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Abstract

The quantity and diversity of data in Light-Field videos
makes this content valuable for many applications such
as mixed and augmented reality or post-production in the
movie industry. Some of such applications require a large
parallax between the different views of the Light-Field, mak-
ing the multi-view capture a better option than plenoptic
cameras. In this paper we propose a dataset and a com-
plete pipeline for Light-Field video. The proposed algo-
rithms are specially tailored to process sparse and wide-
baseline multi-view videos captured with a camera rig. Our
pipeline includes algorithms such as geometric calibration,
color homogenization, view pseudo-rectification and depth
estimation. Such elemental algorithms are well known by
the state-of-the-art but they must achieve high accuracy to
guarantee the success of other algorithms using our data.
Along this paper, we publish our Light-Field video dataset
that we believe may be of special interest for the commu-
nity [1]. We provide the original sequences, the calibration
parameters and the pseudo-rectified views. Finally, we pro-
pose a depth-based rendering algorithm for Dynamic Per-
spective Rendering.

1. Introduction

Since the introduction of the concept of integral pho-
tography [20], tremendous advances on Light-Fields have
been done on the computational photography community.
In particular, the availability of plenoptic cameras such as
Lytro! or Raytrix” has originated the bloom of new research
on the field during the last years, being now a very ma-
ture topic. Besides plenoptic cameras, Light-Fields can
also be captured with camera arrays [33], robotic arms
[19] or hand held cameras [7]. However, each acquisi-
tion system samples the plenoptic function (light rays in
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the three-dimensional space) [2] very differently. Indeed,
plenoptic cameras produce great angular resolution at the
cost of reducing the spatial resolution. On the contrary,
multi-view systems have good spatial resolution but usu-
ally do not have many available views. Existing multi-view
Light-Field systems with a great number of views are gen-
erally impractical due to the amount of data and the com-
plexity of the capturing system. So, in general, plenop-
tic cameras capture dense and narrow-baseline Light-Fields
and multi-view systems capture sparse and usually wide-
baseline Light-Fields. While all Light-Field acquisition
systems share the same theoretical principle, depending on
the application, one type of acquisition or another would be
preferred. Indeed, the baseline, the resolution and the num-
ber of views makes each acquisition system very specific
and suitable for the needs of a given application. As a con-
sequence, due to the data variability, processing algorithms
need to be specifically tailored for each acquisition system.
Besides the spatio-angular resolution, another particularity
of the Light-Field acquisition systems is the capacity to cap-
ture video.

In terms of applications, the availability of wide-baseline
Light-Field videos opens the door to new possibilities com-
pared to conventional cameras. For example, 3D Television
(BDTV), Free-view Television (FTV) [36], or mixed and
augmented reality as proposed by MagicLeap® or Microsoft
Hololens®. In particular, Light-Field videos are fundamen-
tal when the inserted content is not Computer Generated
(CG) and the goal is to produce a plausible and immersive
experience.

In this paper we focus on camera arrays as a video Light-
Field capturing system. In particular we present a 4 x 4 syn-
chronized camera rig. Our system belongs to the multi-view
category and shares the same assumptions than [10] con-
cerning the captured scenes. This is, we assume to capture
Lambertian textured surfaces. However, we would like to
make the difference between the general multi-view frame-
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work in [10] and a Light-Field multi-view setup. The dif-
ference remains in the density of views (and the number of
light rays imaging each point of the scene) which requires
different algorithms in order to optimally process the data.

2. Related Work

Existing Light-Field datasets, [14] [33] [25] [18] [26],
either synthetic or from real acquisition systems (plenop-
tic cameras, camera arrays or gantries) are essentially still
Light-Fields. The only exception is the video Light-Field
dataset recently proposed by Dabala et al. [6] which turns
out to be the closest work to ours, since it also presents a
pipeline for camera rigs. Our pipeline, though, takes into
account color homogenization and the precise geometric
position of the cameras given by calibration, which allows
to relax some constraints on the depth estimation. The pa-
per of Basha et al. [3] also deals with multi-view video. The
authors propose to jointly estimate the 3D motion (scene
flow) and the 3D reconstruction of the scene captured with
a camera rig assumed to be calibrated and having a small
baseline.

