
Exploring the Granularity of Sparsity in Convolutional Neural Networks

Huizi Mao1, Song Han1, Jeff Pool2, Wenshuo Li3, Xingyu Liu1, Yu Wang3, William J. Dally1,2

1Stanford University
2NVIDIA

3Tsinghua University

{huizi,dally}@stanford.edu

Abstract

Sparsity helps reducing the computation complexity of

DNNs by skipping the multiplication with zeros. The gran-

ularity of sparsity affects the efficiency of hardware archi-

tecture and the prediction accuracy. In this paper we quan-

titatively measure the accuracy-sparsity relationship with

different granularity. Coarse-grained sparsity brings more

regular sparsity pattern, making it easier for hardware ac-

celeration, and our experimental results show that coarse-

grained sparsity have very small impact on the sparsity ra-

tio given no loss of accuracy. Moreover, due to the index

saving effect, coarse-grained sparsity is able to obtain simi-

lar or even better compression rates than fine-grained spar-

sity at the same accuracy threshold. Our analysis, which

is based on the framework of a recent sparse convolutional

neural network (SCNN) accelerator, further demonstrates

that it saves 30% − 35% of memory references compared

with fine-grained sparsity.

1. Introduction

Deep Neural Networks (DNNs) have many parameters,

which leads to problems related to storage, computation

and energy cost. State-of-art Convolutional Neural Net-

work (CNN) models have hundreds of millions parameters

and take tens of billions operations[12, 16, 23]. That makes

DNN models difficult to deploy on embedded systems with

limited resources.

To deal with this problem, various methods have been

proposed to compress DNN models and reduce the amount

of computation. Some methods are based on decomposition

and reduction[27, 17]. They usually preserve the regular-

ity of the original models, thus are able to to achieve both

compression and acceleration on general-purpose proces-

sors. Pruning serves as another effective method to greatly

reduce the number of parameters with almost no loss of

accuracy[11, 7].

Pruning based methods are generally better at preserving

Fine-grained
Sparsity(0-D)

Kernel-level
Sparsity(2-D)

Filter-level
Sparsity(3-D)

Vector-level
Sparsity(1-D)

Irregular Regular

Figure 1. Different structure of sparsity in a 4-dimensional weight

tensor. Regular sparsity makes hardware acceleration easier.

accuracy as well as achieving higher compression rates[11].

However, such improvements come at the cost of regu-

larity. Moreover, it has been shown that pruning chan-

nels will cause larger accuracy loss than pruning individ-

ual weights[20]. Those observations pose several questions:

What is the trade-off between regularity and accuracy? Is it

possible to find a sweet spot in the range of regularity?

We attempt to answer those questions by looking into

pruning with different granularity. The structure of sparsity,

as shown in Figure 1, not only impacts the prediction ac-

curacy but also affects the efficiency of hardware architec-

ture. There are already some existing works trying to prune

filters or channels instead of individual weights[21, 26, 1].

However, due to the various methods they used, we cannot

directly evaluate the relationship between pruning granular-

ity and final accuracy. We therefore apply the exact method

and experimental setting for an effective comparison. We

also want to explore a consistent range of granularity, which

includes intermediate grain size like kernels and sub-kernel

vectors. Based on a thorough space exploration, we are able

to analyze the storage saving and hardware efficiency at dif-

ferent granularity of sparsity.

In this work, we make the following contributions:

• We explore a complete range of pruning granularity

and evaluate how it affects the prediction accuracy.

1 13

• We demonstrate that coarse-grained pruning is able to

reach similar or even better compression ratio than the

fine-grained one, even though it obtains less sparsity.

• We show that coarse-grained sparsity is more

hardware-friendly and more energy-efficient for sparse

neural network accelerators.

2. Related Works

Sparsity has proven to be an effective approach to save

parameters of Deep Neural Network models[11, 7]. A num-

ber of works investigate how to select the important con-

nections and effectively recover the accuracy. Second-order

derivative[19], absolute value[11], loss-approximating Tay-

lor expansion[21], and output sensitivity[5] are examples of

importance metrics used for pruning. There are also meth-

ods trying to better integrate pruning and training, like iter-

ative pruning[11] and dynamic pruning[7].

The sparsity caused by network pruning typically results

in an irregular workload, which is difficult for acceleration.

Recent work tries to alleviate this problem by enforcing

structured sparsity. It tries to limit sparsity to the high-

level structure of tensors. Most of the works are targeted

at Filter pruning and Channel pruning[26, 20, 21]. Finer-

grained structured sparsity is also studied, including intra-

kernel strided pruning [1].

