
Graph-Regularized Generalized Low-Rank Models

Mihir Paradkar

Dept. Biological Engineering

Cornell University

mkp65@cornell.edu

Madeleine Udell

Dept. Operations Research

Cornell University

mru8@cornell.edu

Abstract

Image data is frequently extremely large and oftentimes

pixel values are occluded or observed with noise. Addi-

tionally, images can be related to each other, as in im-

ages of a particular individual. This method augments the

recently proposed Generalized Low Rank Model (GLRM)

framework with graph regularization, which flexibly models

relationships between images. For example, relationships

might include images that change slowly over time (as in

video or surveillance data), images of the same individual,

or diagnostic images which picture the same medical con-

dition. This paper proposes a fast optimization method to

solve these graph-regularized GLRMs, which we have re-

leased as an open-source software library. We demonstrate

that the method outperforms competing methods on a vari-

ety of data sets, and show how to use this method to classify

and group images.

1. Introduction

Noisy images pose problems for many tasks in com-

puter vision, obscuring features that may be present and the

true class structure of the data. The high dimensionality of

image data exacerbates the effects of noise and corruption

by masking the true distribution of data further. Sufficient

statistics can be derived from low-dimensional and graph

structure to better estimate noisy values.

One common way to obtain a low-dimensional struc-

ture is PCA, which seeks to find the best approximation

(in the least-squares sense) of a given rank to a data ma-

trix. The factorization of this approximation embeds the

data into a low-dimensional space. Several extensions ex-

ist which modify PCA in some way, either by changing the

approximation metric as in robust PCA [3], or by imposing

additional penalties on the factorization as in some matrix

completion algorithms [6] or sparse PCA [4].

The Generalized Low-Rank Model (GLRM) [7] is an

emerging framework that extends this idea of a low-rank

factorization. It allows mixing and matching of loss func-

tions and various regularization penalties, such as l1 and l2
penalties, to be fit over heterogeneous-typed and missing or

unknown data.

Spectral Embedding (SE) [1] takes a different approach

to reducing the dimension of data, using a graph where

edge weights are pairwise similarities. This graph is used to

learn a different low-dimensional embedding of data. This

method can have the advantage of preserving non-linear

structures in data that would be lost in a linear projection

such as PCA.

Methods such as Graph-Laplacian PCA (glPCA) [5]

seek to combine the low-dimensional data representation of

PCA with the non-linear embedding of SE by minimizing a

weighted sum of their objective functions. In this paper,

the graph-regularized GLRM (GraphGLRM or GGLRM)

is introduced as a new way to incorporate graph data in

a low-rank data representation. The GraphGLRM frame-

work extends glPCA by providing ways to choose loss func-

tions, regularizers, and non-missing values. We demon-

strate that the incorporation of graph information in GLRMs

can outperform pure PCA, spectral embedding, and vanilla

GLRMs in reconstructing occluded images and in creating

a low-dimensional embedding suitable for supervised learn-

ing.

2. Previous Work

2.1. Generalized LowRank Models

The Generalized Low Rank Model (GLRM) was de-

veloped by Udell et al. to fit a low-rank representation

XTW, X ∈ R
k×n, W ∈ R

k×d to the non-occluded por-

tions of a data matrix Y ∈ R
n×d. The model aims to

minimize the difference between Yij and imputed xT
i wj as

measured by lj for (i, j) ∈ Ω, where Ω are the indices of

known values. The model also can impose regularization

penalties ri and r̃j on the rows of representation matrix XT

and columns of embedding matrix W respectively to en-

sure chosen properties of the low-rank representation. The

1 7

objective function can then be written as

min
X,W

∑

(i,j)∈Ω

lj(Yij , x
T
i wj) +

n
∑

i=1

ri(xi) +
d

∑

j=1

r̃j(wj).