Pipelines for plenoptic cameras have also been proposed
[13] [29] [5] but due to the different nature of plenoptic
Light-Field data compared with camera rigs, the algorithms
are sorely different.

Geometric calibration is a well studied problem [12] but
it is generally not addressed by multi-view pipelines even
if it is of paramount importance for the accuracy of the se-
quel processing. Camera manufacturers do not provide this
information neither, specially when their cameras are used
to build camera rigs. Previous work on multi-camera cali-
bration includes [31] that studies a calibration method for
planar camera arrays and [34] that assumes a more gen-
eral camera setup but imposes a rigid constraint between
the viewpoints. Other techniques specifically developed for
Structure from Motion (SfM) such as Sparse Bundle Ad-
justment [21] can also provide multi-view calibration.

Regarding color calibration, when the cameras are not
known, a family of algorithms using image correspon-
dences allows to tonally stabilize videos [9] or to color ho-
mogenize different cameras of the same scene [32]. With
the same philosophy, [23] uses spatio-temporal correspon-
dences for multi-view video color correction. Nevertheless,
in our pipeline we exploit the fact that we have full knowl-
edge of our cameras and the capture setup. So we have an
approach more similar to [17] in which a method for cali-
brating large camera arrays is presented.

Camera arrays have more capabilities compared to con-
ventional images or video as it has been proved in a num-
ber of related papers. For instance, tracking through occlu-
sions [16], multi-object detection [28], reconstructing oc-
cluding surfaces [30] [27] or creating All-In-Focus images
[35]. Another application of multi-view systems concern

Synthetic Aperture refocusing but the reduced number of
available views creates angular aliasing. In [15] an algo-
rithm for fast realistic refocusing for sparse Light-Fields is
presented.

All the above applications share the fact that they es-
timate and exploit the depth map of the captured scene.
More precisely, in [27], depth estimation is formulated as
an energy minimization problem with an intensity consis-
tency and a smoothness term. In [35] a Light-Field visibil-
ity term is also considered in the energy. In [30] different
cost functions for large camera arrays are compared in terms
of robustness to occlusions. It is interesting to point out that
most of the proposed methods estimate the depth for a view-
point that is not necessarily one of the available viewpoints
in the Light-Field. We have observed that this strategy is
more prone to errors and instead we estimate a depth map
for each available view-point in the Light-Field.

Finally, in Lu et al. [22] a survey on multi-view video
synthesis and editing is presented.

3. Pipeline

In this paper we consider the 2 plane parameterization
as in [11][19]. So, the 4D Light-Field L(s,t,u,v) is pa-
rameterized such that each view (s, t) has pixels (u, v). We
also consider that the light rays coming from the same scene
point should be captured with the same radiance in the dif-
ferent views when the object is Lambertian. This is, corre-
sponding pixels from different views should have the same
color. As a consequence, we have included in our pipeline
a color homogenization step. Besides, our camera rig has
carefully been calibrated. Calibration parameters are used
to project the images to a reference plane while removing its
distortion. We call such images pseudo-rectified images to
differentiate them from epipolar rectified images. Our strat-
egy has the advantage that point correspondences between
images can be found with simple translations without the
need to deproject in the space and project in a new view
each image point, which accelerates our pipeline consider-
ably.

Our pipeline also includes a depth estimation step, which
provides a depth for each camera. Our algorithm is multi-
scale and uses all images for estimating each depth map.

Finally, we propose a real time algorithm for Light-Field
rendering which estimates intermediate (virtual) views of
the light-field, so the captured Light-Field sequence can be
watched with a dynamic parallax.

3.1. Capture

Our camera rig is made of 16 cameras whose sensors
are manufactured by CMOSIS (CMV2000) and packaged
by IDS. The 16 cameras are controlled through the UEye
APIL. Our multi-view Light-Field video is fully synchro-
nized. Fig. 1 shows our camera setup.
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Figure 1. Our camera rig setup.

