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Abstract

This paper presents a new framework for human action

classification using a tensor dynamical model of human ac-

tion from 3-dimensional (3D) volume sequences and dis-

tance measurement on Grassmann manifold. The tensor dy-

namical model is an extension of linear dynamical models

for multi-dimensional sequence analysis. Each subdimen-

sional linear dynamic model is estimated from tensor se-

quences using an iterative expectation-maximization (EM)

algorithm after projection of tensor sequence to each di-

mensional axis. The combination of distances on Grass-

mann manifold of linear dynamic systems in each dimension

of the tensor dynamic model provides similarity measure-

ment between two tensor dynamical systems. The proposed

approach can be applied to 3D depth or convex hull data

as well as 2D video image sequences. Experimental results

show good performance in human action recognition from

INRIA multiview human action database.

1. Introduction

Analysis of temporal sequence data has many potential

applications such as human motion analysis, video action

recognition, dynamic texture analysis and biological se-

quence analysis and so on. In temporal sequence analy-

sis, one of the key characteristics is modeling dynamics of

the sequence. Hidden Markov models [19] and its exten-

sions [10] are frequently used for the analysis of temporal

sequence and human motion analysis. Dynamic Bayesian

network may provides general framework to model se-

quence data interpretation. Recently, nonlinear manifold

based approaches are also applied for the analysis of high

dimensional sequence data in low dimensional space [11].

Many sequence data are multi-dimensional. Video se-

quence data for gestures and action recognition are two di-

mensional in addition to one temporal dimension. Mul-

tichannel EEG signals may have more than 20 channels.

Recently multi-dimensional tensor data are being gener-

ated in a wide range of emerging applications. However,

most of the current solutions are based on one dimensional

vector analysis. Usually, a high-dimensional vector must

estimate a large number of parameters, and also destroy

the natural structure and correlation in the original data.

Multidimensional tensor subspace analysis can learn more

compact and useful representations than conventional lin-

ear subspace learning. Then, how can we approach multidi-

mensional dynamic sequence data?

In this paper, we present an extension of normal distri-

bution to the multivariate normal distribution, which can

provide a foundation to extend conventional linear dynam-

ical systems (LDSs) into tensor dynamical systems (TDS).

For the metrics of the LDSs, recently, geometric manifold

spaces [3] such as Grassmann manifold are used [20]. This

paper extends the model to the tensor dynamical system.

Preliminary experimental results of human action recogni-

tion using tensor dynamical system show the potential of the

proposed approach in multidimensional dynamic sequence

data analysis.

2. Frameworks: Tensor Dynamical Models

We present tensor dynamical models as an extension of

linear and multivariate dynamic model to multi-dimensional

sequence data using tensor normal distribution and param-

eter estimation using Expectation maximization (EM) algo-

rithms. We first define basic tensor algebra for the simplifi-

cation of the notation. Then we explain normal distribution

and multivariate normal distribution to introduce tensor nor-

mal distribution. The tensor normal distribution is used for

the basis for tensor dynamic model and its parameter esti-

mation.

2.1. Tensor representation and operator

Let N be the set of all positive integers and R be the

set of all real numbers. Given I ∈ N
M , where M ∈ N,

we generate a tensor-product space R
I1×···×IM . Then a

tensor Y ∈ R
I1×···×IM is an element of a tensor product

space. A tensor Y may be referenced by either a full vec-

tor (i1, · · · , iM ) or a by subvector, using the • symbol to

indicate coordinate that are not fixed [18].
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The factorization of a tensor Z ∈ R
IJ is given by

Ai1···iM j1···jM =
∏M

m=1 A
(m)
imjm

, where A(m) ∈ R
Im×Jm

for all m. In matrix form, we have mat(A) = A(M) ⊗
A(M−1)⊗· · ·⊗A(1), where ⊗ is the Kronecker matrix prod-

uct [14, 15]. Vectorization vec(X ) is obtained by shaping

the tensor into a vector. In case of matrix A = (a1, · · · ,aq)
be p× q matrix, vec(A) forms a column vector whose size

is p× q by column stacking.