(1)

This framework recovers PCA by setting lj(Yij , x
T
i wj) =

‖Yij − xT
i wj‖

2
2, ri(xi) = rj(wj) = 0, and letting Ω =

{(i, j)|i ∈ 1..m, j ∈ 1..n}. In this form, the solution is not

unique, so the constraint that WWT = I enforces unique-

ness. This produces the well-known objective function

min
X,W

‖Y −XTW‖2F s.t. WWT = I. (2)

However, the use of other loss functions besides least-

squares can be beneficial. For example, the use of the

absolute-value loss function can produce a solution more

robust to outliers. The GLRM framework also exploits

column-wise separability of regularizers to utilize the prop-

erties of different features. In this paper, the GLRM with

column-wise regularization is referred to as ’vanilla’ to dis-

tinguish it from the newly-developed model presented.

2.2. Spectral Embedding

The objective of PCA is to find an optimal linear pro-

jection to minimize euclidean distance between the origi-

nal reconstructed data. In contrast to PCA, spectral embed-

ding seeks to preserve the similarity on edges specified in a

graph. Let A and D be the adjacency and degree matrix, re-

spectively, of the graph. The aim of spectral embedding is to

find a matrix XT with one row for every node in the graph,

such that the sum of euclidean distances between connected

records is minimized. Letting E be the edge set, compute

the spectral embedding by minimizing the objective func-

tion

min
X

∑

(i,j)∈E

‖xi − xj‖
2
2. (3)

This objective can be written in matrix form as

min
X

tr(XLXT) s.t. XXT = I. (4)

The solution to this problem can be found by computing

the eigenvectors corresponding to the smallest eigenvalues

of matrix L. The rows of XT are vector representations of

every record in the graph.

2.3. GraphLaplacian PCA

Graph-Laplacian PCA (glPCA) incorporates both linear

projection and graph structure in a low-dimensional embed-

ding [5]. This method demonstrates increased robustness

over PCA because graph structure penalizes fitting to out-

liers. GLPCA incorporates graph structure by minimizing a

weighted sum of the objective functions of PCA and Spec-

tral Embedding. The objective function can be expressed

as

min
X,W

‖Y −XTW‖2F +αtr(XLXT) s.t. XXT = I. (5)

By adjusting α, the effect of graph structure can be adjusted

to appropriately fit the given data.

3. Graph Regularizer

3.1. Objective Function

This paper combines the flexible losses of GLRMs with

graph structure to allow fitting flexible models using both

types of structure. In contrast to glPCA, the graph regu-

larizer can be applied to a model with a non-quadratic loss

function and arbitrary regularization on the other factor. Let

Y be a data matrix where the ith row yi is an example and

the jth column yj is a feature. Also let L be the Laplacian

matrix for a fixed graph on the examples which tells us the

similarity between the examples. The form of the GGLRM

is

min
X,W

∑

(i,j)∈Ω

lj(Yij , x
T
i wj) + αtr(XLXT) + r̃(W). (6)

In this objective function, r̃(W) can be any convex penalty.

In this paper, we shift L by λI where λ is a small positive

constant. This shifting helps guarantee convergence and re-

duce over-fitting, which is explained in section 3.2. The

penalty on the right factor r̃(W) can also be chosen to be a

graph regularizer,

r̃(W) = trace(WL′WT). (7)

Graph regularization can be used to help learn the values

of missing entries in a matrix. Intuitively, graph regulariza-

tion on X encourages the values of a missing entry in a row

to be close to a corresponding known entry in another row;

similarly, graph-regularization on W encourages the feature

embedding of a missing column to be close to that of a more

complete column. Specifically, graph regularization on X

encourages the representations xi, xi′ to be similar for re-

lated rows i and i′, encouraging the values xT
i wj , x

T
i′wj to

be similar. Graph regularization on W has the same effect

for related columns j and j′. Jiang et al. have demonstrated

that using this regularization with PCA yields improved re-

sults in various supervised and unsupervised tasks on data

that includes partially-occluded pictures [5].

3.2. Fitting

The fitting algorithm is a special case of the Proximal

Alternating Linear Minimization PALM algorithm [2]. In

each iteration, a gradient step is followed by a proximal

8

step for each of X and W . In the gradient step, a step of

magnitude αX is taken in the direction ∇X(lj). Next, the

proximal mapping proxαXrx
(X − αX∇X(lj)) is used to

update X given regularizer rx and stepsize αX , and like-

wise for W . These alternating steps are in contrast to an

alternating minimization approach, where X and W are al-

ternatively minimized while holding the other constant. We

use the PALM algorithm because the loss functions we use

harder to minimize than the quadratic loss, so alternating

gradient and proximal steps lead to faster convergence.