For very coarse-grained sparsity like Filter-sparsity and

Channel-sparsity, it is simple to achieve acceleration on

general-purpose processors because it is equivalent to ob-

taining a smaller dense model[26]. For fine-grained spar-

sity, custom accelerators[9, 22] have been used to exploit

the reduction of computations.

3. Granularity of Sparsity

3.1. Notations

To simplify the description, we use the following nota-

tions for CNN. In a single convolutional layer, the weights

compose a 4-dimensional tensor of shape C ×K ×R× S.

C is the output dimension, i.e., the number of output feature

maps. K is the input dimension. R and S are the shape of

convolution kernels.

One layer’s weights consists of multiple filters(3-

dimensional tensor of shape K×R×S), each one associated

with an output feature map. The weights can also be viewed

as multiple channels(3-dimensional tensor C × R × S),

each one associated with an input feature map. Filters and

channels are both composed of kernels(2-dimensional ten-

sor R × S) which are the key element in the 2-d convolu-

tion operation. Sub-kernel vectors (1-dimensional tensor of

size R or S) and scalar weights(0-dimensional tensor) are

lower-level elements in a conv layer. Figure 2 illustrates

these concepts.

FilterKernelSub-kernel
Vector

K

R

S

C Filters

Figure 2. Illustration of the concepts of Filter, Kernel and Sub-

kernel vector.

3.2. Range of Granularity

Sparsity in Deep Neural Network, explicit or implicit,

have been studied in a lot of literature. Among all types

of sparsity, vanilla sparsity(fine-grained sparsity) and filter-

wise sparsity(very coarse-grained sparsity) are two extreme

cases that are widely studied[11, 20].

Vanilla sparsity is a type of sparsity in which individual

weights are masked as zero, first proposed in 1989 by Le-

Cun et al.[19]. The fine-grained sparsity has been proven to

work well on a wide range of popular neural network mod-

els of CNN, RNN and LSTM [11, 7, 6, 8].

There is also implicit sparsity used for neural network.

Channel reduction is a type of neural network compression

technique which reduces the dimension of input/output fea-

tures and thereby reduces the size of a layer. Channel reduc-

tion can be viewed as very coarse-grained sparsity, which

removes 3-dimensional sub-tensors in Convolutional layers

and 1-dimensional vectors in Fully-Connected layers. Such

coarse-grained sparsity is beneficial for acceleration due to

regularity[18, 26]. However, it usually causes noticeable

accuracy drops compared with fine-grained sparsity, as in-

dicated by Li et al.[20].

There is a large range of granularity between vanilla

sparsity and channel reduction. Some literature attempts to

explore one or a few possibilities among all choices. Chan-

nel pruning and intra-kernel strided pruning have been in-

vestigated in the work of Anwar et al.[1]. However, com-

pared with the large range of possible grain sizes, the at-

tempts so far are still incomplete.

In this paper, we investigated two types of granular-

ity ranges. The first one is dimension-level granularity

in which the grain size increases with the number of di-

mensions. We explore 4 granularities. To be specific, we

study the accuracy-sparsity relationship when the atomic el-

ements(grain) during pruning are filters, kernels, sub-kernel

vectors or scalar weights. The other type is stride-level

granularity, in which the grains have the same number of

dimensions but vary in the sizes. For example, the pruned

grains can be size-2 vectors, size-8 vectors or size-C vec-

14

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity

78.0

78.5

79.0

79.5

80.0

80.5

81.0

T
op

5
 A

cc
ur

ac
y

Baseline Filter(3D) Kernel(2D) Vector(1D) Finegrained(0D)

Figure 3. Accuracy-Sparsity Curve of AlexNet with different grain sizes. X-axis: sparsity of conv layers (percentage of zero weights).

Y-axis: top-5 accuracy on ImageNet validation set.

tors. Here we only study the simplified case where the

pruned grains are all 1-dimensional vectors lying along C

dimension(the output dimension).

We explain these two types with numpy-like codes as

below. For dimension-level granularity, Figure 1 also illus-

trates the dimension-level granularity of sparsity.

