cross-Correlation

(ZNCC) as the similarity measure. More precisely, we note

µ(I(u, v), n) the average of image I in a squared neigh-

borhood of size (2n + 1)2 centered at (u, v), I(u, v) :=
I(u, v)−µ(I(u, v), n) and σ(I(u, v), n) the standard devi-

ation of image I in the same neighborhood. We also define

Î(u, v, i, j) =
I(u+ i, v + j)− µ(I(u, v), n)

σ(I(u, v), n)
. (17)

Then, given a reference view c0, the ZNCC is defined as

ZNCC(uc0 , vc0 , z) =

1

15(2n+ 1)2

∑

c 6=c0

n∑

i,j=−n

Îc0(uc0 , vc0 , i, j)·Îc(uc, vc, i, j) .

(18)

where (uc, vc) = (uc0 + d(z) · δuc, vc0 + d(z) · δvc).

With the notations above, depth estimation at each im-

age point (uc0 , vc0) ∈ Ic0 is performed minimizing the cost

function

Zc0(uc0 , vc0) = argmin
z∈[zmin,zmax]

ZNCC(uc0 , vc0 , z) . (19)

Multi-Resolution strategy:

Multi-resolution is a well-know strategy in stereo matching

[24]. Here, we have considered a pyramid in which, by

definition, I
(0)
c = Ic, ∀c, and at each scale k = 0, . . . ,K,

the image I
(k)
c is a downsampling of I

(k−1)
c by a factor of

2. Now, if we aim to estimate the depth of a reference view

c0, we start estimating the depth Z(K) at the coarsest scale

K using Eq. 19 (for the sake of simplicity we avoid writing

the index c0). The cost function is tested for all z = z
(K)
min+

l ·∆z(K); l = 0, ..., L where ∆z(K) = (z
(K)
max − z

(K)
min)/L.

Then, for the estimation of Z(K−1) we minimize again

Eq. 19 but using a different depth range depending on the

pixel position. Indeed, for each (u, v) ∈ I(K−1), we con-

sider the depth estimated values in the previous scale in a

given neighborhood

z
(K)
i,j = Z(K)(u/2 + i, v/2 + j); i, j = −n, ..., n (20)

and the depth ranges
[
z
(K)
i,j − ∆z(K)

2 , z
(K)
i,j + ∆z(K)

2

]
. So,

our algorithm minimizes Eq. 19 for all

z = z
(K)
i,j −

∆z(K)

2
+m ·

∆z(K)

M
,

i, j = −n, ..., n; m = 0, ...,M. (21)

The same reasoning is valid for the next scales until the

finest scale k = 0. In our implementation we have fixed

a squared neighborhood of size 3 × 3 (n=1), we consider

K = 4, L = 50 (subdivisions at the coarsest scale) and

M = 2 (subdivisions for the other scales). Note that the

initial depth range in the coarsest scale [z
(K)
min, z

(K)
max] varies

for each Light-Field sequence.

It is interesting to point out that our depth estimation

benefits from the fact that the previous algorithms in our

pipeline are extremely accurate, so our simple but efficient

algorithm produces precise depth estimates. Our pipeline

does therefore not include any particular filtering of the

depth maps. Also, our video sequences are processed in-

dependently for each view and without temporal coherence

constraints. This strategy allows us to capture and process

in a very fast manner Light-Field videos.
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Figure 5. Novel virtual view rendered at an intermediate position

of our camera rig.

3.5. Rendering

After depth estimation, a Multi-View plus Depth (MVD)

video is available. Different options for depth-based im-

age rendering are possible. While Synthetic Aperture Refo-

cusing has been proposed in the literature, when the Light-

Fields have been captured with a camera rig the resulting

images suffer from angular aliasing due to the poor angular

sampling. Instead, we believe that sparse Light-Fields are

better adapted to Dynamic Perspective Rendering. This is,

the estimated depth is used to render novel views different

from the captured available views. To this end the MVD

data is turned into a point cloud {Xw(c, u, v); Ic(u, v)}c,u,v

as follows:

Xw(c, u, v) = Pc ·



Zc(u, v) · K̂c

−1
·



u
v
1




1


 . (22)

Then the novel view is rendered by projecting the point

cloud onto a virtual pinhole camera defined by its intrinsic

and extrinsic matrices KR and QR.

4. Dataset and Experimental Results

We provide a set of synchronized Light-Field video se-

quences captured by a 4×4 camera rig at 30 fps. Each cam-

era has a resolution of 2048×1088 pixels and a 12mm lens.