The product A ⊛ X of two tensors A ∈ R
IJ and X ∈

R
J , where I ∈ N

M , J ∈ N
M , and M ∈ N, is given by (A⊛

X )i1···iM =
∑

j1···jM
Ai1···iM j1···jMXj1···jM . The product

is only defined if the dimensionalities of the last M modes

of A match the dimensionalities of X . The vectorization of

the tensor product can be represented by generalization of

the standard matrix-vector product as follows [18]:

vec(A⊛X ) = mat(A)vec(X ). (1)

2.2. Tensor normal distribution

The univariate standard normal distribution U is defined

by

fU (u) = (2φ)−1/2e−
1
2u

2

,−∞ < u < ∞, (2)

and denoted U ∼ N(0, 1). Its expectation is E[U ] = 0
and its variance is D[U ] = 1. General univariate normal

distribution with mean µ and variance σ > 0 can be defined

using univariate standard normal distribution U as follows:

µ+ σU, σ > 0,−∞ < u < ∞, (3)

It can be explicitly defined with a density function

fX(x) = (2φσ2)−1/2e−
1
2

(x−µ)2

σ2 ,−∞ < u, x < ∞, σ > 0
(4)

and dented X ∼ N(µ, σ2).
Multivariate standard normal distribution can be de-

scribed using an extension of normal distribution in vector

form. p dimensional multivariate standard normal vector

u = (U1, U2, · · · , Up) consists of p independent identi-

cally distributed (i.i.d.) N(0, 1) elements. Then p dimen-

sional multivariate standard normal density function can be

defined from Eq. 2

fu(u) = (2π)−
1
2pe−

1
2 tr(uu

′

), (5)

and we say that u ∼ Np(0, I), where tr(uu
′

) = u
′

u.

General p dimensional multivariate normal distribution with

mean E[x] = µ and dispersion D[x] = Σ, where Σ is non-

negative definite and can be represented by Σ = ττ
′

with

full rank, r(τ ) = p [12]

µ+ τu, (6)

where u ∼ Np(0, I) and the distribution of x is denoted by

x ∼ Np(µ,Σ).

fx(x) = (2φ)−
1
2p|Σ|−1/2e−

1
2 tr{Σ

−1(x−u)(x−u)
′

}. (7)

Normal distribution for tensor-valued random variables

can be described by an extension of vector valued multivari-

ate random variables into multi-dimensional random vari-

ables similar to an extension of vector valued data into ten-

sor analysis using multilinear algebra. A matrix normal dis-

tribution, which is an extension of one dimensional vector-

based multivariate normal distribution to two dimensional

one, can be described by an extension of the vector version

using a bilinear extension. When a matrix X : p×n is ma-

trix normally distributed with parameter µ,Σ = ττ
′

and

Ψ = γγ
′

, its distribution can be described as

µ+ τUγ
′

, (8)

where µ : p × n is non-random and U : r × s consists

of s i.i.d Nr(0, I) vectors U i, i = 1, 2, · · · , s, τ : p × r

and γ : n × s. The matrix normally distributed X will be

denoted X ∼ Np,n(µ,Σ,Ψ). Since vecX and X have the

same distribution, X has the same distribution as

vec(µ) + (γ ⊗ τ )vec(U). (9)

The matrix normally distributed X ∼ Np,n(µ,Σ,Ψ)
means the same as vec(X) ∼ Npn(vec(µ),Ψ⊗Σ). Since

the expectation of U equals zero, E[X] = µ, and since by

definition of the dispersion matrix D[X] = D[vec(X)], we

obtain that D[X] = Ψ⊗Σ. The density of Np,n(µ,Σ,Ψ)
is given by

fX(X) = (2φ)−
1
2pn|Σ|−n/2|Ψ|−p/2e−

1
2 tr{Σ

−1(X−u)Ψ−1(X−u)
′

},

(10)

where vec(X)
′

(Ψ ⊗ Σ)−1vec(X) = tr(Σ−1XΨ−1X
′

)
and |Ψ⊗Σ| = |Ψ|p|Σ|n.

The bilinear normal distribution can be expressed using

unit basis vectors
∑

ij Xije
1
i (e

2
j )

′

(11)

=
∑

ij

µije
1
i (e

2
j )

′

+
∑

ij

∑

km

τikγmjUkme1i (e
2
j )

′

=
∑

ij

µije
2
j ⊗ e1i +

∑

ij

∑

km

τikγmjUkme2j ⊗ e1i ,

where e1i : p × 1, e2j : n × 1 are the unit basis vectors,

Ukm ∼ N(0, 1), and e1i (e
2
j )

′

→ e2j ⊗ e1i .

