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Abstract

We present a method for estimating the body orientation

of seated people in a smart room by fusing low-resolution

range information collected from downward pointed time-

of-flight (ToF) sensors with synchronized speaker identifica-

tion information from microphone recordings. The ToF sen-

sors preserve the privacy of the occupants in that they only

return the range to a small set of hit points. We propose a

Bayesian estimation algorithm for the quantized body ori-

entations in which the likelihood term is based on the ob-

served ToF data and the prior term is based on the occu-

pants’ locations and current speakers. We evaluate our al-

gorithm in real meeting scenarios and show that it is pos-

sible to accurately estimate seated human orientation even

with very low-resolution systems.

1. Introduction

Millions of meetings take place every day, resulting in

a huge expenditure in terms of human energy, time and

money [19]. However, meetings are often inefficient, un-

focused, and poorly documented. A multi-modal sensor en-

abled physical environment with advanced cognitive com-

puting capabilities could assist in making group meetings

for long-term, complex projects more productive and eas-

ier to control, resulting in an immediate economic impact.

Future smart service systems will be able to distinguish

and clearly isolate the speech of several people talking at

the same time, learn and remember the context of previous

meetings, summarize what happened in the meeting, ana-

lyze participation shifts and meeting productivity, and ul-

timately contribute in real time to facilitate group decision

making. Towards this end, the room in which the meeting

occurs has to be smart enough to understand where people

are, what their poses are, and in what direction their bodies

are oriented. A natural solution is to use video cameras to

track people and estimate their head and body poses. How-

ever, from a social perspective, meeting participants could

feel uncomfortable, self-conscious, or inhibited in the pres-

ence of active video cameras.

In this paper, we present a method for classifying the

seated orientation of participants in a meeting into one of

eight quantized direction bins, as illustrated in Figure 1. Our

Bayesian estimation algorithm uses two orthogonal modal-

ities. The first is range (distance) information collected

from an array of ceiling-mounted, downward-pointed time-

of-flight (ToF) sensors. The ToF sensors produce a sparse

range map of the room by analyzing the phase difference

between emitted and reflected infrared signals. People ap-

pear as untextured blobs in the output of the ToF sensors,

which makes them substantially more privacy-preserving

than video cameras. The second modality is non-verbal

audio information recorded from individual lapel micro-

phones carried by each meeting participant. That is, we

only determine which participants are speaking at each in-

stant, not the words that are said. Figure 2 illustrates a frame

of reference video with the corresponding recorded ToF and

speaker identification.

The body orientation classification algorithm uses the

ToF depth map of each person blob to compute the like-

lihood of each orientation class, based on a compressed

sensing approach applied to examples of labeled training

data. The prior probability distribution is computed dynam-

ically at each frame for every person by analyzing the au-

dio and ToF data to determine the active speakers and rela-

tive positions of the participants. The algorithm works with

80.8% accuracy to exactly classify seated orientations and

with 98% accuracy to classify orientations with an error of

1 orientation class (± 45◦).

2. Related Work

Organizational and social psychologists leverage prin-

cipled probabilistic models for analyzing team dynamics,

but such methods heavily depend on human coding of

events from observed recorded data. For example, Mathur
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Figure 1. The 8 different orientation directions relative to the table.

Figure 2. (a) Camera view, (b) Raw data from the ToF sensors

stitched to form a depth map of the room, (c) Occupancy tracking

using the ToF data.

et al. [18] developed a method for detecting interaction

links between participants in a meeting using manually an-

notated video frames. The participants were required to

wear brightly-colored vests and personal audio recorders,

and manual coding was used to localize each participant in

78cm-wide cells, record whether they were sitting or stand-

ing, and estimate whether they were speaking. One frame

for every 10 seconds of each test video was annotated at an

average speed of 73 seconds per frame. Clearly, effective

automated methods would be a boon to such social science

analysis.

The analysis of non-verbal cues including location, head

and body pose, gaze direction, hand gestures, speaker seg-

mentation and meeting contextual cues are important for

the automatic analysis of social interaction. Perez [10] re-

viewed around a hundred papers dealing with small social

interactions with a focus on non-verbal behavior, compu-

tational models, social constructs, and face-to-face interac-

tions. The range of topics in the automatic analysis of these

social interactions includes interaction management (ad-

dressee, turn-taking), internal states (interest, other states),

dominance (extroversion, dominance, locus of control) and

roles (relationships). For example, Jovanovic et al. [16]

worked on the problem of addressee identification using

manually annotated data. The problem of estimating the vi-

sual focus of attention of participants from non-verbal cues

is also an active area of research [26, 3, 11, 22, 21], which

can be used to detect emergent leaders [5].

