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Abstract

This paper points out a new telltale trace – the charac-

teristic of perspective distortion (CPD), for the image foren-

sics of faces. The perspective distortion is determined by

the position of image shooting, and it is often overlooked

when creating a forgery, which results in the inconsisten-

cy between the claimed camera parameters and the CPD

in the face image. To investigate this consistency problem,

we cast it to the consistency between the claimed camera

intrinsic parameters and the estimated ones from the CPD.

Our parameter estimation approach is based on geometric

observations that are related to CPD, like facial landmarks

and contours. We analyze the estimation uncertainty caused

by indeterminacy of observation to obtain a more reliable

forensic decision. Experiments on synthetic datasets and

real forgery examples demonstrate the effectiveness of the

proposed method.

1. Introduction

“Sometimes two people could look at the same picture

and see different images.

Position determines perspective.”

— Nikki Turner

Images with faces are ubiquitous in daily life, as they

frequently appear in all kinds of media like TV, newspaper

and social network. They also play an important role for

biometric identification. People rely on these face images

to trust news reports about public figures or to identify the

identities of other people. Hence, the authenticity of face

images is vitally important, and vicious forgeries towards

faces are particularly harmful. Unfortunately, people are of-

ten easily fooled by forgery face images, if they only focus
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Photos by Dan Vojtěch, copyright 2016.

Figure 1. Different perspective distortions caused by different

shooting positions. From left to right, the shooting position pulled

farther away, and the focal length also increases correspondingly

to make the size of head almost constant. The bottom numbers

stand for the used focal lengths.

on the figures appeared in the image content or the identi-

fication of those faces. To spot forgeries, we need to con-

centrate on the subtle and unnoticeable traces. In this paper,

we reveal a new telltale trace, which is the inconsistency be-

tween claimed camera parameters and the characteristic of

perspective distortion (CPD).

A well-known perspective distortion is that nearer com-

ponents seem larger while farther ones seem smaller. More

interestingly, the perspective distortion is related to the po-

sition of shooting, as the maxim goes: “position determines

perspective”. As photos 1 showing in Fig. 1, the face shot at

a closer distance demonstrates more prominent perspective

distortion, where it is more foreshorten and has larger nose

compared with the ones shot farther. This phenomenon is

used by photographers to achieve different artistic effect-

s they want to express. It is also inspiring to us, since we

can investigate the anomaly that a photo does not appear to

be shot by the claimed camera. For example, a forger may

falsely claim that the 200mm photo in Fig. 1 is shot by a

camera with 20mm focal length for bad purpose, such as

the scenario of recaptured photo. We note that for the 20m-

m camera to shoot an image with the same size of head, the

1http://www.danvojtech.cz/blog/2016/07/

amazing-how-focal-length-affect-shape-of-the-face/
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shooting position has to be much nearer, resulting in more

distortion than expected in the image. Hence, we can suc-

cessfully claim this forgery.

To investigate the aforementioned inconsistency, we cast

it into the problem of checking the consistency between

claimed intrinsic parameters and those estimated from the

CPD. The estimation is based on some geometric observa-

tions that reflect the CPD visually, which include the facial

landmarks and contours. As we know, camera parameter

estimation from only a single image is ill-posed. Hence, we

need to build 3D face models. There exist 3D morphable

models [1] which are statistical shape models for human

faces that may serve this purpose. For serious forensic sce-

narios, like court of law and police investigation, we resort

to high-precision 3D scanning devices for obtaining 3D face

models. The indeterminacy in image observations of facial

landmarks leads to estimation uncertainty. To analyze the

uncertainty for each specific estimation, we use both ran-

dom perturbation and theoretical approximation strategies.

Experimental results verify the efficacy of the proposed es-

timation method and also show its forensic application to

the detection of recaptured or spliced face images.

The main contributions of this work are:

1. We point out the phenomenon of inconsistent CPD as a

new telltale trace for image forensics of faces.

2. In the forensic estimation of camera parameters, we em-

ploy an extra contour constraint in addition to traditional

landmarks to tackle the problem of lacking precise feature

points on faces.

3. To evaluate estimation uncertainty for more reliable

forensic decision, we explore both random perturbation and

theoretical approximation strategies and further show their

accordance experimentally.