Tensor normal distribution can be expressed using the

basis vectors similar to the bilinear normal distribution. A

matrix X is tensor normal distribution of with order k, X ∼
Np1,p2,··· ,pk

(µ,
∑

k,
∑

1,
∑

2, · · · ,
∑

k−1), if

∑

i1,i2,··· ,ik
Xi1,··· ,ike

1
i1 ⊗ e2i2 ⊗ · · · ⊗ ekik

=
∑

i1,i2,··· ,ik
ui1,··· ,ike

1
i1 ⊗ e2i2 ⊗ · · · ⊗ ekik

+
∑p1

i1

∑p1

j1

p2
∑

j2

· · ·

pk
∑

jk

τ1i1j1τ
2
i2j2

· · · τkikjk Uj1j2···jke
1
i1 ⊗ e2i2 ⊗ · · · ekik , (12)
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where
∑

i = τ i(τ 1)
′

, erir : pr×1 and Uj1j2···jk ∼ N(0, 1).
The tensor normal distribution can be represented in coor-

dinate free form as follows:

Xi1,··· ,ık = µi1,··· ,ik +
∑

j1j2···jk

τ1i1j1τ
2
i2j2 · · · τ

k
ikjk

Uj1j2···jk .

(13)

2.3. Tensor dynamical models

Tensor dynamical systems, or multilinear dynamical sys-

tems, are an extension of linear dynamical systems for

multi-dimensional data using tensor normal distributions.

Linear dynamical systems (LDS) can be represented using

state-space models as follows:

xn+1 = Axn +w,yn = Cxn + v, (14)

where xn is state space at frame time n, output yn is lin-

ear function of the state xn, A is a state transition matrix,

C is an observation matrix, wn is a normally distributed

zero-mean random state noise with variance Q, and vn is a

normally distributed zero-mean output noise with variance

R. The conditional densities for the state and output can

be represented from the normally distributed models as fol-

lows:

xn|xn−1 ∼ Nk(xn|Axn−1,Q), (15)

yn|xn ∼ Np(yn|Cxn,R), (16)

where p is the dimensional of output yn and k is the di-

mension of the state space xn. Expectation Maximization

(EM) algorithm can be used to estimate parameters of LDS

from observation sequences [4, 9]. The E step computes

the expected log likelihood using Kalman filter forward and

backward recursions. The M step updates parameters by

taking the corresponding partial derivative of the expected

log likelihood [9].

Tensor time series consist of a sequence tensor

Y1,··· ,N = [Y1, · · · ,YN ], where Yn ∈ R
I1×···×IM for all

n. Tensor dynamical models seek sequence of latent tensors

X 1,··· ,N = [X 1, · · · ,XN ], where Xn ∈ R
J1×···×JM for

all t. Each latent tensor Xn emits an observation Yn with

tensor transition A, and projection tensor C. For a given

Xn, 1 ≤ n ≤ N − 1, Xn+1 can be generated according to

the conditional distribution

Xn+1|Xn ∼ N (A⊛Xn,Q), (17)

where Q is the conditional covariance shared by all Xn and

A is the transition tensor which describes the dynamics of

the evolving sequence Xn. When the transition tensor A is

factorized into M matrices A(m), each of which acts on a

mode of Xn. To each Xn there corresponds an observation

Yn generated by

Yn|Xn ∼ N (C ⊛Xn,R), (18)

where R is the covariance shared by all Yn.

2.4. Parameter estimation

Given sequence of observations Y1,··· ,N , we need to fit

the tensor dynamical models by estimating parameters θ =
(U0,Q0,Q,A,R,C), where U0,Q0 is initial parameters

satisfies

X 1 ∼ N (U0,Q0). (19)

We cannot directly maximize the likelihood of the data with

respect to θ due to latent variable Xn. The EM algorithm

provides iterative updating E[Xn] and θ in an alternating

manner [7]. For the tensor dynamical models, instead of

working directly to the tensor normal distribution, metri-

cized and vectorized representation of likelihood can be

used as follows [18]:

L(θ|X 1,··· ,N ,Y1,··· ,N ) = L(vec(θ)|vec(X 1,··· ,N ), vec(Y1,··· ,N ),
(20)

where vec(θ) = (vec(U0)),mat(Q0),mat(Q),
mat(A),mat(R),mat(C)). The parameters of vec-

torized tensor dynamical models can be estimated. The

factorizable A and C can also be locally maximized by

computing the gradient with respect to the vectorized pro-

jection matrices v = [vec(C(1))T · · · vec(C(M))T ]T [18].