The Field Of View (FOV) is 50◦ × 37◦. Fig. 7 shows one

camera image of one frame of the Light-Field sequences we

have captured. Our dataset has a number of close-ups se-

quences that are interesting for some specific use cases such

as realistic telepresence. Indeed, recovering 3D accurate in-

formation of faces is still a challenging problem because

very small errors may create unpleasant results. We have

also captured medium angle scenes (Painter, Birthday) and

other animated scenes where the movement does not come

from a human (Automaton, Theater, Train).

In our dataset, we consider the reference camera c0 =
(1, 1). This is s = t = 1. For each Light-Field sequence,

we will provide the intrinsic matrix of the reference pinhole

camera K̂c0 , the reference depth z0 and the chosen depth z1
for which the shifts (δuc, δvc) in Eq. 13 are computed.

For example, for the sequence Painter,

K̂c0 =



2340.14 0 1043.09

0 2340.14 480.46
0 0 1


 , (23)

we have chosen z0 = 100m and z1 = 1.630m and Table

1 shows the shifts (δuc, δuc). Note that, a different shift

table has to be computed for each sequence with different

calibration settings. Besides, given the geometric position

of our cameras in he rig and the fact that they are physically

well aligned, the computed shifts are close to be equispaced.

For example, if s = 0, the correspondent points at z =
z1 have a row shift of respectively 98.28, 98.14, 98.07 and

97.35 pixels. And at any z, the corresponding points have a

row shift of respectively 98.28·d(z), 98.14·d(z), 98.07·d(z)
and 97.35 · d(z) pixels. Considering these shifts is more

accurate than considering a perfect epipolar rectification of

the images.

s t 0 1 2 3

0
(
100.00
98.28

) (
−0.36
98.14

) (
−97.19
98.07

) (
−195.55
97.35

)

1
(
98.67
−1.73

) (
0.00
0.00

) (
−96.18
0.74

) (
−197.85

0.11

)

2
(

99.17
−99.93

) (
0.21

−99.11

) (
−98.33
−101.12

) (
−197.00
−99.07

)

3
(

99.08
−197.68

) (
−1.22

−198.14

) (
−99.26
−198.89

) (
−198.36
−199.37

)

Table 1. Values of the shifts (δuc, δvc) for the sequence Painter

with the reference camera c = (1, 1).

Fig. 6 shows the depth maps for the first frame of the

sequence Painter. The scene has many different objects

and a person walking on it. Fig. 8 shows the point clouds

obtained with our pipeline for the sequences Face1 and

Rugby. In particular, since our rig has been calibrated, our

16 depth maps are all projected into a precise point cloud.

Our pipeline does not have a proper filtering of the depth

maps. Instead, the only manipulation that has been done

in the point clouds is to remove completely isolated points

and points that have not been coherently estimated by at

least half of the cameras (8 cameras). While our camera

rig is not intended to provide complete 3D points clouds

of objects as 360-camera rigs would do, the visualization

of the point clouds from different viewpoints allows to as-

sess the accuracy of our depth estimates. Finally, Fig. 5

shows an image rendered from a virtual position different

from the camera positions of the camera rig using Eq. 22.
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Figure 6. Depth maps for each camera using our pipeline. No filtering has been done.

The rendering of such images allows to render the scene

with dynamic parallax.

Computational time Our first goal is to implement an

accurate pipeline that precisely captures and manipulates

data. We have also implemented our pipeline in GPU to

meet the computational time requirements of some applica-

tions. In particular, our fast implementation captures data in

real time using the registered geometry and color calibration

parameters. Demosaicking is done with a linear algorithm

in this case. Depth estimation, the step with highest com-

plexity, is performed at 22fps at the full image resolution

(2048×1088 color images) on an NVidia GTX 1080 Ti and

at 32fps on a Nvidia Quadro P6000. Our image rendering

for dynamic parallax is achieved in real time in GPU.

5. Conclusion

In this paper we have presented a complete pipeline for

accurately capture and process Light-Fields. Our pipeline

is suitable for real-time applications. We have also created

a dataset available at [1] that is our major contribution and

we believe will be of interest for the scientific community.

At this moment we believe that one of the major chal-

lenges for the community is to address the problem of

Light-Field video compression. Indeed, many capturing

systems generating a huge amount of data and many appli-

cations having very constrained transmission requirements,

compression is of utmost importance for the technology to

become popular.

Furthermore, while image and video editing is a well-

known problem an many tools exist, not many solutions

to edit Light-Field video have been studied. Such methods

would need to handle a big amount of data and to guarantee

inter-view coherence to succeed.
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