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Abstract

When an attacker wants to falsify an image, in most of

cases she/he will perform a JPEG recompression. Differ-

ent techniques have been developed based on diverse the-

oretical assumptions but very effective solutions have not

been developed yet. Recently, machine learning based ap-

proaches have been started to appear in the field of image

forensics to solve diverse tasks such as acquisition source

identification and forgery detection. In this last case, the

aim ahead would be to get a trained neural network able,

given a to-be-checked image, to reliably localize the forged

areas. With this in mind, our paper proposes a step forward

in this direction by analyzing how a single or double JPEG

compression can be revealed and localized using convolu-

tional neural networks (CNNs). Different kinds of input to

the CNN have been taken into consideration, and various

experiments have been carried out trying also to evidence

potential issues to be further investigated.

1. Introduction

Nowadays the pervasiveness of images and also videos

as primary source of information has led the image foren-

sics community to question about their reliability and in-

tegrity more and more often. The context in which pictures

are involved is disparate. A magazine, a social network, an

insurance practice, an evidence for a trial. Such images can

be easily altered through the use of powerful editing soft-

ware, often leaving no visual trace of any modification, so

answering reliably about their integrity becomes fundamen-

tal. Image forensics deals with these issues by developing

technological instruments which allow to determine, only

on the basis of a picture, if that asset has been modified and

sometimes to understand what has happened localizing the

tampering. Regarding forgeries individuation three are the

∗indicates equal contribution and corresponding authors.

principal classes of detectors studied so far: those based on

features descriptors [1, 6, 7], those based on inconsistent

shadows [10] and finally those based on double JPEG com-

pression [25, 5, 13, 14, 2].

In recent years, machine learning and neural networks,

such as convolutional neural networks (CNNs), have shown

to be capable of extracting complex statistical features and

to efficiently learn their representations, allowing to gener-

alize well across a wide variety of computer vision tasks,

including image recognition and classification and so on

[11, 8, 18, 9, 21]. The extensive use of such networks in

many areas has motivated and led the multimedia forensics

community to comprehend if such technological solutions

can be employed to exploit source identification [20, 3] or

for image and video manipulation detection [15, 16, 4, 23].

In particular, Wang et al. [23] use the histogram of Dis-

crete Cosine Transform (DCT) coefficients as input to a

CNN to detect single or double JPEG compressions in or-

der to detect tampered images. The main idea behind [15, 4]

is to develop a sort of pre-processing module, designed to

suppress image content before training a CNN; while, in

[16] the CNN architecture is fed with patches without pre-

processing and tampered patches are extracted from the bor-

ders of the tampered areas. Although the interest in neural

network in image forensics domain is growing, a real com-

prehension of what is possible to accomplish with it is still

in an early stage.

This paper presents a step forward in this direction. Our

objective is to train a neural network that, given a to-be-

checked image, is able to reliably localize the possible

forged areas by analyzing the presence of single or dou-

ble JPEG compressed areas. In particular, different kinds of

CNNs-based approaches have been proposed and different

inputs to the nets are given. First of all, a spatial domain-

based CNN is exploited performing image forgery detection

starting from the RGB color images; neither pre-processing

is carried out nor side information on the borders of the tam-

pered area is adopted. The CNN is trained to distinguish

53



data	909x1

Conv 1D

3x1,	100

Max

Pooling

2x1

Conv 1D

3x1,	100

Max

Pooling

2x1

Output	9	

classes

data	64X64x3

Conv 2D

3x3,	32

Conv 2D

3x3,	32

Max

Pooling

2x2

Conv 2D

64,3x3	
Conv 2D

64,	3x3

Max

Pooling

2x2

Output	9	

classes

RELU RELU RELU RELUDROPOUT DROPOUT SOFTMAX

RELU RELU SOFTMAXRELU,	DROPOUT RELU,	DROPOUT

RELU,	DROPOUT

Fully

Connected

256

907x100 453x100 451x100 225x100 256256 9

62x62x32 60x60x32 30x30x32 28x28x64 26x26x64 13x13x64 256 9Fully

Connected

9

Fully

Connected

256

Fully

Connected

256

Fully

Connected

256

Figure 1: Architecture of the CNNs: frequency domain-based CNN (top) and spatial domain-based CNN (bottom).

among uncompressed, single and double JPEG compressed

images, to reveal the primary (hidden) JPEG compression

and then localize the forgery regions. Secondly, another

frequency domain-based CNN is introduced taking as input

to the net the histogram of the DCT coefficient similarly

as [23]. The third proposed approach is a multi-domain-

based CNN able to join the two previous input information

on RGBs patches and on DCT histograms. The main contri-

bution of this work is to explore the use of a spatial domain

CNN and its combination with the frequency domain for

the image forgery detection task. Disparate experimental

tests have been carried out trying also to evidence potential

issues to be further investigated and improved.

