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Abstract

This paper1 is part of a larger effort to detect manip-

ulations of video by searching for and combining the evi-

dence of multiple types of inconsistencies between the au-

dio and visual channels. Here, we focus on inconsisten-

cies between the type of scenes detected in the audio and

visual modalities (e.g., audio indoor, small room versus vi-

sual outdoor, urban), and inconsistencies in speaker iden-

tity tracking over a video given audio speaker features and

visual face features (e.g., a voice change, but no talking face

change). The scene inconsistency task was complicated by

mismatches in the categories used in current visual scene

and audio scene collections. To deal with this, we employed

a novel semantic mapping method. The speaker identity

inconsistency process was challenged by the complexity of

comparing face tracks and audio speech clusters, requiring

a novel method of fusing these two sources. Our progress on

both tasks was demonstrated on two collections of tampered

videos.

1. Introduction

Videos with audio are becoming a dominant means of

documenting events and communicating messages around

the world. Modifying or replacing the audio, or replacing

the video, is often quite easy to do. These manipulations

can change the message drastically, while being, at least in

the case of audio, difficult for people to detect. These mod-

ifications, however, often leave discrepancies between the

visual and audio channels that can be exposed by physical

and semantic level analysis.

SAVI (Spotting Audio-Visual Inconsistencies) is a sys-

tem that we are developing to detect and characterize mul-

tiple types of inconsistencies involving different aspects of

1This research was developed with funding from the Defense Advanced

Research Projects Agency (DARPA). The views, opinions and/or findings

expressed are those of the author and should not be interpreted as repre-

senting the official views or policies of the Department of Defense or the

U.S. Government.

Type of inconsis-

tency

Visual Features Audio Features

Environmental

class

Scene: indoor vs.

outdoor, small

room, etc.

Environmental

classes, reverber-

ation of closed vs.

open spaces

Speaker identity Face recognition Speaker ID

Lip movement Pattern of lip move-

ment

Speech patterns

Head movement Change in head pose Left-right channel

balance

AV device move-

ment

Motion relative to

scene

Changes in environ-

mental features

Missing sound Presence of sound-

producing activity

Presence of corre-

sponding sound

Middle-level fea-

tures

Visual scene signa-

ture

Audio scene signa-

ture

Table 1. Different types of audiovisual inconsistencies to be de-

tected and characterized in SAVI. The aspects explored in this pa-

per are shown in bold.

a video, and fuse these detections into a combined media

integrity score. Table 1 lists the inconsistencies being stud-

ied, with the types explored in this paper shown in bold.

Picture a typical video capturing a person talking or some

event happening. It is captured in an environment, such as

indoors in a small room, or outdoors on a busy street. The

person speaking could be a well-known individual or some-

one observed earlier in the video. As the person speaks,

their speech sounds and lip motions produce distinct pat-

terns associated with what they are saying, and their heads

may move relative to the microphone in ways that affect the

sound. Finally, in the scene, there could be distinct activities

with predictable appearances and sounds, which can either

be explicitly classified (e.g., crowds) or produce visual and

audio signatures that have strong associations. In each of

these aspects of the video, the audio and visual channels

must agree, unless the video has been manipulated in some

way. The detection of multiple disagreements is a strong

indication of some sort of manipulation.

Inconsistencies at the levels of environment class and

speaker identity produce very different types of manip-
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ulation evidence and distinct challenges detecting them.

This paper focuses on the issues associated with these

two aspects and the methods we developed to meet them.

We also developed two collections of manipulated and

non-manipulated videos to evaluate our progress, both of

which will be discussed. Our examples were generated

by manipulating videos from other, available video collec-

tions. The video data cannot be redistributed, but com-

plete instructions for reconstructing our examples from

the original collections can be found at http://medifor-av-

tampering.ai.sri.com/.

Our original contributions to the field of media foren-

sics include (1) the detection of inconsistencies in audio

and visual scenes, (2) the detection of inconsistencies in the

changes of audio and visual speaker identity within a video

and (3) the design of collections to evaluate these tasks.