The rest of this paper is organized as follows. In Sec. 2,

we briefly review some related scene based forensic meth-

ods. Sec. 3 gives some insights about the perspective dis-

tortions for forensics. Detailed descriptions of the proposed

camera parameter estimation approach are presented in Sec.

4. In Sec. 5, estimation uncertainty is analyzed and foren-

sic consistency measure is proposed. We then discuss some

experimental results in Sec. 6, and finally conclusions are

drawn in Sec. 7.

2. Related Work

There have been different forensic methods focusing on

a variety of traces like the artifacts of copy-move [5], JPEG

compression [19] and camera sensor noise [13]. In this

section, we mainly review some more related scene based

forensics methods. The scene traces that can be used for im-

age forensics include height ratios, planar metrics, lighting

environment, physical stability and maybe more. In [7, 22],

the authors propose to estimate the height ratio of people

from image using cross ratio property and compare it to the

assumed known actual height ratio for forensics. Metric

measurements on planar surfaces are made possible by esti-

mating the planar homography and then rectifying it based

on known planar shapes like polygons [8] and characters

[3]. The work [11, 17, 16] estimates the 3D lighting envi-

ronments using approximate 3D face models and Lamber-

tian reflection model, and then decide the consistency in 3D

lighting. Similarly, the 3D eyeball model is used in [9] to-

gether with specular reflection on the eyes to estimate the

lighting direction for forensics. Approximate 3D models of

the imaged objects are also used in [4, 18], where the au-

thors recover the scene of the famous Lee Harvey Oswald

backyard photo and verify the consistency in multiple clues

like the lighting, the object size and the physical stability.

We can see that the scene traces for image forensics all

lie in the subtle and unnoticeable aspects of the image, or

the human visual system is not accurate enough to calculate

their consistencies. Our proposed trace of different charac-

teristics of perspective distortion is also a valuable trace of

this kind that has potential for image forensics. It should al-

so be noted that most scene based forensic methods require

some levels of prior knowledge about the imaged scene as

our method does.

Since the proposed method estimates the camera intrin-

sic parameters for forensics, we also review the related work

in [20, 10, 12, 15, 14]. The authors in [20] propose to

estimate the skewness parameter for detecting re-projected

videos. In [10], planar homography is estimated using im-

ages of eye circles, and then the position of 2D principal

point is estimated assuming known focal length. However,

images of eye circles are often in low resolution and par-

tially occluded. In a following-up work [12], the authors

approximately treat the face as a planar surface, and use fea-

ture points on it to estimate the homography. The work in

[15] employs three groups of mutually orthogonal straight

lines to estimate the 3D principal point position in images

containing mirrors, and the work in [14] applies similar idea

to detect image cropping. Our work is different from these

methods in that we explore a new trace of perspective dis-

tortion in face images.

3. Perspective Distortions of Cameras

This work uses the perspective pinhole camera model to

describe the transformation from a 3D model point X to its

2D image point x:

x = PX = K[R|t]X (1)

Here, the points are in homogeneous coordinate form, P
denotes the projection matrix, and K,R, t are respective-

ly the camera intrinsic matrix, the rotation matrix and the

translation vector. More specifically, the rotation matrix

can be parameterized by three Eulerian angles (α, β, γ), and
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t = [tx, ty, tz]
T. The intrinsic matrix in its full form is:

K =

⎡

⎣

fx s cx
0 fy cy
0 0 1

⎤

⎦ (2)

where fx, fy are respectively the focal lengths in x and y
pixel units, (cx, cy) is the position of the camera principal

point and s denotes the skewness of pixel. Since modern

camera sensors usually have square pixel units, fx and fy
approximately equal and s is approximately zero. Thus, a

simplified intrinsic matrix is parameterized as:

K =

⎡

⎣

f 0 cx
0 f cy
0 0 1

⎤

⎦ (3)

By using the simplified camera intrinsic model (3), the cam-

era projection in Eqn. (1) can be written as:

x = P (θ)X (4)

where θ = [f, cx, cy, α, β, γ, tx, ty, tz]
T is the vector of 9

unknown camera parameters. We denote the intrinsic pa-

rameters [f, cx, cy]
T as θin and the extrinsic parameters

[α, β, γ, tx, ty, tz]
T as θex. The projection function with

known 3D model point is also denoted as:

x = g(θ;X) (5)