Several multimodal corpora have been designed for anal-

ysis of group meetings, with different combinations of

modalities. These include the ICSI Meeting Corpus [13]

(head-worn and table-top microphones), the ISI meeting

corpus [6] (microphones), the AMI corpus [17] (video

cameras and microphones), the ATR database [7] (small

360-degree camera surrounded by an array of high-quality

directional microphones), the NTT corpus [24, 23, 22]

(video cameras, microphones and wearable sensors), and

the ELEA corpus [25] (close-talking mono-directional mi-

crophones, Windows Kinect and GoPro cameras).

In most of these studies, the locations of participants,

head poses and gaze directions were either manually an-

notated [18, 16] or estimated using special wearable sen-

sors [23], one or more cameras [26, 14, 5], or the Kinect

[20]. The manual coding suffered from non-trivial inaccura-

cies in each type of measurement. Using cameras, separate

Kinects for individual participants, or wearable sensors for

measuring head pose is obtrusive and generally makes the

participants uncomfortable. In contrast, in this paper, we

present a system that automatically tracks participants and

estimates their seated orientations, without the use of any

video cameras or Kinects. To the best of our knowledge,

there is no work that employs ceiling-mounted, sparse ToF

sensors for understanding the orientation of participants in

a group meeting, although such arrays of sensors are much

more likely to integrate naturally into future building sys-

tems.

The likelihood for a test orientation image to belong to

a particular class is computed based on the assumption that

the test image approximately lies in the linear span of train-

ing samples from the same class. This idea is inspired

from Wright et al. [27], which uses sparse representation

to solve the problem of face recognition. The choice of fea-

tures is less critical if the sparse representation is properly

computed. We leverage the observation that participants

in a meeting generally face the current speaker in order to

compute the prior probability distribution of the orientation

classes. We use a Bayesian estimation algorithm that com-

bines likelihood and prior terms to automatically detect the

seated body orientations of the participants.

3. Problem Statement and Dataset

3.1. Problem Statement

Given a meeting scenario, our task is to estimate the body

orientation of all seated individuals at each ToF frame. We

consider eight different orientation classes, which are de-

fined by the participant location with respect to the table, as

illustrated in Figure 1. In either of the two table positions,

91



Figure 3. Top-down views of orientation classes and correspond-

ing actual ToF images.

orientation direction 3 is towards the table. The top-down

views of the eight orientations and corresponding represen-

tative ToF images for an individual are shown in Figure 3.

3.2. Dataset

The dataset for our study consists of a meeting with 4

participants, debating on a topic. The duration of the meet-

ing was around 12 minutes. The participants were sponta-

neous during the discussions and nothing was scripted.

The meeting was conducted in an 11′ × 28′ conference

room with 18 ceiling-mounted IRMA Matrix time-of-flight

sensors, designed by Infrared Intelligent Systems (IRIS)

[1]. These sensors work on the principle of the time-of-

flight of light, analyzing the phase difference between the

emitted and reflected infrared signals to estimate the rela-

tive distance of an object from the sensor. The resolution of

each sensor is 25×20 pixels. The depth map obtained from

the sensor array is thus extremely low-resolution. Individ-

uals are continuously tracked in the room and their coarse

poses (sitting/standing) are determined from the output of

the ToF sensors using blob tracking and height threshold-

ing [15]. The ToF sensors collect data at approximately 9

frames per second (fps). Each participant also wore a lapel

microphone. The ToF and microphone data were recorded

and served as inputs to our algorithm. A reference video

camera was also used to record the meeting proceedings.

The video camera data was not used for any algorithm de-

velopment and was only used for ground truth determina-

tion.

For the purpose of training the orientation classifier, we

also conducted a separate non-meeting recording in which

two different individuals sat in different parts of the room

in each of the 8 different orientations. This resulted in 900

images of each class corresponding to Table Position 1 and

450 images of each class corresponding to Table Position 2.