3.2. Color homogenization and Demosaicking

Let RAW, : Q C N2 — N be the c-th captured raw
image. In particular,

RAW, = (RAW!, RAWY, RAW?) (1)
where RAWY (u,v) = RAW? (u,v) = 0if (u,v) is a red
pixel in the Bayer pattern (and respectively for green and
blue pixels).

Our goal is to homogenize the color of all captured im-
ages with respect to a reference camera ¢g. In order to do
so, we describe here all the steps that need to be done before
and after capturing the sequences.

o Black level setting - The black level is a hardware pa-
rameter that allows to control the pixel sensitivities in
total darkness. It is important to tune this parameter for
each camera to correctly capture intensities in low light
conditions. Indeed, if the black level is set to 0, the sen-
sor looses information because it records an intensity
of 0 in dark scenes instead of low intensities. In order
to avoid this to happen, we set our camera rig in total
darkness (covering the cameras) and we increment the
black level of each camera until 95% of pixels record
an intensity different of 0. We have observed that after
this manipulation, the black level hardware parameter
of each camera is close to 4 and all captured images in
total darkness have an intensity between 0 and 10.

e Bias map estimation - After the black level setting,
we capture a dozen of raw images in total darkness
for each camera c¢. Averaging such captured images
for each camera ¢, we obtain the bias map B,, which
records the minimum count for each pixel.

e Aperture rig calibration - In order to calibrate the
apertures of the cameras, we first set the desired aper-
ture on the reference camera cy. Afterwards, a flat illu-
minated led panel covered with a diffuser (white scene)
is placed in front of the camera rig, so all cameras ob-
serve it while white raw images W, are captured with

Figure 2. Left: Captured white scene with exposure time of 2ms.
Images are demosaicked for the sake of visualization. Before cor-
rection the cameras capture a greenish color with many differences
for each camera. Right: raw white images after bias and gain
map correction. The corrected intensities have been clipped to
[200, 210] to better evaluate the similarity. Vignetting is also cor-
rected by applying the gain map.

the same exposure time. After subtracting the corre-
sponding bias map to the raw white images, the aver-
age intensity . is computed:

th(u, v))

| Z Z WCh (u,v)
(u v)€EQ ch=r,g,b
2
Finally, the aperture rings of the other cameras ¢ # ¢g
are tuned until :T; =1+0.02.

e Gain map estimation - When the apertures of all cam-
eras are homogeneous, we capture new raw white im-
ages for each camera W ;, ¢ = 1,--- , N and we com-
pute the gain map as:

N
Gulurn) = 57 Wealtet) “Belwr) -
i=1

Heo

Then, the raw image corrected with the bias and gain
maps is computed as

RAW, = —F~ = “4)

The resulting image is vignetting-free and homoge-
neous in colors with the remaining images. Fig. 2
shows the 16 captured images with our rig of a white
scene before and after bias and gain correction. Note
that the intensity values of all cameras after correction
are very similar and independently of the color chan-
nel, meaning that all color channels are homogeneous.
However the bias and gain correction may not be suffi-
cient to have homogeneous colors with a different ex-
position. Indeed, the gain map is estimated with a ref-
erence exposure time but not all cameras have the same
response with a different exposure. For this reason, we
have a last step in our color homogenization method.

e Color correction - In order to be robust to the different
exposures, we measure the average 1S of each color
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Figure 3. 16 patches side by side from all cameras corresponding
to 4 different colors in the MacBeth color chart.

channel ch and each camera c for different exposures
exp. Then, we estimate the regression line via least
squares fitting of 1S (exp) for each ch and ¢. Let af”
and B¢ be the slope and offset of each regression line.
In this manner, the color corrected raw images are de-
fined as

" ch Al ch
RAW, (u,v) = ag" « RAW . (u,v) + 6% . (5)

After color homogenization, the images RAW ¢ are de-
mosaicked using the algorithm in [8] which has proved to
outperform with respect to the state-of-the-art. In the se-
quel, the resulting demosaicked images are noted IS°/°".