The perspective distortion on an object is the warping

phenomenon of the object’s image that differs from the ob-

ject’s normal geometric appearance 2. It is dependent on the

position of shooting. To our knowledge, there is no estab-

lished quantitative definition for perspective distortion. In

the following, we simply express it in the form of relative

component size to explain the phenomenon in Fig. 1 in a

simplified setting. Fig. 2 shows the imaging of a head seen

from above. Using the law of camera projection, we can

obtain that:

d1
d2

=
f w1

z1

f w2

z2

=
w1

w2

(1 +
δz
z1

) (6)

We can see that, since w1, w2, δz , which respectively rep-

resent the width of the nose, the width between two ears,

and the depth between nose and ears, are constant measures

for a given neutral face, the ratio between the image widths

of nose and ears is only related to the inverse of the dis-

tance from the head to the camera z1. As a result, a imaged

face has relatively smaller nose (compared to the distance

between ears) when it is far away from the camera, and a

larger nose when it is close. We also verified that this per-

spective distortion is directly related to the shooting position

2https://en.wikipedia.org/wiki/Perspective_

distortion_(photography)

z1, and indirectly related to the camera intrinsic parameter f
if we want to keep the size of the head image constant as in

Fig. 1. As a matter of fact, besides the perspective distortion

related to the object’s position in the depth direction, there

also exists another distortion related to that in the lateral

direction relative to the camera principal axis. A common

example is that faces in the periphery of images are often

more stretched laterally. Because of the limit of space, we

do not discuss this lateral distortion in more details.

f

1z

2z

z

1w 2w1d
2dc

Figure 2. The imaging of a head seen from above.

When a forger recaptures or splices a face image, the

CPD is usually overlooked. However, the inconsistency be-

tween claimed camera intrinsic parameters and the distor-

tion in the image is still there, just like the example de-

scribed in Sec. 1. Since this inconsistency is not directly

measurable, we cast it into the inconsistency between the

claimed camera intrinsics and those estimated ones from the

CPD. In practice, we use some geometric features that vi-

sually reflect the CPD for the estimation, which includes

facial landmarks and contours.

4. Camera Parameter Estimation

There already exist classic camera calibration methods in

the literature like the Gold Standard method [6]. However,

they cannot perfectly deal with the estimation problem for

face images. Classic camera calibration has good estima-

tion results, because it uses a precise 3D calibration object

with black and white checkerboard patterns on it, where ac-

curate positions of both 2D and 3D feature points can be

easily obtained. While in our case, the facial landmarks

are semantically defined and are lack of texture, hence they

cannot be accurately localized to obtain a good estimation

result. To tackle this problem, we propose to further refine

the estimation result using the observation of 2D contour

points, which can be more precisely localized. More details

are described in the following.

4.1. Estimation with Landmarks

Following the classic camera calibration method in [6],

we first describe the estimation method using known corre-

spondences between 2D and 3D facial landmarks. The 2D

facial landmarks are automatically detected using the SDM

method in [21], and we only keep a part of the detected land-
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marks which are more robust and recognizable as shown in

Fig. 3. We also manually pick the landmarks on tips of

ears, earlobes and the chin when they are visible in the im-

age. The landmark positions on the known 3D face model

are manually picked and also shown in Fig. 3.

Figure 3. The facial landmark positions on the 2D image (left) and

the 3D model (right).

Given the corresponding 2D and 3D facial landmark co-

ordinates, the 3x4 projective matrix P in Eqn. (1) can be

solved using the Gold Standard method in [6], which com-

prises of a Direct Linear Transform (DLT) step for mini-

mizing algebraic error and a Levenberg-Marquardt step for

refining geometric error. The readers are referred to [6]

for more details about the Gold Standard camera calibra-

tion method. After the calculation of the projective matrix

P , we can use RQ-decomposition to factor P into K,R, t.

However, the intrinsic matrix K obtained this way is in it-

s full form as (2) which is not desired. Because errors in

the localization of 2D and 3D facial landmarks can result in

large camera skewness s and big difference in fx and fy ,

representing a highly unlikely estimation of camera model.