Algorithm 1 Fitting Algorithm

1: initialize X1, Y1, gradX1, gradY1

2: for t in 1 to max iterations do

3: gradXt = ∇X(lj)
4: determine value of stepsize αX via backtracking

linesearch

5: Xt+1 = proxαXrx
(Xt − αXgradXt)

6: gradWt = ∇W (lj)
7: determine value of αW via backtracking linesearch

8: Wt+1 = proxαW rw
(Wt − αW gradWt)

9: end for

This algorithm uses the proximal operator (prox), de-

fined as

proxr(Z) = argmin
U

(r(U) +
1

2
‖U − Z‖2F).

We can compute the prox operator for the graph-Laplacian

regularizer rx(U) = tr(ULUT). We use the fact that

∇Urx(U) = 2LU to set the gradient of rx(U)+ 1
2‖U−Z‖2F

to zero. Solving for U gives

proxrx
(Z) = (2L+ I)−1Z. (8)

However, using the Laplacian regularizer on X with an-

other regularizer on W is not sufficient to ensure conver-

gence. Convergence requires the proximal operator to be

contractive. We ensure that the operator is contractive by

adding a small positive diagonal matrix λI to L so that

λI + L is positive definite. Adding a positive diagonal ma-

trix λI to L is equivalent to quadratic regularization by λ,

so a more stable rx(X) can be expressed as

r(X) = trace(XLXT) + λ‖X‖2F

= trace(XLXT) + λ(trace(XXT))

= trace(X(L+ λI)XT).

(9)

One case in which this quadratic regularization is neces-

sary is for an unconnected graph. For example, 0n,n is the

Laplacian matrix of an unconnected graph with n nodes.

With objective function

min
X,W

∑

(i,j)∈Ω

lj(Yij , x
T
i wj) + trace(X0n,nX

T) + ‖W‖2F ,

the objective value can be reduced by setting X ′ = βX

and W ′ = β−1W for any β > 1. Therefore, the optimal

solution is achieved as X → ∞ and W → 0 along some

path such that XTW is constant and equal to the best rank-

k approximation to Y . Adding quadratic regularization by

λ prevents this divergence by penalizing large values of X .

Additional l2 regularization also reduces overfitting. The

combination of graph-regularization and l2 penalty not only

serves to improve the quality of imputed values, but also

increases the number of regularization options available

within the GLRM framework.

Although computing the prox operator for the graph reg-

ularizer requires a matrix inversion, performance bottle-

necks usually stem from gradient and objective computation

in practice. This is because the sparse Cholesky decompo-

sition that we use to invert the matrix is extremely fast and

Laplacian matrices are usually sparse. However, in the case

of a very large graph, the conjugate gradient method is a

computationally cheap way to approximate the inverse of a

matrix in finite iterations.

The case of an unconnected graph Laplacian with offset

αI reduces to quadratic regularization. In this paper, we

use this quadratic regularization on the other factor W . The

update algorithm for quadratically (l2) regularized W with

regularization parameter α uses the shrinkage operator

Wt+1 =
V

1 + 2αW

where

V = Wt − αW∇W (
∑

(i,j)∈Ω

lj(Yij , x
T
i wj)).

Since both regularizers are smooth, differentiable functions,

the proximal update sequence converges [2].

4. Software Implementation

GraphGLRM is available as a software

package in the Julia language. The im-

plementation is freely available online at

github.com/mihirparadkar/GraphGLRM.jl.

Features and usage of the software are described here.

4.1. Usage

Modeling data with GraphGLRM is a two-step process.

A user first specifies a model, and then fits the model.

The GraphGLRM API is inspired by and builds on the

LowRankModels framework [7], using available loss func-

tions and most regularizers from LowRankModels. The

model is built around the GGLRM type, which stores model

parameters and fitted factors. To construct a GGLRM, the

user specifies, in order:

9

· A, a dense matrix, a sparse matrix, a DataFrame, or any

tabular data structure which supports row and column

indexing

· losses, a loss function or list of loss functions where

there is one loss function for each column

· rx, a regularizer for the embedded examples

· ry, a regularizer for the embedded features

· k, the rank of the low-rank factorization.