2. Related work

Various works have developed methods of audiovisual

analysis for the purpose of video indexing and retrieval [6],

event detection [10], [22] and video description [24], but not

in audiovisual scene inconsistency detection. In work spe-

cific to people in video, there has been progress in detect-

ing dubbing via inconsistencies between audio speech pat-

terns and mouth motion [16]. There has also been audiovi-

sual work on determining and localizing the speaking peo-

ple in a video by means of audio and visual clustering and

tracking [15], but none addressing the detection of audio-

visual speaker inconsistencies. Components of our system

are related to previous work, including visual scene recog-

nition [25],[1], audio speaker recognition [5], the detection

and tracking of faces in video [7], face recogntion [20] and

facial landmark registration [11].

3. Audiovisual scene inconsistency detection

The goal of the audiovisual scene consistency detection

is to verify that the audio characterization of a scene in a

video clip taken by a camera is consistent with its visual

characterization. For example, if the reverberation and echo

properties of the audio track indicate that it was recorded

inside a small room, does the visual analysis agree after es-

timating the distances to the objects in the scene and/or rec-

ognizing a small room, such as an office or kitchen? If not,

the video may have been manipulated.

3.1. Audio analysis: acoustic scene detection

The acoustic scene detection system was based on i-

vectors modeled using a Gaussian backend. The number of

Gaussians is based on the number of classes. Mel frequency

cepstral coefficients (MFCC) of 20 dimensions were used as

audio features extracted from 25ms windows every 10ms.

Context was provided with deltas and double deltas result-

ing in 60 dimensional features. The 400-dimensional i-

vector extractor leveraged a 1024 Gaussian Universal Back-

ground Model (UBM). I-vectors were projected to 200 di-

mensions using Linear Discriminant Analysis (LDA). Fi-

nally, a Gaussian model was estimated with the i-vectors

belonging to each class.

The acoustic scene detection models were trained on a

subset of the Placing set collection [4] of about 600 videos,

which is a subset of the YFCC100M collection [23]. The

training and evaluation sets did not share videos, specific

scenes or people.

3.2. Visual analysis: visual scene detection

The visual classification system is based on a zero-

example scene detection system, inspired by [12], [1], [13],

[19], [17]. The reasoning is twofold, first we observe that

there are many more annotated images than videos, and in

such a setup we use the images directly to train a highly dis-

criminative deep convolutional net [14, 3, 21]. Second, the

scene detection system enables us to align the video and au-

dio annotations semantically, i.e., the classes used in video

annotations and audio annotations are different in terms of

choice of classes, semantic definition of classes, and dataset

collection and annotation procedures. The chosen setup al-

lows us to exploit the existing image annotations and to

bridge video and audio annotations.

The core scene recognition system is a frame-based Con-

vNet model, pre-trained on the recent Places2 dataset [25].

At test time, we sample a frame every 2 seconds and predict

the place based on the ConvNet trained on images, see Fig

1 for an example. To obtain a prediction from the full video,

the place predictions are averaged over the sampled frames.

To infer the scene, we use a weighted combination

of place predictions and place-scene affinity. The affin-

ity between a place and a scene is determined using the

Word2Vec [18] distance between the two concepts. Even

though the affinity function between places and scene

appears simplistic, it seems to encode the affinity well

when trained on a large collection of textual data, such as

Wikipedia or the meta data of YFC100M.

3.3. Scene inconsistency detection

To develop and test these modules we plan to generate

large development and test sets with ground truth annota-

tions. Our top-level plan to do this is to develop Python

scripts to cut and paste audio and visual tracks together

to form new videos and annotations from annotated source

videos. A relatively straightforward example of this would

be to extract the audio and visual data from a clip labeled as

a desert and replace half of the audio with audio from a clip

labeled as indoor-meeting.

We selected 1,000 videos from the Yahoo Flickr Cre-

ative Commons 100 Million (YFCC100m) dataset (http:
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Figure 1. Illustration of visual scene prediction over time.

//yfcc100m.appspot.com/) because the dataset in-

cludes a number of annotations, most significantly the scene

class and the rank within that class according to the confi-

dence of detection of class membership. This confidence is

based on visual features alone, which may have no bearing

on the acoustic properties of a given file. Nevertheless, this

ranking has been used to guide the selection process.