Starting from the parameters estimated by the Gold S-

tandard method, we further gently pull s to zero and fx, fy
to each other by minimizing the following regularized geo-

metric error:

Eland(θ̃) =

Nl
∑

i=1

d(xi, P (θ̃)Xi)
2 + wss

2 + wf (fx − fy)
2

(7)

Here Nl is the number of landmarks. θ̃ is the augmented

version of θ in (4), since it contains intrinsic parameters in

the full form K. The Euclidean distance between two points

is represented by d(, ), and ws and wf are respectively the

regularization weights on s and (fx − fy). We gradual-

ly strengthen the weights (ws, wf ) in multiple iterations to

gently pull s to zero and fx, fy to each other while in the

same time keeping the data error at a relatively low level.

When s is sufficiently close to zero and fx, fy are sufficient-

ly close to each other, we clamp s to zero and initialize f at

(fx + fy)/2 and minimize the following geometric error:

Eland(θ) =

Nl
∑

i=1

d(xi, P (θ)Xi)
2 (8)

Both the cost functions in (7) and (8) are minimized using

Levenberg-Marquardt algorithm.

4.2. Refinement by Contours

As has been explained, the error-prone landmark posi-

tions alone are not adequate to constrain the camera param-

eters, and we propose to further refine the estimation result

using contours. Our contour points are defined as the oc-

cluding contours of the face, as shown by the white points

in Fig. 4. We denote the set of observed 2D contour points

as C2. They usually lie around the face and ears, and also

around the nose when the face is not in frontal poses. The

estimation process using contour points is more complicat-

ed than that using facial landmarks in that 3D contour points

can change positions with respect to camera parameters and

correspondences between 2D and 3D contour points are not

predefined. To tackle these problems, we use the Iterative

Closest Point (ICP) algorithm to update 2D-3D correspon-

dences and estimate the parameters iteratively.

(a) Before refinement (b) After refinement
Figure 4. The effect of contour refinement (please see the online

electronic version and zoom in for details). The white points are

the user annotated contour points around the face and ears. Yel-

low points represent the projected vertices of the 3D face model

under the current camera parameters. Red and green points are

the 2D facial landmarks and the projected positions of 3D ones

respectively. Black points represent the projections of 3D contour

points. The areas emphasized by the red circles in (a) show some

misalignments before contour refinement.

More specifically, in each iteration, the 3D contour

points at the current camera parameters are first determined.

We define the occluding contours as those points whose nor-

mal directions are perpendicular to their viewing rays in the

camera coordinate frame, i.e.:

C3 = {Xi| Xi ∈ V, 0 ≤ (Rni)
T · [R|t]Xi < ǫ} (9)

where C3 represents the set of 3D occluding contour points,

V is the set of all vertices on the 3D face model, and ni is

the normal vector at Xi. After the 3D contour points C3
are located, we project them to the image plane using P (θ),
which are shown by the black points in Fig. 4 and denoted

as the set Ĉ2. Then, for each observed 2D contour point in

C2, we assign the closest point in Ĉ2 as its corresponding

point. In this way, we can find its 3D corresponding point

in C3. To exclude potential outlier matches, we discard the

correspondences whose distance is greater than a threshold.
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With the contour correspondences updated, we now refine

the parameters by minimizing the following combined cost

function:

Etotle(θ) = Econt(θ) + λEland(θ) (10)

where the contour cost function Econt(θ) is:

Econt(θ) =

Nc
∑

i=1

d(ci, P (θ)Ci)
2 (11)

where Nc is the number of valid contour correspondences,

ci is a valid point in C2, and Ci is its corresponding point in

C3. The weight λ in (10) is set to 0.1 normalized by number

of points, i.e. λ = 0.1Nc/Nl. The combined cost function

(10) is also minimized by Levenberg-Marquardt algorithm.

5. Uncertainty Analysis and Consistency Mea-

sure

Evaluating the uncertainty of a decision is very import

for a forensic tool. For our estimation method, a major

uncertainty source is the localization of 2D and 3D facial

landmarks. Since these landmarks are defined semantically,

their locations are not precise. Although we further refine

the estimation result using contour points, the refinement

itself is initialized by the landmark result and can be affect-

ed by the initialization. In this work, we analyze the esti-

mation uncertainty caused by facial landmark uncertainty.

Instead of considering the uncertainties in both 2D and 3D

landmarks, we treat the 3D landmarks as golden standard or

without errors, and cast all errors to 2D landmarks. We de-

scribe two ways to evaluate the estimation uncertainty, i.e.

random perturbation and theoretical approximation.