Optional arguments include:

· obs, a list of indices where the data value is known,

i.e. not missing or occluded

· sparse na, whether or not to treat the zeros in a

sparse matrix as missing values.

4.2. Performance

GraphGLRM is tuned for fast fitting speeds on missing

data. These fitting speeds are achieved by copying columns

with missing values into memory-contiguous arrays. Gra-

dients and objective values can be computed much faster on

such arrays, more than offsetting the performance penalty

of copying data.

GraphGLRM also enables multi-threaded fitting using

Julia’s experimental (at the time of writing) threading sup-

port. Multi-threaded fitting achieves modest speedup by

computing the gradient matrix and objective function in par-

allel over each loss function. This can be easily achieved by

calling fit multithread! instead of fit! after ini-

tializing a GGLRM.

It is also beneficial not to form XTW explicitly for

highly sparse data, especially for large sparse matrices.

This is because a dense representation of XTW may be

orders of magnitude larger than the original sparse data.

GraphGLRM provides fit sparse! for these cases,

which computes gradient values only for observed entries.

5. Experiment Design

We demonstrate the effectiveness of GGLRM by com-

paring it to PCA, Spectral Embedding, and a vanilla GLRM

(without graph regularization). The GLRM and graph-

regularized GLRM were constructed with the Huber loss

function,

Huber(z) =

{

1
2z

2, if |z| ≤ 1

|z| − 1
2 , if |z| > 1,

where z = Yij − xT
i wj .

We consider two types of regularization: quadratic reg-

ularization on the latent factors and graph regularization.

Algorithm Loss Quad. Reg. Graph Reg.

PCA Quadratic

SE None X

Vanilla GLRM Huber X

Graph GLRM Huber X X

glPCA Quadratic X

Table 1. Components of the objective functions for each of PCA,

Spectral Embedding, Vanilla GLRM, GraphGLRM, and glPCA.

Figure 1. Examples of images of a given individual in the Olivetti

dataset. We construct a graph that exploits these similarities to

improve low-dimensional embedding.

Table 1 illustrates the types of loss function and regularizer

present on each of 5 algorithms.

We use very small quadratic regularization (λ = 0.01) to

stabilize the solution. The GGLRM uses the same regular-

izer as the vanilla GLRM, and adds a graph regularizer.

We use the Olivetti faces dataset from AT&T Cambridge

Labs to compare results between algorithms. This dataset

consists of 400 images, with 10 images each of 40 different

people. The images of a given individual differ in facial

expression, lighting, and slightly in angle.

The graph was constructed as a union of 40 cliques, each

of which links every pair of images of the same individual in

the dataset. This graph was used for the spectral embedding

algorithm, and as the additional graph for regularization in

the graph GLRM.

Algorithms were compared in their performance on two

experiments involving random occlusions on the dataset.

6.25% of each image was replaced with a black rectangle

at a random location. The locations of nonzero pixel values

were used as the observation set for both GLRM varieties.

In the first experiment, we use each method to impute the

occluded pixels. We measure and report the mean-squared

error in our reconstruction.

In the second task, we classify faces as male or female.

We use the low-rank representations of the images as fea-

tures in a linear-kernel Support Vector Machine (SVM). We

use precision and recall in identifying females since there

are only four females in 40 individuals. Training and test-

ing sets are split so that they consist of distinct individuals.

10

Figure 2. From left to right: The original corrupted image, the

reconstructions produced by PCA, spectral embedding, vanilla

GLRM, graph-regularized GLRM, and the original uncorrupted

image.

Figure 3. Mean-squared error over the occluded pixels for PCA,

spectral embedding, GLRM, and Graph GLRM

Embedding Method MSE

PCA 15032

SE 3415.4

Vanilla GLRM 634.63

Graph GLRM 554.48
Table 2. Precision, recall, and F1-scores for original occluded data,

PCA, SE, vanilla GLRM, and graph GLRM

6. Results

6.1. Imputation Experiment

We consider the sensitivity of results to the choice of pa-

rameters in the model. We use cross-validation on several

values of rank and graph regularization parameter to deter-

mine the optimal rank and regularization parameter. The

minimal test error was achieved using a rank of 100 and

graph regularization parameter of 10.