In order to measure the accuracy of our colorimetric cor-
rection we have captured a MacBeth color chart. After cor-
recting the images with the aforementioned processing, we
have measured the color average of 25 x 25 homogeneous
patches for each color in the MacBeth color chart. We have
measured the standard deviation among all views. We have
observed that the red channel has a slightly less accurate
homogenization (¢” = 2.2 compared to 09 = 0.8 and
o? = 0.9). See Fig. 3 illustrating the color correction for
some of the MacBeth colors.

Note that the described method needs to be done once
for all. Then, the bias and gain maps, as well as the 16 x 3
slopes and offsets « and § are registered and used during
each capture. However, if the aperture has to be changed,
the homogenization of the aperture needs to be done again
before the capture. It is worth noting that the procedure for
color correction defines a linear correction which follows
the assumption of linear sensitivity of the pixels. It is also
interesting to point out that our method aims to homogenize
the colors and intensities of all cameras with respect to a
reference camera but we have not tried to calibrate our rig
to a referent illuminant. In the case that we require such
a calibration, it would be enough to calibrate the reference
camera with the desired illuminant before we run our ho-
mogenization method.

3.3. Calibration and Geometry Processing

Our rig has carefully been arranged trying to place the
cameras in the same plane, having parallel principal axis
and being equidistant (same horizontal and vertical base-
line). However, the manual alignment not being perfect, a
calibration has been implemented in our pipeline. Intrin-
sic and extrinsic parameters are estimated with Sparse Bun-
dle Adjustement, based on the software package in [21].
The cameras are calibrated to fit a distorted pinhole projec-
tion model similar to the one proposed in [4]. In particular,
the calibration module considers a set of corner pixel posi-
tions computed from several checkerboard captured images.
Considering a camera, we denote P = [R T] € R3xy
the camera pose matrix in the World coordinate system and
Q= [R' —RT] € Ryyy its extrinsic matrix. Now
if X, is a 3D point in the World coordinate system and X
is the corresponding point in the camera coordinate system,
thenX,, =P- (¥) and X = Q- (¥1).

o
Let K = [0 A-f ¢, | be the intrinsic matrix of
0 0 1

the camera, where f is the distance from the optical cen-
ter to the sensor expressed in pixels, (¢, ¢,) is the principal
point, A is the aspect ratio, and -~y is the skew coefficient.
Let W be the distortion warping operator that affects 3D
points projections in the cameras coordinate system. The
radial distortion is expressed as a polynomial function in
the plane z = 1m as W(z) =(1+ar?+ a2r4)(2), where
r= VPP

Then, given a 3D point X,, in the World coordinate sys-
tem, its projection in pixel coordinates (u,v) in the camera
image plane is determined by

u

v]| =K- (W(Z)> (6)
1

1

where

p
1) =@ <Xf“> ™
1

Note that, using homogeneous coordinates

D x _
qu@{p ¥

q:

we vy

Image Pseudo-Rectification:
After calibration, K, W and Q are known for each camera ¢
which allows to determine for a given depth z correspondent
points in different images using Eq. 6 and Eq. 7. However,
the projection and deprojection process has a high compu-
tational complexity due to the non linear distortion. In order
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to accelerate our pipeline, our images are warped such that
corresponding points between images are found with simple
translations. This assumption stands in our setup because
our cameras are almost coplanar.

Formally, let 1¢°°" be the original color images that
have been color corrected and demosaicked, where ¢ =
(s,t);s,t = 0,...,3; is the camera index of the camera
placed at the s-th column and ¢-th row of the camera ar-
ray. From I2°'°" we compute the so-called pseudo-rectified
views I, which are the projections onto a reference cam-
era ¢y at a reference depth 2 of the original images I¢°°.
More precisely, the pseudo-rectified images I, are defined
at pixel (u,v) € N? as

Ie(u,v) = I (W, 0') 9)
where
u »
v | =K, - (Wc(‘?)) (10)
1
1
and

p —-1

~ Q.- P, | 20 Ke, v
T1=%"1o 0 o0 1 ’
1 1

(11
W, K, and Q. being the distortion, the intrinsic and ex-
trinsic matrices of camera ¢, P, the pose matrix of the ref-