The random perturbation method for evaluating estima-

tion uncertainty is inspired by [15, 2]. We randomly per-

turb the positions of 2D facial landmarks, and then estimate

the camera parameters multiple times using the perturbed

landmarks. If we denote our maximum likelihood estimator

as θ̂ = h({xi}; {Xi}), where h(◦) is a complicated func-

tion with no analytic form, then the random perturbation

method estimate the uncertainty of parameters by repeated-

ly evaluating h(◦) at randomly sampled {xi} in an uncer-

tainty zone. Here, we model the uncertainty in 2D landmark

positions as Gaussian distributions centered at the initially

localized positions with a standard deviation of σ. We set σ
as the root of mean squared error (rmse) after the minimiza-

tion of Eland in (8) using the initially localized landmarks.

The 2D facial landmarks are independently drawn from this

Gaussian Ns times, and each time the estimation process is

re-run with the currently drawn landmarks. An example of

estimates obtained in this way is shown in Fig. 5. We can

see that the uncertainty zone of estimation tightly covers the

groundtruth value for this example.

Figure 5. Estimates of the 3D principal point (cx, cy, f) obtained

by 100 times of random perturbation. The red circle is the

groundtruth position, blue crosses represent the estimates, and the

red cross is the estimate without perturbation (zoom in for details).

Another way to evaluate the uncertainty in estimated pa-

rameters is by theoretical approximation [6]. By approx-

imating the projection function {xi} = g(θ; {Xi}) using

first order affine function in a vicinity of the maximum like-

lihood estimate θ̂ and back propagating the covariance ma-

trix of {xi}, the covariance matrix of θ̂ is obtained as [6]:

Σθ = (JTΣ−1

x
J)−1 (12)

Here, the notations Σθ,Σx are respectively the covariance

matrices of estimated parameters and 2D points, and J de-

notes the Jacobian matrix of {xi} in terms of θ. Here, Σx is

set to a diagonal matrix, and the diagonal elements are the

mean squared error (mse) after the minimization of Eland

using the initially localized landmarks. This theory only

applies to fixed 2D and 3D correspondences like landmark-

s, and it is essentially an approximation. Thus, we mainly

employ the random perturbation method in the experiments,

and just use the theoretical method as a comparison.

In the following, we describe the consistency measure

between the estimated intrinsics and the claimed one. To

account for the estimation uncertainty, we use the random

perturbation method and obtain a set of estimated intrin-

sic parameters {θ̂in
i }. We then measure the Mahalanobis

distance between {θ̂in
i } and the parameter of the claimed

camera θin as follows:

D({θ̂in
i },θin) =

√

(θin − µ)TΣ−1(θin − µ) (13)

where µ and Σ are respectively the mean and covariance

matrix of the estimate set {θ̂in
i }. The Mahalanobis dis-

tance normalizes the absolute distance by the uncertainty

or covariance of the estimates, assuming the estimates are

in Gaussian distribution. Hence it is more suitable for dis-

tance measurement in our forensic application. After the

calculation of D, we compare it with an experimentally de-

termined threshold Dt to decide the consistency between

the estimated parameter and the claimed one.
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6. Experiments

In this section, we experimentally show the accuracy and

uncertainty of the proposed estimation method. The reason-

s behind these results are also analyzed. Finally, we also

show possible applications in image forensics.

6.1. Estimation under Different Imaging Distances

We first test the method’s accuracy in the scenario as Fig.

1, where we adjust both the distance and focal length pa-

rameters to make the size of the head almost constant in the

image. Six synthetic images generated this way are shown

in Fig. 6. The resolution of these images is 1024x1024

pixels. The relation between field of view (FOV) and focal

length is FOV = 2arctan(w/2/f), where w is 1024 here.

Hence, large FOV is equivalent to small focal length.

Figure 6. The synthetic images from left to right, top to bot-

tom are generated using cameras with field of view (FOV) be-

ing: 20◦, 30◦, 40◦, 50◦, 60◦, 70◦. The distances are respectively:

1336, 879, 647, 505, 408, 336 in millimeters.