Weights = Array (C, K, R, S)

Case 1: Dimension−l e v e l g r a n u l a r i t y

F i l t e r (3−Dim) = Weights [c , : , : , :]

Kernel (2−Dim) = Weights [c , k , : , :]

Vector (1−Dim) = Weights [c , k , r , :]

Fine−gra in (0−Dim) = Weights [c , k , r , s]

Case 2: S t r ide−l e v e l g r a n u l a r i t y

V e c t o r s t r i d e i = Weights [c i : (c+1) i , k , r , s]

V ec t o r s t r i de C = Weights [: , k , r , s]

3.3. Coarsegrained Pruning Method

Coarse-grained pruning deletes multiple weights to-

gether instead of individual weights. Typically the grain can

be filters, kernels, sub-kernels vectors or anything else. Be-

cause we are interested in the effects of the grain size rather

than the pruning method, we adopt the simple magnitude-

based pruning criterion in [11]. For a grain Gi that consist

of multiple weights, the Salience Si is defined as the sum of

absolute values, as Si =
∑

w∈Gi
|w|, i.e. based on the L1

norm. Given the targeted sparsity, the grains with small L1

norm are deleted.

We also adopt the iterative pruning method proposed by

Han et al.[11]. It is able to reach higher sparsity than direct

pruning. The sparsity during each pruning stage is deter-

mined by sensitivity analysis, which requires individually

pruning every layer and measure the accuracy loss on the

training dataset.

4. Accuracy-Sparsity Relation with Different

Grain Sizes

Our goal is to study how the granularity of pruning in-

fluences the accuracy. Specifically, we want to compare the

accuracy of different sparsity structure at the same sparsity

. The intuition is that more irregular sparsity pattern, i.e.,

smaller grain size, usually leads to higher accuracy at the

same sparsity.

To ensure fair comparison, we enforce the identical spar-

sity setting and training schedule for the same model. All

experiments were performed on ImageNet dataset[4] with

Caffe[14].

For CNN models, we only count the overall sparsity of

convolutional layers. One important reason is that there

is no such range of granularity for fully-connected layers.

Also, convolutional layers take up most of the computations

in a typical CNN model[2]. However, we still prune the

fully-connected layers(fine-grained pruning for dimension-

level granularity, coarse-grained pruning for stride-level

granularity) together with convolutional layers, to obtain

consistent comparisons with previous works[11, 7].

4.1. Dimensionlevel granularity

We selected AlexNet for detailed accuracy-sparsity

curves. For other networks, VGG-16, GoogLeNet[24],

ResNet-50[12], and DenseNet-121 [13]) we also compared

the same-sparsity accuracies of different pruning granular-

ity. Their results are reported and compared in Table 1 .

Figure 3 shows the accuracy curve of density(one minus

sparsity) under various settings. In this figure there are four

15

0.0 0.2 0.4 0.6 0.8 1.0
Storage Ratio

78.0

78.5

79.0

79.5

80.0

80.5

81.0

T
op

5
 A

cc
ur

ac
y

Baseline StrideC Stride16 Stride4 Stride2 Finegrained

Figure 4. Accuracy-Sparsity Curve of AlexNet with different pruning dimensions.

different granularity of sparsity, in each case the atomic el-

ement for pruning is

• Fine-grained(0-Dim): Individual weights.

• Vector(1-Dim) : Sub-kernel vectors of size S.

• Kernel(2-Dim): Kernels of shape R× S.

• Filter(3-Dim): Filters of shape K ×R× S.

When the grain size of pruning is very large, say, a fil-

ter, we notice huge accuracy loss during pruning. AlexNet

loses nearly 1% validation accuracy at the very first prun-

ing stage. For finer-grained ones, the accuracy loss is much

smaller and we even noticed small accuracy increases dur-

ing the first several pruning stages. Note that the results of

AlexNet are better than the original work by Han et al.[11].

We give a detailed description in Table 3.

4.2. Stridelevel granularity

Figure 4 shows the accuracy-density curve with different

pruning strides. In this figure there are five different stride

sizes: 1, 2, 4, 16, C. Notice that fully-connected layers

are also pruned with the stride. When the stride size is 1,

it is equivalent to fine-grained pruning. Here we observed

the similar results that accuracy drops when increasing the

grain size. Deleting vectors along the whole dimension C

leads to great accuracy loss.

4.3. Discussion

Our intuition is that sparsity serves as the regularization

because it lowers the capacity of the model by reducing the

number of parameters. Coarse-grained sparsity works as

strong regularization, as it not only reduces the number of

parameters but also constrain the positions of parameters.

The experimental results support such an assumption.

Table 1. Comparison of accuracies with the same density of con-

volutional layers. For a given density, fine-grained pruning gives

the highest accuracy.