As a result of parameter estimation using EM, tensor

sequence data Y1,··· ,N is characterized by a transition

tensor A = A(M) ⊗ · · · ⊗ A(1) and a projection tensor

C = C(M)⊗· · ·⊗C(1). The action recognition from tensor

dynamical models is to analyze and estimate similarity

from the collection of transition tensors and projection

tensors for each class.

3. Statistical Analysis on Grassmann Manifold

for Tensor Dynamic Models

There has been a study of control theory to model

perturbation of linear dynamical systems like deforma-

tion [13] and scaling [5], and identifying linear dynamic

systems [16]. Recently, there has been active research on

modeling dynamics of human motion and dynamic tex-

tures [17] using system identification techniques. Dynamic

textures are analyzed and synthesized using auto-regressive

moving average process (ARMA) with linear dimensional-

ity reduction [8]. They proposed a closed form solutions for

learning the ARMA model parameters. The K-L divergence

between two models is used for distance measurement. The

space of linear dynamic system has a Riemannian structure

and an inner product in the space of model should be de-

fined on Stiefel manifolds [20].

3.1. Modeling dynamics on Stiefel manifold

In the linear dynamical system, the transition matrix A

is constrained to be stable with eignevalues inside the unit

circle and the observation matrix C is constrained to be an

orthogonal matrix when the temporal dynamics is learned in
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the low-dimensional space via PCA [20]. Subspace angle

between column-spaces of observability matrices are fre-

quently used for comparison of the LDS models [6]. Re-

cently several other approaches to measure similarity of lin-

ear dynamic systems are proposed [1, 2].

3.2. Statistical analysis on the Grassmann manifold

For the linear dynamical systems, the expected observa-

tion sequence can be given by













y1

y2

y3

·
·













=













C

CA

CA2

·
·













y0 (21)

Thus the expected observation lies in the column space

of the observation matrix given by

OT = [CT (CA)T (CA2)T · · · (CA(m−1))]. (22)

In the case of tensor dynamical models, the observation ma-

trix can be computed for each latent tensor:

O(i)T = [CT (CA(i))T (CA2(i)))T · · · (CA(m−1)(i))T ].
(23)

Each observation subspace spanned by the columns of the

matrix can be represented by an orthonormal basis after or-

thonormalization of each latent observation matrix. The

orthonormal subspace of each latent tensor is a point on a

Grassmann manifold and the N latent tensor dynamical sys-

tems are represented by N points on the Grassmann man-

ifold. When each tensor latent state space X(i) is d di-

mensional subspace, the latent observation matrix can be

represented by d-dimensional orthonormal bases, which is

represented by a quotient space of SO(n).

The distance measurement on this Grassmann manifold

can be estimated using the Riemannian structure. The dis-

tance of two points on the manifold can be represented by

the shortest path among all the smooth paths on the mani-

fold [20]. Exponential map and skew-symmetric matrix are

utilized in the computation [20].

4. Experimental Results

We evaluated the performance of human action recogni-

tion on INRIA data set [21]. The data set consists of 10 ac-

tors performing 11 actions with multiple execution of each

action. View-invariant representation and features proposed

in [21] were used in the experiment. Evaluation results us-

ing one person for testing and the rest of them for training

shows better performance using tensor dynamical models in

action recognition.

5. Conclusion and Future Works

In this paper, we presented a new tensor dynamical sys-

tem and its application to human action recognition from

multiple views. Our action recognition experiment shows

potential advantage of tensor dynamical systems compared

with linear dynamical system approaches in human action

recognition. The model may be applicable for other applica-

tions such as motion capture data analysis, texture analysis,

and bio-informatics data analysis.

Statistical analysis of these distance distributions may

improve classification performance of different activities of

human motion sequence based on class mean of each activ-

ity.
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