We will explain in Section 5 how we use these images to

generate training datasets for our classifier.

4. Proposed Method

4.1. Preprocessing the data

At the start of the meeting, one of the participants waved

his hand and verbally indicated the start of the meeting. The

audio and reference video recordings were first synchro-

nized in Audacity [2]. The reference video and ToF data

were then synchronized using the waved hand. Time stamps

on the ToF data were used to find correspondences between

ToF frames (collected at 9 fps) and reference video frames

(collected at 30 fps) and to appropriately downsample the

video data.

We removed noise from the aligned audio data in Au-

dacity and then performed speaker identification using tech-

niques described in [12]. Essentially, for each lapel micro-

phone recording, speech segments were detected by apply-

ing a dynamically estimated thresholding criterion on the

extracted signal energy and the spectral centroid. Accu-

rate timestamps also allowed us to downsample the speaker

identification information (collected at 48kHz) to the ToF

frame rate of 9 fps. Thus at each ToF frame, we have a 4-bit

speaker label. There can be more than one speaker at a par-

ticular time or there can be no speaker at all. For example,

if the speech label is [0, 0, 0, 1], the speaker is P4, while if

the speech label is [0, 0, 1, 1], both P3 and P4 are speaking

simultaneously.

4.2. Manual annotation

The true body orientations of all the participants in the

meeting were manually annotated from the video camera

recordings. To account for variability between different hu-

man annotators, we randomly selected 300 frames and an-

notated the body orientation for all the participants using

two different annotators. The annotator agreement on hu-

man orientation was 92%, and always differed by 1 class in

cases when the annotation was not in agreement.

4.3. Body orientation estimation

Our body orientation estimation algorithm uses a Bayes

classifier applied to measurements from the two modalities.

The likelihood term is computed by applying compressed

sensing techniques to the ToF depth map. The prior term

is calculated dynamically at each frame after extracting the

speaker identity from the audio, combined with knowledge

of the relative positions of the participants.

As illustrated in Figure 3, we have 8 different orientation

classes {ω1, ω2, ..., ω8}. Let ft be the feature vector corre-
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sponding to the data at time t as described further below, es-

sentially a vectorized representation of the ToF depth map

corresponding to a seated individual. P (ft|ωj) represents

the likelihood of the class ωj with respect to ft. Section

4.3.1 describes the computation of ft and P (ft|ωj) in de-

tail. P (ωj) represents the prior probability of the class ωj .

The method for dynamically computing the prior probabil-

ity distribution at each time instant is explained in Section

4.3.2.

The posterior probabilites P (ωj |ft) are computed by

multiplying the likelihood with the prior probabilities ac-

cording to Bayes’ rule:

P (ωj |ft) =
P (ft|ωj)P (ωj)

P (ft)
(1)

The class of the unknown orientation image is j∗ =
max

j
{P (ωj |ft)}, i.e., the index of the maximum element

in the vector P (ωj |ft).

4.3.1 The likelihood term

The 18 ToF sensors in the ceiling provide a depth map of the

room. People are detected and tracked from this depth map

based on computer vision techniques as described in [15].

Each tracked person blob is resized to a 10×10 image, and

the distance values normalized to the range [0,1]. We then

vectorize each 10×10 region into a d = 100 dimensional

feature vector f .

Let f1
i , f

2
i , . . . , f

ni

i be the feature vectors corresponding

to the ni available training orientation images correspond-

ing to class ωi. Our hypothesis is that the test feature vector

ft ∈ Rd can be approximately expressed as a linear combi-

nation of the training images of the same class [27], i.e., if

ft is in class ωi, we can express it as:

ft = x1
i f

1
i + x2

i f
2
i + ....+ xni

i fni

i (2)

We construct a feature matrix, or dictionary, D using the

available training images for each orientation class as:

D = [f1
1 , f

2
1 , . . . , f

n1

1 , f1
2 , . . . , f

n2

2 , . . . , fn8

8 ] (3)

In our implementation, ni = 100 for all classes. Thus,

D ∈ R100×800, since we have 8 classes, each with 100

training samples and each training feature vector fk
i ∈

R100. We can now express ft in terms of all the training

feature vectors of all the eight classes as:

ft = Dx (4)

where x ∈ R800 is the coefficient vector. Given ft and D,

our problem is to solve the linear inverse problem in (4) to

recover x.