We developed a set of scripts to automatically construct

sets of development and test videos from the YFCC100M

data set. Our initial filter checks each video to see if it has

an audio track because our techniques require both audio

and visual data. Videos without audio were excluded them

from further consideration.

An initial spot check revealed that the class label was not

always reliable, hence we added a manual review process.

Traversing the video files from most to least highly ranked

according to (visually determined) class membership, the

following annotation was performed:

• list of audio elements in scene

• whether scene video is an instance of class

• whether audio contains elements that will allow detec-

tion

Thus, a scene video might rank highly on class member-

ship but if it contains few or no audio elements that would

allow classification, it is not suitable for this task. In ad-

dition, a judgment is recorded whether a video has been

mislabeled, either in terms of its class membership or with

respect to major category (e.g., a video set in the outdoor

portion of a cafe would misleadingly be grouped into the

indoors category).

From the process described above we created two sets:

Untampered video set: this set contains examples from

all of the 14 classes that have been judged to contain audio

False

Nega-

tives

False

Posi-

tives

True

Posi-

tives

True

Nega-

tives

Preci-

sion

Recall

Audiovideo

tampering

evaluation

15 12 35 38 0.745 0.700

Table 2. Results of the audio/video scene tampering evaluation.

that would make classification possible2. One further con-

straint is that the segment should not contain any diegetic

or non-diegetic music (pure soundtrack music already dis-

qualifies a video from consideration since this would mask

any scene-internal audio cues).

Tampered video set: in this initial study of what kinds

of scene inconsistencies can be detected, the tampering of

scene videos consists of replacing the audio track of a given

video with the audio track of a different video from a differ-

ent category. Future work will include the insertion of audio

tracks of different lengths to study the effect of shorter ver-

sus longer insertions. For the purposes of tampering, the

four categories above have been consolidated into two um-

brella categories, “outdoors (outdoor-natural and outdoor-

manmade) vs. “indoors (indoor-large and indoor-small).

Thus, a tampered video belonging to one of the outdoor

classes is paired with the audio of one of the videos of the

indoor classes and vice versa. Since videos are not all of

the same length, only those video/audio pairings were con-

sidered in which the new audio is longer than the original

video track so that the audio segment was trimmed to fit the

length of the video.

To run the evaluation, we selected the scene class for the

visual and audio scene analysis by selecting the most likely

class on each models output. Then we compared the class

hypothesized by each modality. If they are different then we

labeled the video as tampered, otherwise not tampered. The

results of the evaluation are detailed in Table 2.

The system correctly identified a number of tampered

videos (true positives) and untampered videos (true nega-

tives). For instance, in 2 (a), an outdoor forest scene is

paired with the audio track of a room full of people talk-

ing and was correctly flagged as tampered. In 2 (b), no

tampering is (correctly) detected because the audio charac-

teristics (e.g., reverb) of the audio track appear to match

those of the small indoor space detected visually. An il-

lustration of a false alarm is provided in 2 (c), where the

audio track can clearly (for humans) be identified as match-

ing the characteristics of the beach scene in the video track,

yet the system indicates a mismatch. On the other hand,

no mismatch is reported for the example in 2 (d), where

2These 14 classes, including 4 categories, are as follows: beach,

forest-path (outdoor-natural); market, park, street, train-station (outdoor-

man-made); cafe, library, living-room, office, restaurant (indoor-small);

grocery-store, hall, shop (indoor-large).
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Figure 2. Examples of scene inconsistency detection (see text for

description of audio): (a) correctly detected tampering, (b) cor-

rectly decided as no tampering, (c) falsely detected as tampering,

(d),(e) falsely accepted as untampered

the outdoor stream scene is paired with the audio of peo-

ple speaking indistinctly in a large hall. This last mismatch

is similarly not entirely obvious to human observers right

away since the flowing water (think of a “babbling brook”)

is acoustically quite similarly to an undifferentiated set of

human voices. In other cases, however, the mismatch can

immediately be detected by humans, as for instance in 2 (e)

where the indoor video containing speaking people is paired

with the audio of birds quietly chirping in a forest. Never-

theless no discrepancy is detected by the system. Clearly the

next steps are to increase the training set collection to cover

more acoustic conditions as well as improve the modeling

techniques and to move towards localizing the inconsisten-

cies along the temporal axis.