The estimation results for these 6 images with and with-

out the contour refinement step are shown in Fig. 7. The

boxplots are produced using 1000 estimates of random per-

turbation. We can see that the groundtruth values of in-

trinsic parameters all lie within the zone of our estimation-

s, and some of them lie in the middle half of the estima-

tions. By comparing the intervals of estimations with and

without contour refinement, we can verify that contour re-

finement can effectively reduce the uncertainty interval of

the estimation. Without contour refinement, the estimation

intervals for focal length of adjacent images will intersect.

While using contour refinement, these intervals can be sep-

arated. This is clearly preferable for the forensic method to

be more discriminative. We also note that for most images,

using contour refinement can get a more accurate estima-

tion, since the central line of boxplot is more close to the

groundtruth, especially for the estimations of f and cy .

Another very interesting and prominent observation in

Fig. 7 is that the estimation uncertainty becomes smaller

and smaller with the distance gets closer, or with the focal
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Figure 7. Box plots for focal length and principal point estimation

results on each image. “MLE0” is the estimate without perturba-

tion, and “GT” stands for the groundtruth value.
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Figure 8. Standard deviation of estimates without contour refine-

ment for each image.

length gets smaller. To explain this intuitively and infor-

mally, this is because when the head is closer to the camera,

a small variation in the distance will cause relatively larger

differences in the CPD. Recall from Eqn. (6) that the distor-

tion is related to the inverse of distance. Hence, smaller dis-

tance has larger derivative and is more sensitive to distance

variation. Note that the focal length is varied proportionally

in the same time to make the size of head almost constant.

As a result, when the head is nearer, the estimation uncer-

tainty for focal length is smaller. In Fig. 8, we also com-

pare the estimation uncertainties obtained by random per-

turbation to those obtained by theoretical calculation. Here

we just show the uncertainties of estimation without con-

tour refinement, since the theoretical method only applies

to fixed correspondences. We can see that the trend of theo-
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retical results agrees well with that of random perturbation,

especially for the estimation of focal length. The theoretical

result also shows that the estimation is more uncertain when

the head is farther away. Note that the theoretical result is

not exactly the same with random perturbation, because it

is a first order approximation.

6.2. Estimation with Partial Observation

We have shown the estimation performance on images

in Fig. 6, where the facial observations are complete. How-

ever, in some cases, we only have partial face data due to

the occlusion. For example, the ears are sometimes covered

by one’s hair, or one of the ears is not visible in non-frontal

poses. To show the influence of partial observation on the

estimation performance, we apply the proposed method to

images in Fig. 6 again, but omit the landmark and contour

observations on both ears. The results can be seen in Fig. 9.

As expected, the comparison shows that partial observation

will result in larger uncertainty and worse accuracy. The es-

timation intervals for focal length intersect with each other

among different images, and some estimations for principal

point even cannot cover the groundtruth values. Through

this, we can find that full observation is very import for the

performance of the estimation method. More image obser-

vations lead to better accuracy and certainty. Also, the ob-

servations on ears are crucial, because with observations on

the ears, the total extent of observations in the depth direc-

tion is extended.
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Figure 9. Comparison between the results obtained using full and

partial observations.

6.3. Determination of Distance Threshold Dt

To determine the distance threshold Dt as described in

Sec. 5, we created a larger synthetic dataset comprising

of 100 images. Three example images are shown in Fig.

10. These images are rendered with random camera field

of view from 20◦ to 70◦, the pose and position of the head

are also random, and the distance between eyes ranges from

100 to 150 pixels. The image resolution is also 1024x1024.

On some images, the observations on the ears are not avail-

able due to self-occlusion. For all the images, we manually

annotate the contours around the face, ears and nose.

Figure 10. Three example images in the dataset.

We then estimate the camera parameters 1000 times for

each image. The certainty levels or covariances of these

estimations are apparently different from image to image,

because as shown by the previous two subsections, the dif-

ferent distances, poses and observations have influence on

estimation certainty. Here, we show the statistics of Maha-

lanobis distances (13) on this dataset. The distributions of

Mahalanobis distances between estimates and the claimed

intrinsic parameters are shown in Fig. 11 (a). In this figure,

the “Real” curve stands for the distance between estimates

and the corresponding groundtruth intrinsics. As a compari-

son, for each image, we also calculate the distance between

its estimates and the groundtruth intrinsics of each of the

other 99 images. We refer to the curve calculated this way

as “Fake”, because it can be imagined as an image claimed

to be shot by a different camera. Note that for this dataset,

we have 100 real distances and 100 × 99 = 9900 fake dis-

tances, and we present the histograms in percentage in Fig.