The rest of the paper is organized as follows. In Section

2 we discuss the proposed approaches; Section 3 contains

experimental results, while conclusions and open issues are

finally drawn in Section 4.

2. CNN-based proposed approaches

In this work, our objective is to investigate the possibil-

ity to discern among uncompressed, single or double com-

pressed images with the intent to detect image regions in-

volved in a splicing attack. In addition to this, our sec-

ondary goal is to reveal the primary quality factor applied to

the image or to the patch before the secondary compression

is applied. To accomplish this task three different CNN-

based approaches are devised on the basis of the input data

given to the net and on the net itself. A convolutional neu-

ral network consists of several cascaded of convolutional

layers and pooling layers followed by one or more fully-

connected layers. Each considered CNN in the proposed

approaches differs from the others in how components of

the nets are combined together and from the number of lay-

ers employed, as described in detail in the following. In

order to learn discriminant features directly from data a con-

sistent set of labeled images is needed in the training phase.

For this reason, for all the considered approaches, images of

different sizes are subdivided in patches (not overlapping)

and then each of them is fed to the net. Differently from the

input, that it is different among the approaches, the output

of the nets is the same. In particular, the three different pro-

posed CNNs are able to discern among 9 classes: uncom-

pressed, single compressed and double compressed patches

(7 quality factors from 60 to 95, step by 5 is considered).

2.1. Spatial­domain CNN

In the first CNN-based approach, named spatial domain-

based CNN, the input of the net is a NxN size patches

on the three color channels (RGB), pre-processing is not

considered at all and only a normalization of the data (be-

tween 0 and 1) is performed. First of all a convolutional

network [12] is designed and it is summarized in Figure 1

(top). This particular net is composed by two convolutional

blocks and two fully connected layers. Each convolutional

block is composed by two convolutional layers with ReLU

activation followed by a pooling layer. All convolutional

layers use a kernel size of 3x3 while pooling layer kernel

size is 2x2. In order to prevent overfitting, we use Dropout

[19] that randomly drops units at training time from the

fully connected layers. In particular, a CNN of this kind

is trained for each of the considered secondary quality fac-

tor QF2 = 60 : 5 : 95. Thus, we obtained eight different

classifiers corresponding to each value of QF2. Each clas-

sifier is required to output two levels of classifications for

an input patch. The first is an inter-class categorization be-

tween uncompressed, single compressed and double com-

pressed patch. The second is the intra-class of the QF1

(ranging in 60 : 5 : 95, excluding QF1 = QF2) in the case

of double compressed patches. We thus choose to output

9 plain classes, the uncompressed class, the single com-
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pressed class and a class for each QF1. As a result, the last

fully connected layers of the CNN is sent to a nine-way soft-

max connection, which produces the probability that each

sample should be classified into each class. As loss func-

tion, we use a categorical cross-entropy function [22]. We

note that mis-classifying the intra-class of a double com-

pressed patch is a smaller error compared to wrongly clas-

sify the inter-class of a patch. So, we adjust the loss to

weight an intra-class error as 1/9 of an inter-class error. In

our preliminary experiments, this improved the intra-class

classification accuracy.

The proposed CNN model is trained based on the la-

beled patch samples from the training set composed by

uncompressed, single or double compressed patches (i.e

QF2 = 90 and QF1 varies from 60 to 95). In the test phase,

one of the eight trained CNN (selected accordingly to the

quality factor saved in EXIF header of the JPEG format)

is used to extract the patch-based features for a test image

by applying a patch-sized sliding window to scan the whole

image, assigning a class for each patch and therefore per-

forming localization at image level.

2.2. Frequency­domain CNN

In the second proposed approach, frequency domain-

based CNN, a pre-processing is performed for a given patch

computing the histogram of the DCT coefficients following

the idea in [23] expanding the number of the evaluated co-

efficients. In detail, given a NxN patch, DCT coefficients

are extracted and, for each 8x8 block, the first 9 spatial

frequencies in zig-zag scan order (DC is skipped) are se-

lected. For each spatial frequency i, j, the histogram hi,j ,

representing the occurrences of absolute values of quantized

DCT values, is built. In detail, hi,j(m) is the number of

values m in the histogram of the i, j DCT coefficient with

m = (−50.., 0..,+50). So the network take in total a vec-

tor of 909 elements (101 histogram bins x 9 DCT frequen-

cies) as input. Again, as before, an array of eight CNNs is

trained, each of them corresponding at the different values

of the second compression quality factor QF2. The feature

vector is then used to train each CNN, in order to distin-

guish among the 9 classes defined before (uncompressed,

single compressed and double compressed with QF2 fixed

and primary quality factors varying in QF1 = 60 : 5 : 95).