4. Audiovisual speaker inconsistency detection

Some manipulations involve replacing a person’s speech

with someone else’s, such as in dubbing, or perhaps re-

placing the face, but not the audio. These manipulations

can produce observable inconsistencies between the iden-

tity of the audio speaker and that of the visibly talking face.

If we have a database of known subjects with samples of

their speech and faces, we can then check for inconsistent

audiovisual matches to the database. It is also possible to

check for inconsistencies without knowing the actual iden-

tity of the people in the video: did the voice of this talking

face change during the video, but not the face itself, or vice

versa? It is the detection of inconsistent change within a

video that is explored in this paper. Our methods can be

naturally extended to work with annotated, external sources

and also with collections of non-annotated video.

The key to detection here is to find at least two segments

(time intervals) for which the audio or visual identity of

the speaker differ, but not both. We achieved this by pro-

cessing each modality independently first and then check-

ing for inconsistencies between them. Within each modal-

ity, we detected speech segments and estimated the prob-

ability that the speaker was the same in each pair of these

segments. The probability of inconsistency was then com-

puted for overlapping pairs of audio and visual segments.

In this process, we were assuming that there is no crosstalk,

in other words, there was only one speaker at a time. In

practice, crosstalk can occur and will require us to detect

situations where it can interfere with our interpretation.

4.1. Audio analysis: speaker diarization

Speaker diarization is the process of partitioning the au-

dio into segments that are homogeneous with respect to

speaker and organizing the segments into clusters with the

same speaker characteristics (and hence likely to be the

same speaker). The diarization here was based on clustered

i-vectors using a PLDA-based i-vector speaker recognition

system [5] followed by viterbi realignment. The speaker

recognition system was trained from datasets used in the

2004-2008 NIST Speaker Recognition Evaluations. Mel

frequency cepstral coefficients (MFCC) of 20 dimensions

were used as audio features extracted from 25ms windows

every 10ms. Context was provided with deltas and dou-

ble deltas resulting in 60 dimensional features. The 400-

dimensional i-vector extractor leveraged a 1024 Gaussian

Universal Background Model (UBM). I-vectors were pro-

jected to 200 dimensions using Linear Discriminant Analy-

sis (LDA) followed by mean and length-normalization prior

to use in PLDA scoring.

Speaker diarization first involved segmenting the audio

into 2 second blocks with 1 second overlap. The speaker

recognition system was then used to generate a matrix of

scores for the i-vectors from the audio being diarized. These

scores are then transformed into a distance matrix. The dis-

tances are computed as the opposite of the log-likelihood

ratios (LLR) obtained with PLDA shifted by the maximum

LLR obtained for any pair of samples. This way, the mini-

mum distance is 0. Finally, hierarchical clustering with av-

erage linkage method is used to generate a clustering tree.

The tree is then pruned by ensuring that each cluster has

a cophenetic distance no greater than a certain threshold t.

A value of t=-9.0 optimized clustering performance on the

development set and was used to cluster the evaluation data.

The resulting segment-to-speaker distance matrix and

the locations of the segments in the video were used to

search for inconsistencies with respect to the visual pro-

cessing output. Using logistic regression, each distance
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Figure 3. Processing steps for generating speaking face segments

and computing their associations (probability of being the same

person).

Figure 4. Examples of faces from the AMI meetng collection

showing range of poses, occlusions and the similarity of some

faces (e.g., b and e). Face labels shown are internal to the sep-

arate video examples (no meaning here). All speakers correctly

detected except for (a).

was converted to a segment-speaker association probability,

psassoc(a, s), for audio segment a and speaker s.