—_

erence camera ¢y and K¢, the intrinsic matrix of a virtual
pinhole camera derived from K., which skew coefficient
and aspect ratio are respectively set to 0 and 1:

- f 0 ¢
Ko, =0 [ ¢ (12)
0O 0 1

Note that in order to compute /. in Eq. 9, the images
Ic°'° need to be interpolated since (u/,v') € R2. In our
pipeline, a Lanczos kernel has been used for interpolation.
Note also that the projection at a reference depth z, of
each image I5°!°" does not ensure the image domains to be
equal. This is, (u’,v") in Eq. 9 may not belong to the image
domain of I¢°°". In that case, empty pixels are colored
with pure green RGB=(0, 255, 0). Nevertheless, in order to
minimize the number of such empty pixels, the reference
depth zy has been set to an arbitrarily large distance from
the cameras.

Using Pseudo-Rectified Images:
With the notations above, let Z,, : N? — R be the
depth map of the reference camera ¢q. Then, given a pixel
(tey, Vey) € N? in the pseudo-rectified image I, its cor-
respondent point (ue,v.) € R? in I. can be found with a

simple pixel translation:

ue\ (e, OUe
(Uc> B (%o) +D(UCO7UCO)' <6'Uc) ’ (13

where D : N2 — R is defined as

Zeq (Uep Ve, T
D(uey ) = “o e (14)
zZ1 zZ0

and (due, 0v,) is the disparity shift which corresponds to the
shift in pixels between the projected point at depth z; # 2o
and the projected point at the reference depth zj.

Thanks to the coplanar assumption, for each camera c,
the disparity shift (Ju,, dv.) is constant over the whole im-
age. Nevertheless, if the cameras are not coplanar, Eq. 13
does not stand. For this reason, since our rig may not be
perfectly coplanar (Fig. 4-(a)), we have evaluated the differ-
ent pixels positions when computing exact pixel correspon-
dences via projection and deprojection (Eq. 6 and Eq. 7)
and the approximate pixel correspondences via pixel trans-
lation (Eq. 13). We have measured that such difference is
only of 0.32 pixels in average at a distance of 1.9m, which
is totally acceptable, knowing the computational complex-
ity drop of using Eq. 13 instead of Eq. 6 and Eq. 7. Fig.
4-(b) shows the largest and the average error per camera.

Therefore, Synthetic Aperture Refocusing can be com-
puted easily. In particular, a refocused image at depth z
can be computed with the provided images I, for each pixel
(u,v) € N? as

S*(u,v) = % Zlc(u—i-d(z)-éuc, v—l—d(z)-évc), (15)

where
1_ 1
d(z) = +—2-. (16)
2z

3.4. Depth Estimation

In order to estimate the depth, our pipeline has a multi-
resolution matching approach that estimates a depth map for
each image of the camera rig. The multi-resolution strategy
allows to compute accurately the depth maps in a fast man-
ner.

In this sense, the closest work to ours is [6]. However
our algorithm uses a different similarity measure and does
not impose a coherence matching among all views at each
scale. Compared to other existing depth estimation methods
[30][27][35], our approach is significantly different since
depth estimates are not done for one single and virtual view.
In our experiments we have observed that this is a key factor
on the depth estimation quality.
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Figure 4. (a) Shift in z with respect to the camera reference ¢o = 5.
The rig is almost coplanar since the biggest shift is 2.73mm. (b)
In the reference camera ¢y = 5, position differences (in pixels)
between corresponding exact points (Eq. 6 and Eq. 7) and approx-
imate points (Eq. 13) . The largest errors are located in the border
of the images.

Correspondence matching:
Let us first present the correspondence matching done at
each scale of our multi-resolution algorithm. So, we as-
sume that the images are at the current resolution. Now,
we consider the Zero-mean Normalized Cross-Correlation
(ZNCC) as the similarity measure. More precisely, we note
w(I(u,v),n) the average of image I in a squared neigh-
borhood of size (2n + 1)? centered at (u,v), I(u,v) =
I(u,v) — u(I(u,v),n) and o(I(u,v),n) the standard devi-
ation of image I in the same neighborhood. We also define

It i+ §) — p(I(w,0),m)
o(T(u,v).)