11 (a). The “Fake” curve actually has a long tail all the way

to 78.4, which is clipped for better visualization.
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Figure 11. Estimation results on 100 synthetic images. (a) The

distributions (histograms) of distances between estimates and the

claimed camera intrinsic parameters. (b) ROC curve for (a).

The ROC curve for detecting the “Fake” images is shown

in Fig. 11 (b) with an AUC value being 87%. In preference

for a low false alarm rate (FAR), we choose the distance

threshold Dt as the threshold at 1% FAR, which is 3. Un-

der this threshold, 37.6% of the fake distances will be false-
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ly accepted as real. However, this false acceptance rate can

be further decreased if we also consider the scenario of face

splicing. Because the splicing of a face to another image of-

ten translates the position of the face, causing the estimated

principal point to shift away from the image center [10].

Thus, the difference between estimates and claimed intrin-

sics also has large variation in (cx, cy) domain apart from in

the focal length direction, leading to the “Fake” curve shift-

ing rightwards in Fig. 11 (a). Another way to decrease the

false acceptance rate is to improve the estimation accuracy

and lower its uncertainty by precisely employing more im-

age observation types, which is a future research direction.

6.4. Examples of Forensic Application

We then show two examples of our proposed method ap-

plied to the forensic detection of image recapture and face s-

plicing. The questioned images are shown in Fig. 12, where

(a) is an image captured by an iPhone 5S camera and then

recaptured by a NIKON D750 camera, and (b) is a composi-

tion of two faces shot by the NIKON D750 at two different

distances. The person on the left side (ID1) is original in

the image shot at a farther distance with larger focal length,

while the person on the right side (ID2) is spliced in and o-

riginally shot at a closer distance with smaller focal length.

For the two involved persons, we obtained their 3D face

models in the same neutral expressions using a high pre-

cision 3D face scanner, which are also shown in Fig. 12.

(a) Recapture (b) Face splicing
Figure 12. Two example questioned images and the scanned 3D

models of the two involved faces. The person in the right side of

(b) is spliced from another image.

The results of our estimation method with 200 times of

random perturbation are shown in Fig. 13. For the recap-

tured image, the Mahalanobis distance between the esti-

mates and the claimed intrinsic parameter is 20.4, which

is much larger than the threshold 3. Thus, we can correctly

decide this image as inconsistent with the claimed camera.

For the spliced image, the distance between ID1 estimates

and the extracted intrinsics is 1.8 which is lower than Dt

and deemed to be real, while the distance for ID2 is 35.0
and can be decided as a spliced part. Note that in Fig. 13

(b), the uncertainties for the two estimations are different

because of different imaging distances as discussed in Sub-

section 6.1. We can see that the proposed method makes

correct decisions on these examples, verifying its applica-

bility and effectiveness for potential forensic usages.

(a) Recapture (b) Face splicing
Figure 13. Estimation results for the two example images. The

red circles in two images are the “groundtruth” 3D principal point

positions extracted from the EXIF information. The green point

cloud in (b) is the set of estimates for ID1 on the left, and the blue

cloud is for ID2 on the right.

7. Conclusion

This paper proposes the characteristic of perspective dis-

tortion (CPD) as a novel trace for image forensics of faces.

The CPD is usually overlooked by a forger when falsely

claiming an image to a camera with inconsistent intrinsic

parameters. To detect this inconsistency, we propose to es-

timate the camera parameters from the CPD using both fa-

cial landmarks and contours, and also evaluate the estima-

tion uncertainty for decision making. Experimental results

on synthetic data verify the efficacy of the method and give

an insight on its impacting factors like the imaging distance

and partial observations. We also showcase the effective-

ness for potential forensic applications on real examples.

An issue of our method is the assumption of having ex-

act 3D face models. This limits its application to scenarios

where the involved people can be cooperative, like the court

of law and police investigation. In this spirit, anti-spoofing

in face recognition is also a potential application. For future

research, a direction is to examine the dependency on 3D

model accuracy and to explore more general models, e.g.

[1]. More evaluations on real forgery data are also needed.
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