4.2. Visual analysis: detecting and tracking talking
faces

To analyze the audiovisual consistency of the speakers,

we needed to find segments in the video where people were

seen talking and determine which talking face segments cor-

responded to the same person (perhaps seen much later in

the video). To accomplish this, our system performed the

steps in Figure 3: detect faces in the video, track them, de-

termine which face tracks are of the same person (associate

the tracks) and determine when a face is talking or not. Fig-

ure 4 shows some examples of faces from the AMI Meeting

collection [2] used here to study audiovisual speaker con-

sistency. The meeting data contains many challenging as-

pects, including a wide range of face poses (Figure 4 a-f),

head motions, similar faces (Figure 4 b, e) and occlusions

(Figure 4 c, d) (e.g., hands, laptops, microphones).

For face detection, we trained a CNN that was a vari-

ant of AlexNet [14] using approximately 1.5 million IMBD

faces and applied it in a fully convolutional mode over

Figure 5. Speech detection using flow: (a) optic flow during

speaking, (b) during head motion, (c) aligned face landmarks

(white) and vertical flow magnitude (red is high flow, numbers

show magnitude in mouth area vs. the rest), (d) example with face

in profile and poorly aligned landmarks.

multiple scales with a scale step of two to the quarter

power (quarter octave steps). Our tracking process had

two parts, similar to the well-demonstrated tracklet-based

framework [9]: first find (possibly incomplete) sequences

of detections for which the frame-to-frame links have a high

probability of being correct (a tracklet), then form an asso-

ciation matrix over the tracklets using a similarity measure.

For our purposes here, this association matrix did not need

be resolved into distinct, extended tracks, but could be used

directly by the audiovisual analysis described in the next

section. The tracklets were sequences where the adjacent

detections were very close in both the image space and in

a facial identity feature space (face ID features). The face

ID features were computed from a face image using a CNN

of GoogleNet design [21]. This was trained on two million

face images of approximately sixteen thousand individuals

using a combination of softmax and triplet-loss-based train-

ing [20]. Using logistic regression, the association proba-

bility pfsame(f1, f2) between each pair of face tracklets f1
andf2 (the probability of being the same person) was com-

puted from the tracklet face ID features.

Visual speech was detected using a combination of

aligned facial landmarks [11] and optical flow (Opencv im-

plementation of Farneback [8]). Figure 5 shows examples

of flow and aligned landmarks for AMI faces. Our ini-

tial tests on AMI data showed that detecting speech using
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the changes in aligned face landmarks, such as the upper

and lower lips, does not always work well, especially in

face poses that are difficult for current alignment methods,

such as profile views (Figure 5 d). This is quite common

in videos of interviews and meetings. What worked better

during testing on our development set was to use the aligned

landmarks to localize the general area of speech production

(the mouth and jaw) and measure the vertical flow magni-

tude in this area relative to other nearby areas, after subtract-

ing out the average flow of the whole face. This method was

used in the evaluation. Figure 5 (c-d) shows this flow mag-

nitude where red is high, and Figure 5 (d) shows that the

speech area can still be roughly localized even after poor

alignment of the details. The detected speech was then av-

eraged over segments in time, and segments with high levels

were flagged as talking faces. We found that this approach

works well for the meeting data studied, though sometimes

detection failed when speech production was harder to ob-

serve, such as in Figure 4 (a), where the speaker is resting

her chin on her fist and is in profile. For the study reported

here, each segment was defined to be the duration of a face

tracklet, bounded in time by shot changes or obscurations

of the face, and the experiments (discussed below) were de-

signed such that identity changed (if at all) at shot changes.

This allowed us to focus the current study on audiovisual

inconsistency detection, future work will include more fine-

grained visual speech segmentation and a study the tempo-

ral limits of inconsistency analysis.

4.3. Speaker inconsistency detection

Figure 6 shows talking face and audio speech segments

for different example videos from our evaluation set. Each

green row is a talking face segment (distinct face track), and

each red row is an audio speaker (speech cluster). Time

is horizontal and the tick marks in the middle are sec-

onds. The speaker rows show the speech segments as blocks

of red of different brightness, where brightness indicates

psassoc(a, s), the estimated probability that audio segment a
is from speaker s (not normalized across speakers since we

do not know if the speakers are actually separate people).