T(u,v,i,5) = (17)
Then, given a reference view ¢y, the ZNCC is defined as

ZNCC(ucO,vco,z) =

2n+ 22 Z

c#ep 1,j=—n

ucO,’Uco, ) )IC(UC,UCaivj)'

(18)

where (e, Ve) = (tey + d(2) * dte, Vey + d(2) - dve).
With the notations above, depth estimation at each im-
age point (Ue,, Vey) € Ie, i performed minimizing the cost

function

argmin = ZNCC(Ugy, Veys 2) -

2€[Zmin,Zmaz]

ZC(] (uC(J)UC()) = (19)

Multi-Resolution strategy:
Multi-resolution is a well-know strategy in stereo matching
[24]. Here, we have considered a pyramid in which, by
definition, IC(O) = I, Ve, and at each scale £k = 0,..., K,
the image Ic(k) is a downsampling of I.Sk_l) by a factor of
2. Now, if we aim to estimate the depth of a reference view
¢y, we start estimating the depth Z ) at the coarsest scale
K using Eq. 19 (for the sake of simplicity we avoid writing
the index ¢g). The cost function is tested for all z= znt;)l +
1-Az5);1=0,..., L where Az(K) = (z ) — zfnljzb)/l;

Then, for the estimation of Z5—1) we minimize again
Eq. 19 but using a different depth range depending on the
pixel position. Indeed, for each (u,v) € I (K=1) we con-
sider the depth estimated values in the previous scale in a
given neighborhood

L)

) =28 (watiofa+ ) dj=-n,.n (20)
and the depth ranges [ — a:9 P 2211 S0,
our algorithm minimizes Eq. 19 for all

(K AzE)
(K) Az z
2=z, 5 +m- M
5,7 =—-n,...n;, m=0,....M. (21)

The same reasoning is valid for the next scales until the
finest scale k = 0. In our implementation we have fixed
a squared neighborhood of size 3 x 3 (n=1), we consider
K = 4, L = 50 (subdivisions at the coarsest scale) and
M = 2 (subdivisions for the other scales). Note that the
initial depth range in the coarsest scale [z 7(,5,)“ zﬁna)m] varies
for each Light-Field sequence.

It is interesting to point out that our depth estimation
benefits from the fact that the previous algorithms in our
pipeline are extremely accurate, so our simple but efficient
algorithm produces precise depth estimates. Our pipeline
does therefore not include any particular filtering of the
depth maps. Also, our video sequences are processed in-
dependently for each view and without temporal coherence
constraints. This strategy allows us to capture and process
in a very fast manner Light-Field videos.
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Figure 5. Novel virtual view rendered at an intermediate position
of our camera rig.

3.5. Rendering

After depth estimation, a Multi-View plus Depth (MVD)
video is available. Different options for depth-based im-
age rendering are possible. While Synthetic Aperture Refo-
cusing has been proposed in the literature, when the Light-
Fields have been captured with a camera rig the resulting
images suffer from angular aliasing due to the poor angular
sampling. Instead, we believe that sparse Light-Fields are
better adapted to Dynamic Perspective Rendering. This is,
the estimated depth is used to render novel views different
from the captured available views. To this end the MVD
data is turned into a point cloud {X,, (¢, u, v); Ie(u, V) e u,v
as follows:

(22)

Then the novel view is rendered by projecting the point
cloud onto a virtual pinhole camera defined by its intrinsic
and extrinsic matrices K and Qp.

4. Dataset and Experimental Results

We provide a set of synchronized Light-Field video se-
quences captured by a 4 x 4 camerarig at 30 fps. Each cam-
era has a resolution of 2048 x 1088 pixels and a 12mm lens.
The Field Of View (FOV) is 50° x 37°. Fig. 7 shows one
camera image of one frame of the Light-Field sequences we
have captured. Our dataset has a number of close-ups se-
quences that are interesting for some specific use cases such
as realistic telepresence. Indeed, recovering 3D accurate in-
formation of faces is still a challenging problem because
very small errors may create unpleasant results. We have
also captured medium angle scenes (Painter, Birthday) and
other animated scenes where the movement does not come
from a human (Automaton, Theater, Train).