The architecture of the proposed CNN model is illustrated

in Figure 1 (bottom). It contains two convolutional layers

followed by two pooling connections and three full connec-

tions. The size of the input data is 909x1, and the output

is a distribution of nine classes. Each fully connected layer

has 256 neurons, and the output of the last one is sent to a

nine-way softmax, which produces the probability that each

sample should be classified into each class. In our network,

rectified linear units (ReLUs) f(x) = max(0, x) as activa-

tion function, are used in each layer. In both fully connected
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Figure 2: Architecture of the multi-domain CNN.

layers, the Dropout technique is used.

2.3. Multi­domain CNN

The third considered approach is a multi-domain CNN

where the three channels color patch and the histogram of

DCT coefficient computed on the patch serve as input of

the net in order to combine the previous two approaches.

In Figure 2 the proposed net is depicted and it consists of

one spatial domain-based CNN and one frequency domain-

based CNN up to their first respective fully connected lay-

ers. The multi-domain-based CNN learns the inter-modal

relations between features coming from R,G,B domain and

from the histogram of DCT joining together the outputs of

the fully connected layers of the two nets (256 dimensions

each). In this way the last fully connected layer has 512

neurons, and the output is sent to a nine-way softmax con-

nection, which produces the probability that each sample

is classified into each class also using a dropout layer. So,

as well as before, eight different 9 classes classifiers are de-

vised corresponding to each value of QF2. The training and

testing phase are performed as before.

3. Experiments

In this section some of the experimental tests carried out

are presented. In particular, in Section 3.1 the general set-up

is primarily introduced while in Section 3.2 results obtained
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with the 9-classes classifiers are presented and in Section

3.2, the performance of the three proposed approaches are

compared. Ultimately, in Section 3.3, a qualitative point of

view on some forensic-like examples is debated.

3.1. Experimental setup

The UCID dataset [17] has been used for the experimen-

tal tests; it is composed by 1338 images (TIFF format and

size 384 × 512). The whole dataset has been subdivided

in training set (1204, about 90%), validation set (67, about

5%) and test set (67, about 5%) in order to keep separate

the bunches of images involved in the different phases. It

have been considered 8 diverse JPEG quality factors with

QF = 60 : 95 with a step of 5 both for the first and the sec-

ond compression; according to this, 8 CNNs (one for each

QF2) have been trained on non-overlapping image patches

of size N = 64 that is 48 patches for every UCID image.

Each CNN is trained to classify 9 different classes of images

which are: uncompressed, single compressed and double

compressed (7 classes, given that the case QF1 = QF2 is

skipped because it would fall in the single compressed one).

The neural network learns on 57,792 patches (1204 × 48)

for each of the 9 classes and is optimized by using AdaDelta

method [24]. The training phase is stopped when the loss

function on the validation set reaches its minimum that usu-

ally happens after 15/20 epochs. Performance on the test

set (28,944 patches in total) are evaluated in terms of True

Positive Rate (TPR = TP
TP+FN

) and Accuracy (ACC =
TP+TN

TP+FN+TN+FP
).

3.2. CNN­based approaches evaluation

In this experiment, we have investigated the performance

in terms of TPR of the CNNs trained with spatial domain-

based examples and with frequency domain-based ones.

Results, over a test-set of 28,944 image patches, of the dif-

ferent CNNs are presented in Table 1 and Table 2 respec-

tively. Both methods are able to classify all uncompressed

patches almost perfectly while the spatial domain-based

CNN has an higher TPR for single compressed patches.

Regarding double compressed patches, it can be seen that

both methods show good performance in the top-right zone

of the matrix. It is quite well-known in fact that when

QF2 > QF1, traces of the first compression still survive

and are easily detectable.

In Table 3, the results obtained for the multi-domain-

based approach which combines the two previous kinds of

input, are listed. It is worthy underlining that there is a sig-

nificant improvement, as general, and also in the bottom-left

part of the table (QF1 < QF2). This suggests that the two

inputs provide complementary information that the multi-

domain approach is able to correlate and exploit.

The three approaches are also compared in terms of ac-

curacy for the different 8 classifiers according to QF2. Fig-

Figure 3: Three approaches comparison in terms of accu-

racy for each of the 8 (QF2) classifiers.

ure 3 provides a clear evidence of the respective behaviors:

the multi-domain approach outperforms the others and ba-

sically tends to achieve high level of accuracy (over 95%)

when QF2 is superior to the value of 80.

3.3. Qualitative results

In this section, some experimental results are extrap-

olated and presented to provide a qualitative view of the

achieved performance mainly in terms of forgery localiza-

tion. In particular, in Figure 4 five sample counterfeited pic-

tures (top row) and their corresponding localization masks

(bottom row) are visualized. Forged images have been con-

structed by inserting a 64× 64 patch, coming from another

UCID image, within a host picture (for sake of clarity, the

patch is located always in the same position in this figure).