Figure 6 (a) and (b) show two examples of inconsistencies:

two talking faces that both coincide with the same audio

speaker, and vice versa for (b). Figure 6 (c) and (d) are ex-

amples without inconsistencies: (c) has two talking faces

that each coincide with a distinct speaker, and, even though

(d) shows two speaker rows, it is in fact a single talking face

and speaking person that happens to be associated with two

speech clusters. The occurrence of multiple clusters per ac-

tual speaker can be predicted by the degree of overlap in

the segments shared by the clusters, as shown in Figure 6

(d). Given this, the following steps were used to estimate

the probability of inconsistencies in an example:

1. For every pair of audio speakers (clusters) s1 and s2,

Figure 6. Talking face and audio speech segments from four ex-

ample videos along with computed inconsistency scores: (a) and

(b) are inconsistent, (c) and (d) are not (see text for explanation).

estimate the probability that they are actually the same

person:

pssame(s1, s2) =
∑

a

min(p̂sassoc(a, s1), p̂sassoc(a, s2)),

(1)

where,

p̂sassoc(a, s)) = psassoc(a, s)/
∑

a
′

psassoc(a
′, s). (2)

2. Estimate the probability pcoin(f, s) that talking face

segment f and a speaker s coincide in the video by

summing psassoc(a, s) over all segments a that intersect

with f and mapping this to a probability via logistic

regression.

3. Given every pair of possibly coinciding faces and

audio speakers [(f1, s1), (f2, s2)], including pairs

where the face or the speaker are the same (i.e.

[(f, s1), (f, s2)] and [(f1, s), (f2, s)]), compute the

probability of inconsistency as:

pinconsis(f1, s1, f2, s2)

= pcoin(f1, s1) ∗ pcoin(f2, s2)∗

(pfsame(f1, f2) ∗ (1− pssame(s1, s2))

+ pssame(s1, s2) ∗ (1− pfsame(f1, f2))) (3)

The probability of inconsistency for the whole video is

taken as the maximum over all pairs. The values shown
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Figure 7. The ROC curve for audiovisual speaker inconsistency

detection.

in Figure 6 are the probabilities of inconsistency calculated

for each example using this approach.

4.4. Speaker inconsistency experiments

Examples of tampered and non-tampered videos were

generated using the AMI Meeting collection [2], which con-

tains recordings of meetings where each participant has a

headset microphone and a video camera trained on them.

Using ffmpeg we de-interlaced and combined the videos in

various ways. For video, we combined the feeds from two

cameras, so that each frame has two people. This makes the

speaker detection and face-to-face association across shot

changes more challenging. Then, we generate untampered

videos from either one shot or two shots, but always making

sure the speakers in the audio and video coincide (the dif-

ferent shots may have different speakers, or the same speak-

ers, but the modalities are consistent). We generate tam-

pered video by doing something similar, but in this case, the

speakers change at some point in the video in one modality

but not in the other, generating an inconsistency internal to

the video. For our evaluation, we generated a total of 240

examples, half tampered, varying all of the above aspects

and varying the subjects involved. Video lengths ranged

from 6 to 40 seconds.

Figure 7 shows the resulting ROC curve and computed

area under the ROC for the evaluation set. Clearly the sys-

tem got a number of the videos correctly, but there is room

for improvement in detecting talking in faces and estimating

the probability of associations and co-occurrences needed

to make the decision.

5. Conclusions

This paper presents two methods of detecting potential

video tampering by exploiting two types of audiovisual in-

consistencies: scene type and speaker identity. Novel as-

pects of our approach include the method of semantic map-

ping between mismatched audio and visual scene collec-

tions, and the probabilistic audiovisual inconsistency detec-

tion from face tracks and audio speaker clusters. Experi-

ments on a new tampered-video collection showed promise

for these methods. Future work will improve scene in-

consistency detection by increasing the training set to in-

clude more acoustic conditions, improving the modeling

techniques and doing more fine-grained temporal localiza-

tion of inconsistencies. More fine-grained localization of

speaker inconsistency detection will also be explored, es-

pecially in the process of visual speech detection. Speaker

inconsistency detection will also benefit from more care-

ful modeling of the probabilities involved. Finally, the two

methods presented here are part of a set of tools that will

tackle multiple aspects of audiovisual inconsistency, the fu-

sion of which is our central approach to robust tampering

detection.
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