In our dataset, we consider the reference camera ¢y =
(1,1). Thisis s = t = 1. For each Light-Field sequence,

we will provide the intrinsic matrix of the reference pinhole
camera K; the reference depth zy and the chosen depth z;
for which the shifts (du, dv.) in Eq. 13 are computed.

For example, for the sequence Painter,

(234014 0 1043.09
K, = 0  2340.14 480.46 | , (23)
0 0 1

we have chosen zg = 100m and z; = 1.630m and Table
1 shows the shifts (duc, duc). Note that, a different shift
table has to be computed for each sequence with different
calibration settings. Besides, given the geometric position
of our cameras in he rig and the fact that they are physically
well aligned, the computed shifts are close to be equispaced.
For example, if s = 0, the correspondent points at z =
z1 have a row shift of respectively 98.28, 98.14, 98.07 and
97.35 pixels. And at any z, the corresponding points have a
row shift of respectively 98.28-d(z), 98.14-d(z), 98.07-d(z)
and 97.35 - d(z) pixels. Considering these shifts is more
accurate than considering a perfect epipolar rectification of
the images.

a0 1 2 3

0 | (osas) | Gosra) | Conor) | Corss’)
FL %) | Goo) | Com® | Com™)
2 | (S | (Coonn) | Giori2) | (Togor)
301 (576 | (Cronna) | (Gosso) | (Caoo'as)

Table 1. Values of the shifts (duc, dve) for the sequence Painter
with the reference camera ¢ = (1, 1).

Fig. 6 shows the depth maps for the first frame of the
sequence Painter. The scene has many different objects
and a person walking on it. Fig. 8 shows the point clouds
obtained with our pipeline for the sequences Facel and
Rugby. In particular, since our rig has been calibrated, our
16 depth maps are all projected into a precise point cloud.
Our pipeline does not have a proper filtering of the depth
maps. Instead, the only manipulation that has been done
in the point clouds is to remove completely isolated points
and points that have not been coherently estimated by at
least half of the cameras (8 cameras). While our camera
rig is not intended to provide complete 3D points clouds
of objects as 360-camera rigs would do, the visualization
of the point clouds from different viewpoints allows to as-
sess the accuracy of our depth estimates. Finally, Fig. 5
shows an image rendered from a virtual position different
from the camera positions of the camera rig using Eq. 22.
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Figure 6. ept maps for each

4

The rendering of such images allows to render the scene
with dynamic parallax.

Computational time Our first goal is to implement an
accurate pipeline that precisely captures and manipulates
data. We have also implemented our pipeline in GPU to
meet the computational time requirements of some applica-
tions. In particular, our fast implementation captures data in
real time using the registered geometry and color calibration
parameters. Demosaicking is done with a linear algorithm
in this case. Depth estimation, the step with highest com-
plexity, is performed at 22fps at the full image resolution
(2048 x 1088 color images) on an NVidia GTX 1080 Ti and
at 32fps on a Nvidia Quadro P6000. Our image rendering
for dynamic parallax is achieved in real time in GPU.

5. Conclusion

In this paper we have presented a complete pipeline for
accurately capture and process Light-Fields. Our pipeline
is suitable for real-time applications. We have also created
a dataset available at [!] that is our major contribution and
we believe will be of interest for the scientific community.

At this moment we believe that one of the major chal-
lenges for the community is to address the problem of
Light-Field video compression. Indeed, many capturing
systems generating a huge amount of data and many appli-
cations having very constrained transmission requirements,
compression is of utmost importance for the technology to
become popular.

Furthermore, while image and video editing is a well-
known problem an many tools exist, not many solutions
to edit Light-Field video have been studied. Such methods
would need to handle a big amount of data and to guarantee

H 4.1 R
camera using our pipeline. No filtering has been done.

inter-view coherence to succeed.
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