Model Density Granularity Top-5

AlexNet 24.8%

Kernel 79.20%

Vector 79.94%

Fine-grained 80.41%

VGG-16 23.5%

Kernel 89.70%

Vector 90.48%

Fine-grained 90.56%

GoogLeNet 38.4%

Kernel 88.83%

Vector 89.11%

Fine-grained 89.40%

ResNet-50 40.0%

Kernel 92.07%

Vector 92.26%

Fine-grained 92.34%

DenseNet-121 30.1%

Kernel 91.56%

Vector 91.89%

Fine-grained 92.21%

We also find that pruning with a large grain size, e.g.,

the size of a filter or output dimension C, will greatly hurt

the accuracy. On the other hand, pruning with a smaller

grain size leads to an accuracy-sparsity curve similar with

fine-grained pruning. Notice that in Figure 3& 4, some

curves appear to rise smoothly at first. That suggests coarse-

grained pruning can still reach similar compression rates as

fine-grained pruning, giving additional advantages that will

be described in the following section.

5. Comparison of Storage

Model size is an important factor for real-world applica-

tions. It has been pointed out that memory access takes up

a large portion of total energy consumption during the exe-

16

0.00.20.40.60.81.0
Storage Ratio

78.0

78.5

79.0

79.5

80.0

80.5

81.0

T
op

5
 A

cc
ur

ac
y

Baseline Filter(3D) Kernel(2D) Vector(1D) Finegrained(0D)

Figure 5. Accuracy-Storage Curve of AlexNet with different grain sizes.

cution of deep neural network[11]. Sparsity is an effective

approach to compress neural network models. Sparse neu-

ral network is usually stored with a similar format to Com-

pressed Row Storage(CRS) for sparse matrix, where both

values and indexes are stored. Coarse-grained sparsity, due

to its regularity, is able to save the number of indexes as il-

lustrated in Figure 6. Therefore the coarse-grained sparse

models take up less storage than fine-grained ones, when

they are at the same level of sparsity.

We want to investigate how accuracies differ at the same

level of storage(instead of sparsity) for different granular-

ity of pruning. We do not use full-precision 32-bit weights

but use 8-bit weights instead, as 8-bit weights, either true

8-bit integer formats or 8-bit indices into a table of shared

fp32 weights, have been proven to be sufficient in a lot of

literature[15, 9, 25]. We use 4-bit indices to store the dis-

tances between adjacent non-zeros, following the method in

Deep Compression [10]. Moreover, as indicated in the Deep

Compression paper, the quantization method works inde-

pendently with sparsity. To validate this claim with coarse-

grained sparsity, we plot the accuracy-bits curves of differ-

Weight

Weight

Weight Weight

Weight Weight

Index Index Index

Index

Fine-grained sparsity

Coarse-grained sparsity

Savings!

Figure 6. Index saving of coarse-grained sparsity.

ent types of pruned models in Figure 7. The results show

that sparsity architecture has negligible effect for even 6-bit

quantization (64 unique fp32 weight values).

Figure 5 shows the accuracy-storage relationship of

AlexNet. We find that the first three curves(Fine-grained,

Vector and Kernel) are closer than those in Figure 3. It indi-

cates the effects of index saving for coarse-grained pruning.

12345678
Bits per Weight

0

10

20

30

40

50

60

70

80

90

T
op

5
 A

cc
ur

ac
y

Finegrained(0D) Vector(1D) Kernel(2D)

Figure 7. Accuracy-bits curves for sparse AlexNet with different

grain sizes. Three curves are almost identical, indicating sparsity

structure does not impact quantization.

To better compare the compression ratio under the same

accuracy constraint, we list the results of AlexNet, VGG-16

and GoogLeNet in Table 2. Here the storage ratio is defined

as the model size of pruned 8-bit model(with 4-bit indices)

to that of dense 8-bit model. Notice that it is almost im-

possible to prune a model that exactly match the baseline

accuracy, so we use linear interpolation to obtain the esti-

mated density and storage ratio.

For a sparse network, the larger the grain size is, the

17

Table 2. Comparison of storage savings at the baseline accuracy(estimated with linear interpolation). Storage ratio is compared with 8-bit

dense model.