Such a processing can be carried out in different manners

in terms both of used JPEG quality factors and of areas

undergone to single or double compression; to provide an

as-wide-as-possible view of the various cases diverse situ-

ations are represented. In Figure 4 (a) and (f), the forged

patch was double compressed (blue color) with QF1 = 60
and QF2 = 90 while the remaining part was single com-

pressed (green color) at QF2 = 90; different color tones

indicate prediction probability of that class assigned by the

CNN. So in this initial case, the second JPEG quality factor

is higher than the first. In Figure 4 (b) and (g), a similar

case is considered but now QF1 = 80 and QF2 = 85,

so quality factors are again in increasing order but much

closer each other. On the contrary, in Figure 4 (c)-(h) and

(d)-(i), quality factors in decreasing order have been used

(QF1 = 80, QF2 = 70 and QF1 = 95, QF2 = 90 respec-

tively). It can be seen that now, as expected, the behavior

is more noisy especially when the second compression is
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QF2

60 65 70 75 80 85 90 95 AVG

Uncompressed 0.999 0.998 0.994 0.997 0.997 0.999 0.997 0.996 0.997

Single Compressed 0.599 0.701 0.717 0.789 0.843 0.955 0.981 0.986 0.821

Q
F
1

60 — 0.403 0.870 0.918 0.804 0.912 0.803 0.827 0.791

65 0.235 — 0.470 0.783 0.532 0.672 0.669 0.771 0.590

70 0.423 0.356 — 0.555 0.646 0.551 0.661 0.819 0.573

75 0.633 0.561 0.415 — 0.746 0.716 0.739 0.785 0.656

80 0.796 0.714 0.580 0.467 — 0.891 0.810 0.852 0.730

85 0.636 0.469 0.792 0.826 0.794 — 0.908 0.926 0.764

90 0.740 0.755 0.771 0.746 0.899 0.956 — 0.991 0.837

95 0.702 0.713 0.395 0.734 0.896 0.932 0.942 — 0.759

Table 1: Spatial domain-based CNNs: performance of the 8 CNNs to distinguish the 9 different classes of images in terms

of TPR.

QF2

60 65 70 75 80 85 90 95 AVG

Uncompressed 1.000 0.999 1.000 1.000 1.000 0.999 0.999 0.998 0.998

Single Compressed 0.490 0.395 0.472 0.717 0.668 0.765 0.874 0.995 0.672

Q
F
1

60 — 0.886 0.938 0.991 0.991 0.992 0.994 0.995 0.970

65 0.647 — 0.868 0.944 0.959 0.972 0.972 0.979 0.906

70 0.876 0.571 — 0.873 0.958 0.977 0.984 0.982 0.889

75 0.824 0.907 0.743 — 0.970 0.976 0.982 0.987 0.913

80 0.727 0.765 0.910 0.894 — 0.979 0.991 0.994 0.894

85 0.806 0.658 0.657 0.881 0.902 — 0.984 0.986 0.839

90 0.450 0.388 0.574 0.723 0.802 0.913 — 0.991 0.692

95 0.120 0.189 0.226 0.015 0.220 0.524 0.772 — 0.295

Table 2: Frequency domain-based CNNs: performance of the 8 CNNs to distinguish the 9 different classes of images in

terms of TPR.

stronger (QF2 = 70). Finally, in Figure 4 (e) and (j), the

case with QF1 = 60 and QF2 = 90 is presented but, this

time, the forged patch is single (QF2 = 90) compressed

(green color). This is the dual circumstance, in terms of ar-

eas involved in compression, with respect to Figure 4 (a)

and (f).

4. Conclusions

In this paper we presented a step forward into adopt-

ing convolutional neural networks for the task of detecting

splicing forgery. We began to explore CNN capabilities to

classify and localize uncompressed, single and double com-

pressed patches of images. In the latest case, our approach

is also able to recover the original compression quality fac-

tor. We proposed a spatial domain-based CNN and its com-

bination with a frequency-based CNN into a multi-domain-

based approach. Experimental results suggest that the spa-

tial domain can be used directly and, when combined with

the frequency domain, can lead to superior performance

where DCT methods are usually weak (e.g. QF2 < QF1).

Some open issues remain to be explored. First, the

choice of the CNN architecture can lead to very different

performance as it was seen on the object classification task

[11, 18] where deeper architectures are used. Second, how

much data is needed to train a good CNN model should be

explored by collecting a larger dataset. Our results suggest

that spatial information could help where DCT methods re-

quire patches with at least 64x64 to build a useful statistic.

Third, the capability of CNNs to detect different kind of

compressions (e.g. JPEG 2000 or lossy PNG) should be ex-

plored. Our promising results show that this tool can detect

the subtleties features of previous compressions and learn

to predict the first quality factor used in re-compressions.
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