Figure 4. Distribution of average per-pixel error over the occluded

pixels of each image for PCA, spectral embedding, GLRM, and

Graph GLRM

6.1.1 Comparison with PCA and Spectral Embedding

Figure 3 shows the imputed error we obtained using each

method. A visual comparison shows that PCA and Spec-

tral Embedding perform worse and vanilla GLRM and

GraphGLRM perform better. We compare the imputed error

values quantitatively in table 2 and verify that GraphGLRM

indeed performs better. The visual differences between the

reconstructions are evident in figure 2.

Specifically, graph regularization induces the smoother

transition at the boundaries of the occluded images. This

smoothness can be attributed to increased emphasis on

learning from images of the same individual.

The reduced error in reconstruction is also apparent in an

examination of the mean-squared error of pixel values. Fig-

ure 3 shows that the overall mean-squared error was min-

imized for GGLRM. Furthermore, figure 4 shows that the

distribution of errors over each image had a lower median

and was more left-skewed than the vanilla GLRM: the graph

GLRM was more likely to produce the smallest error on any

given image. Additionally, the graph GLRM outperformed

PCA on all 400 images, Spectral Embedding on 399 im-

ages, and vanilla GLRMs on 307 of the images.

6.2. Classification Experiment

In the classification experiment, rank determination and

hyperparameter tuning were both repeated using F1-score

(the harmonic mean of precision and recall) as the valida-

tion metric. The best F1-score was achieved at a rank of

100 for GraphGLRM and rank 400 for vanilla GLRM. We

compare the precision, recall, and F1-score of low-rank em-

beddings in Table 3.

The graph GLRM attains the highest score in all three

11

Embedding Method Precision Recall F1-Score

None 0.727 0.4 0.516

PCA 0.381 0.4 0.390

SE 1 0 0

Vanilla GLRM 0.714 0.25 0.370

Graph GLRM 1 0.5 0.667
Table 3. Precision, recall, and F1-scores for original occluded data,

PCA, SE, vanilla GLRM, and graph GLRM

metrics. Additionally, the original images (without a low-

rank representation) induce better F1-score than all of the

other embedding methods.

7. Conclusion

GraphGLRM combines the benefits of graph struc-

ture provided by spectral embedding with the flexibil-

ity and available robustness in GLRMs. Furthermore,

GraphGLRM enables ignoring known occluded data val-

ues. This rejection of known occlusions can aid in making a

more faithful representation of data for imputation and clas-

sification. GraphGLRM also provides extreme flexibility in

the choice of loss function and regularization penalties to

handle heterogeneous and noisy data. By carefully tuning

the parameters associated with the model, performance on

imputation and supervised learning tasks can surpass that of

the most commonly-used methods.

References

[1] P. Belkin and P. Niyogi. Laplacian eigenmaps and spectral

techniques for embedding and clustering, 2001. In NIPS 2001.

1

[2] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating

linearized minimization for nonconvex and nonsmooth prob-

lems. Mathematical Programming, 146(1-2):459–494, 2014.

2, 3

[3] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal

component analysis? Journal of the ACM, 58(3):11, 2011. 1

[4] A. d’Aspremont, L. El Ghaoui, I. Jordan, and G. R. Lanck-

riet. A direct formulation for sparse PCA using semidefinite

programming. Advances in Neural Information Processing

Systems, 16:41 – 48, 2004. 1

[5] B. Jiang, C. Ding, B. Luo, and J. Tang. Graph-Laplacian PCA:

Closed-form solution and robustness. In CVPR 2011. 1, 2

[6] R. Keshavan and A. Montanari. Regularization for matrix

completion., 2010. In 2010 IEEE International Symposium

on Information Theory Proceedings (ISIT). 1

[7] M. Udell, C. Horn, R. Zadeh, and S. Boyd. Generalized low-

rank models. Foundations and Trends in Machine Learning,

9(18):1 – 118, 2016. 1, 3

12