Intuitively, if ft corresponds to one of the classes

{1, 2, . . . , 8}, the only non-zero entries in the solution vec-

tor to the above problem should be the ones that correspond

to that particular class. For example, if the class of ft is

ωi, ideally, the coefficient vector x will have the following

structure: x = [0.....0, x1
i ...x

ni

i , 0.....0]. The goal is to solve

the above linear inverse problem so we can determine the

locations of these non-zero entries in the solution vector x.

Therefore, the problem of recognizing the unknown orien-

tation image is reduced to a sparse recovery problem. Ide-

ally, the solution can be obtained by minimizing its l0 norm.

However, since this is an NP-hard problem, we instead em-

ploy l1 relaxation and solve the following problem:

minimize
x

||x||1
subject to ft = Dx.

(5)

The above problem belongs to a class of constrained op-

timization problems and can be solved by a traditional inte-

rior points method. However, this approach is slow for real-

time applications like estimating the orientation of people

in a room. Therefore, we convert this problem to an uncon-

strained basis pursuit problem using a regularization term:

x∗ = arg min
x

||x||1 +
1

2λ
||Dx− ft||22 (6)

This is now an unconstrained convex optimization prob-

lem that can be solved by variants of traditional gradient

descent algorithms, in which the computational effort is a

relatively cheap matrix-vector multiplication involving D
and D⊤. Here, we use the Fast Iterative Shrinkage Thresh-

olding Algorithm (FISTA) [4] to recover x∗, which is the

optimum value of the coefficient vector x.

In FISTA, x is determined iteratively using the following

equation:

xk = τη(yk − ηD⊤(Dyk − ft)) (7)

where xk is the value of x at the kth iteration, yk = xk−1+
tk−1−1

tk
(xk−1 − xk−2), and τη(x) is the shrinkage operator

defined on each element x(i) of the l-dimensional vector x
as:

τη(x)i = sign(x(i))max{|x(i)| − η, 0}, i = 1, 2, . . . , l
(8)

The factor tk+1 is updated as tk+1 =

√
1+4t2

k

2
. Thus,

FISTA is similar to the Iterative Shrinkage Thresholding

Algorithm (ISTA), except that it employs the shrinkage op-

erator on the point yk, a combination of the previous two

values {xk−1, xk−2}.
FISTA gives the optimal coefficient vector x∗ as a so-

lution to Equation (4). After computing x∗, the likelihood

of a particular class with respect to the unknown image is
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Figure 4. (a) Test orientation depth map, (b) Sparse x
∗ vector

showing peak values corresponding to class 2, (c) The likelihood

of all orientation classes with respect to the feature vector

computed from the the class-wise residuals. Let δi(x
∗) be

a vector of the same size as x∗ whose only non-zero entries

are the values in x∗ corresponding to the class ωi. The class-

wise residuals are computed as ri = ||ft −Dδi(x
∗)|| [27],

where i = 1, 2, . . . , 8. The inverses of the residuals, nor-

malized to the range [0,1], give the likelihood P (ft|wi) for

each class.

Figure 4 illustrates an example in which Figure 4a shows

the ToF depth map corresponding to a person blob. Figure

4b shows the sparse coefficient vector obtained by solving

Equation (6) using FISTA, and Figure 4c shows the result-

ing likelihood distribution for all eight classes. From the

likelihood distribution, class ω2 is the most probable for this

ToF depth map.

4.3.2 The prior term

In a typical meeting scenario, the participants are generally

visually focused on the speaker. When the participants are

Algorithm 1: Computation of prior probability distri-

bution at ToF frame t

Input : ToF depth map, Speech labels, Np,

ω = {1, 2, . . . , 8}, P (S), P (NS), P (E)
Output: Priork = {p1, p2, . . . , p8}, for

k = 1, 2, . . . , Np at time instant t

1 Find weighted centroid of each person blob;

2 Find speaker/s s from non-zero indices of speech

labels, Ns = |s|;
3 if Ns 6= 0 then

4 for k ← 1, 2, . . . , Np do

5 Initialize pi = 0, i = 1, . . . , 8;

6 Find angle between participant k and all other

participants from their weighted centroids;