Model
Top-5

Granularity Density Storage Ratio
Accuracy

AlexNet 80.3%

Kernel 37.8% 39.7%

Vector 29.9% 34.5%

Fine-grained 22.1% 33.0%

VGG-16 90.6%

Kernel 44.4% 46.9%

Vector 30.7% 35.8%

Fine-grained 27.0% 40.6%

GoogLeNet 89.0%

Kernel 43.7% 51.6%

Vector 36.9% 47.4%

Fine-grained 32.3% 48.5%

ResNet-50 92.3%

Kernel 61.3% 77.0%

Vector 40.0% 52.7%

Fine-grained 37.1% 55.7%

DenseNet-121 91.9%

Kernel 35.5% 48.9%

Vector 31.1% 43.8%

Fine-grained 26.6% 39.8%

less storage it takes. This is due to index sharing among

the weights of the kernel as shown in Figure 6. However,

AlexNet and VGG-16 in particular have much closer den-

sity/storage results for kernel pruning than GoogLeNet and

ResNet do. It is caused by the small size of the convolu-

tional kernels being pruned. GoogLeNet and ResNet have

1x1 convolutions in nearly 50% of their layers, which do

not get any benefit from sharing index values. AlexNet and

VGG-16, on the other hand, have a multitude of larger con-

volutions.

6. Advantages of Coarse-grained Sparsity

It has been mentioned in the previous sections that filter

pruning is able to obtain acceleration on general-purpose

processors like CPU or GPU. For intermediate grain sizes

like kernels or sub-kernel vectors, though it is still difficult

for acceleration on general-purpose processors, there are

several advantages over fine-grained sparsity. Those advan-

tages enable simpler circuits and higher energy efficiency

on custom hardware. We qualitatively and quantitatively

analyze the advantages as follows:

Qualitative analysis. In conv layers, 2-D convolution

is usually the primitive operation. Winograd decomposi-

tion, which is adopted in recent versions of cuDNN1, is tar-

geted at reducing computations of 2-D convolution. Ker-

nel pruning can therefore easily map to computation reduc-

tion, because the 2-D convolutions of deleted kernels can be

deleted as well. Recent custom hardware design for CNN

also use 1-D convolution as the primitive operation[3]. In

this case, sub-kernel vector pruning is beneficial. Coarse-

grained pruning is able to preserve the low-level computa-

1Nvidia developer’s blog

tion logics, therefore simplify the hardware design.

Weight WeightIndex Index Act ActIndex

Calculate
Output
Address

Output
BufferBypass

Read

Addr

Write

Figure 8. Dataflow of SCNN architecture. Bypass is possible when

the same output address is referenced again.

Quantitative analysis. Memory reference is a major

factor of energy consumption[11]. Recent work on custom

hardware exploits both the sparsity of weights and activa-

tions of CNN[22]. In their implementation, the weights and

input activations are both stored in sparse format while out-

put activations are stored in dense format. The indices of

weights and activations are used for calculating the output

address, to which the product of weight and activation will

be accumulated. This process is illustrated in Figure8. Af-

ter one layer is finished, the output activations will then be

compressed into the sparse format for next layer.

If the same output address is referenced again, data

shortcut can be used to avoid the expensive write/read. For

example, two adjacent weights and two adjacent activations

will reference 3 addresses instead of 4. Due to the local-

ity, coarse-grained sparse weights have a larger probability

18

https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/

Table 3. Comparison of pruned AlexNet with previous works.

Layer Param.
NIPS’15 NIPS’16 Fine-grained Vector Pruning Kernel Pruning

[11] [7] (ours) (ours) (ours)

conv1 35K 84% 54% 83% 83% 83%

conv2 307K 38% 41% 26% 26% 26%

conv3 885K 35% 28% 23% 23% 23%

conv4 664K 37% 32% 23% 23% 23%

conv5 443K 37% 33% 23% 23% 23%

fc6 38M 9% 3.7% 7% 7% 7%

fc7 17M 9% 6.6% 7% 7% 7%

fc8 4M 25% 4.6% 18% 18% 18%

Total 61M 11% 5.7% 8.4% 8.4% 8.4%

FLOPs 1.5B 30% 25.4% 24.1% 24.1% 24.1%

Storage(conv) 2.3MB 55.6% 48.3% 36.4% 28.0% 25.5%

Storage(total) 61MB 16.7% 8.5% 12.6% 12.3% 12.2%

Mem Refs 99M 74.4% 71.7% 60.5% 34.6% 35.2%

Top-5 Accuracy 80.23% 80.01% 80.41% 79.94% 79.20%

Table 4. Comparison output memory references for VGG-16 in

units of billion(B) references(only conv layers).