7 if k ∈ s then

8 Bin each angle to nearest class label ∈ ω,

let this set be {Ok};
9 pi = pi + 0.6/|Ok| , for i ∈ {Ok};

10 pi = pi + 0.4/|ω| , for i ∈ {ω};
11 end

12 else if k /∈ s then

13 Bin angle/s with speaker to nearest class

label ∈ ω, let this set be {SDk};
14 Bin angle/s with non-speaker/s to nearest

class label ∈ ω, let this set be {NSDk};
15 Case 1: Participant looking at speaker

16 pi = pi + P (S) ∗ 0.6/|SDk| for

i ∈ {SDk};
17 pi = pi + P (S) ∗ 0.4/|NSDk| for

i ∈ {NSDk};
18 Case 2: Participant looking at

non-speaker

19 pi = pi + P (NS) ∗ 0.7/|NSDk|,
i ∈ {SDk};

20 pi = pi + P (NS) ∗ 0.3/|SDk| for

i ∈ {NSDk};
21 Case 3: Participant looking elsewhere

22 pi = pi + P (E)/|ω| for i ∈ {ω};
23 end

24 end

25 end

26 else if Ns = 0 then

27 for k ← 1, 2, · · · , Np do

28 Initialize pi = 0, i = 1, . . . , 8;

29 Find angle between participant k and all other

participants from their weighted centroids;

30 Bin each angle to nearest class label ∈ ω, let

this set be {Lk};
31 pi = pi + 0.6/|Ok| , for i ∈ {Lk};
32 pi = pi + 0.4/|ω| , for i ∈ {ω};
33 end

34 end
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seated in swivel chairs, it is the natural tendency of the par-

ticipants to orient their bodies to face the speaker. How-

ever, the amount of time participants are actually oriented

towards or looking at the speaker varies from individual

to individual. We used a portion of our meeting training

dataset to compute the probabilities of each person looking

at a speaker, looking at a non-speaker, and looking com-

pletely elsewhere. The results are tabulated in Table 1. We

see that the percentage of time Person P4 is looking at a

speaker is significantly less than the other participants, indi-

cating that the actual time participants focus on the speaker

is individual-specific.

The prior probability distribution for each participant is

computed dynamically at each frame depending on the loca-

tion of the participant with respect to the speaker(s). Algo-

rithm 1 summarizes the steps for computing the prior prob-

ability distribution for each participant at a particular time

instant. The basic idea is to compose the prior distribution

such that the mass is concentrated at the orientations cor-

responding to the vectors from the given participant to the

speaker(s), which also allows for the participant-dependent

possibility of looking at a non-speaker or in a random di-

rection. Thus, we require participant-specific values of

the probabilities that the head orientation corresponds to

a speaker, non-speaker, or somewhere else, denoted P (S),
P (NS), and P (E) respectively. These values are estimated

from the meeting training data as discussed above.

Table 1. Measured probabilities for looking at a speaker, non-

speaker or elsewhere.

Speaker Non-speaker Elsewhere

P1 53.9 20.5 25.5

P2 61.8 26.1 12.1

P3 66.3 7.1 26.6

P4 33.2 24.3 42.5

Average 53.8 19.5 26.7

Figure 5 illustrates an example computation of the prior

probability distribution for Person P1 when Person P4 is

speaking. The algorithm first computes the relative orienta-

tion of the participants from their weighted centroids in the

ToF depth map. The calculated angle is quantized into the

nearest orientation class label. In Figure 5, SD1 denotes the

set of orientation directions between P1 and the speaker/s.

NSD1 denotes the set of directions between P1 and the

non-speakers. Here, SD1 = 2, because the angle between

the centroids of P1 and P4 (the speaker) is quantized most

closely to class label 2. Similarly, NSD1 = {1, 3} for this

example.