Density
Fine-grained Vector

Relative Cost
(0-D) (1-D)

40.1% 1.77B 1.23B 69.5%

33.1% 1.53B 1.03B 67.2%

27.5% 1.33B 0.87B 65.3%

of output address collision. We simulated with VGG-16 on

imageNet validation set to compare the number of memory

references of fine-grained sparsity and vector-level sparsity

and listed the results in Table 4. It shows that with the same

density, coarse-grained sparsity saves 30%− 35% memory

references.

7. Summary

Table 3 gives an overall comparison of key statistics for

AlexNet. By using a smoother pruning process, we find the

results of Song et al.[11] can be further improved without

any algorithmic change. Here FLOPs is the total number

of floating-point operations of a model. Storage is mea-

sured with the setting of 8-bit weights and 4-bit indexes,

as indicated in Section 5. Due to the fact that the storage

of conv layers is much smaller but reused much more fre-

quently than fc layers, we add a row for conv layers. The

number of memory referenced is calculated by simulating

the process of Figure 8.

8. Conclusion

We have explored the granularity of sparsity with ex-

periments on detailed accuracy-density relationship. We

pointed out that due to the saving of indices, coarse-grained

pruning is able to achieve a similar compression ratio for

AlexNet and higher ratios for VGG-16 and GoogLeNet. We

also analyze the hardware-level advantages and show that

coarse-grained sparsity saves 30% to 35% of memory ac-

cess. Given the advantages of simplicity and concurrency

from hardware perspective, we believe that coarse-grained

sparsity can enable more efficient architecture design of

Deep Neural Network.

References

[1] S. Anwar, K. Hwang, and W. Sung. Structured pruning

of deep convolutional neural networks. J. Emerg. Technol.

Comput. Syst., 13(3):32:1–32:18, Feb. 2017.

[2] H. Bagherinezhad, M. Rastegari, and A. Farhadi. Lcnn:

Lookup-based convolutional neural network. arXiv preprint

arXiv:1611.06473, 2016.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolu-

tional neural networks. IEEE Journal of Solid-State Circuits,

2016.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[5] A. P. Engelbrecht. A new pruning heuristic based on vari-

ance analysis of sensitivity information. IEEE transactions

on Neural Networks, 12(6):1386–1399, 2001.

[6] C. L. Giles and C. W. Omlin. Pruning recurrent neural net-

works for improved generalization performance. IEEE trans-

actions on neural networks, 5(5):848–851, 1994.

[7] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. In Advances In Neural Information Process-

ing Systems, pages 1379–1387, 2016.

[8] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie,

H. Luo, S. Yao, Y. Wang, et al. Ese: Efficient speech recog-

nition engine with sparse lstm on fpga. In Proceedings of

19

the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pages 75–84. ACM, 2017.

[9] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally. Eie: efficient inference engine on com-

pressed deep neural network. In Proceedings of the 43rd

International Symposium on Computer Architecture, pages

243–254. IEEE Press, 2016.

[10] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[11] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances in

Neural Information Processing Systems, pages 1135–1143,

2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

[13] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceed-

ings of the 22nd ACM international conference on Multime-

dia, pages 675–678. ACM, 2014.

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

and e. a. . In-datacenter performance analysis of a tensor

processing unit. In 44th International Symposium on Com-

puter Architecture, 2017.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[17] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and

V. Lempitsky. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553, 2014.

[18] V. Lebedev and V. Lempitsky. Fast convnets using group-

wise brain damage. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2554–

2564, 2016.

[19] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In NIPs, volume 2, pages

598–605, 1989.

[20] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf. Pruning filters for efficient convnets. arXiv preprint

arXiv:1608.08710, 2016.

[21] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

transfer learning. International Conference on Learning

Representations, 2017.

[22] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkate-

san, B. Khailany, J. Emer, S. Keckler, and W. J. Dally. Scnn:

An accelerator for compressed-sparse convolutional neural

networks. In 44th International Symposium on Computer

Architecture, 2017.

[23] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015.

[25] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the

speed of neural networks on cpus. In Proc. Deep Learning

and Unsupervised Feature Learning NIPS Workshop, vol-

ume 1, page 4. Citeseer, 2011.

[26] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, pages 2074–2082,

2016.

[27] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very

deep convolutional networks for classification and detection.

IEEE transactions on pattern analysis and machine intelli-

gence, 38(10):1943–1955, 2016.

20