When P1 looks at the speaker (P4), his body may not be

oriented directly towards P4. We empirically estimate that

the probability that P1’s body is oriented towards P4 is 0.6,

i.e., P (ω2|S) = 0.6. P1 can also look at P4 when his body

is oriented in directions 1 or 3. Thus, we set P (ω1|S) = 0.2

Figure 5. Example computation of prior probability distribution

for P1 when P4 is the speaker.

and P (ω3|S) = 0.2. The other conditional probabilities

are computed similarly, as illustrated in Figure 5 and Algo-

rithm 1. As shown in Figure 5, the prior distribution is ulti-

mately a weighted combination of three cases: P1 looks at

the speaker, P1 looks at a non-speaker, and P1 looks some-

where else. Overall, the prior probability distribtion is com-

puted as:

P (ωi) = P (ωi|S)P (S) + P (ωi|NS)P (NS)+

P (ωi|E)P (E), i ∈ [1, 8] (9)

From the final prior probability distribution in Figure 5,

we note that the distribution has a peak at orientation di-

rection 2 and falls off on either side of 2. Thus, the prior

probability model strongly leverages information about the

speaker and the relative position between the participant

and the speaker. As the speaker changes from frame to

frame, the prior distribution also changes. The prior dis-

tribution is also sensitive to the location of the participants
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and would change dynamically, e.g., if the participants shift

or exchange seats in the room.

4.3.3 Median filtering

Since people are unlikely to change their seated orientations

abruptly while a meeting is in progress, we median filter

the estimated orientations with a filter of size 45 frames

(roughly 5 seconds). This median filtering smooths out er-

roneous spikes in the orientation estimation.

5. Experimental Results

The meeting dataset was separated into the first 60% (ap-

proximately 7 minutes) for training and the remaining 40%

(approximately 5 minutes) for testing.

The dictionary D is a 100×800 matrix whose columns

are the training feature vectors. We use 100 training sam-

ples for each of the 8 classes. For each class, 80 of these 100

training samples were randomly selected from the separate

non-meeting dataset described in Section 3.2. Half of these

samples were collected from each of the two table positions

illustrated in Figure 1. The samples collected in Table Po-

sition 2 are rotated by 180◦ to have the same interpretation

as those in Table Position 1. To leverage actual meeting

data, the remaining 20 training samples for each class were

sampled randomly from the meeting training dataset. Some

classes like 6, 7, and 8 (i.e., facing away from the table) are

not represented in the meeting training set at all; for these

classes, the dictionary was formed entirely from the non-

meeting dataset. Since the selection of training samples for

the dictionary D is random, the process was repeated 10

times and the accuracy of the orientation estimation algo-

rithm on the training data set was computed in each trial.

The optimized Dopt is the dictionary that yielded the best

accuracy over all 10 trials.

We computed the accuracy of the algorithm as the per-

centage of the ToF frames in which the estimated orienta-

tion class is exactly equal to the actual orientation class. We

also calculated the percentage of frames in which the ac-

tual class and the estimated class differ by 1 bin, i.e., the

difference between the exact and estimated orientation is

less than 45◦. As we noted during our manual annotation

of body orientations, even human observers can disagree to

±1 class.

Figure 6 illustrates a sample result of the orientation clas-

sification algorithm. Figure 6a is the reference view, Fig-

ure 6b is the corresponding raw ToF data, and Figure 6c

shows the location, speaker, and estimated body orienta-

tions. A short video clip with the reference camera view,

the ToF raw output, and the algorithm results are available

at the link https://youtu.be/Hm98ZEqjAtk. Fig-

ure 7 shows the estimated and the actual body orientations

Figure 6. (a) Camera view, (b) Raw data from the ToF sensors

stitched to form a depth map of the room, (c) Results of the ori-

entation estimation algorithm: the red circle indicates the speaker,

detected from the microphone recordings. The yellow arrows in-

dicate the automatically estimated body orientations.

Figure 7. Actual and estimated body orientations of person P1 for

the entire meeting duration.

of person P1 for the entire meeting duration, showing ex-

cellent correspondence.

Table 2 tabulates the orientation classification accuracy

on the training and testing datasets respectively. The ac-

curacy on the training dataset is 90.5% and on the testing

dataset is 80.8%. The percentage of cases where the ac-

tual and estimated orientation differ by 1 class is 6% on the

training dataset and 17.2% on the testing dataset. Therefore,

the algorithm correctly predicts the orientation of seated in-

dividuals to an accuracy of ±45◦ for 96% of the total time

for the training dataset and 98% for the test data set.

Before finalizing the orientation classification algorithm,

we ran several experiments on our training data set, which

can be interpreted as different versions of our algorithm.

The accuracy increased in each version and the algorithm

presented in Section 4 is our final and best version. Fig-

ure 8 shows the accuracy of the different versions of the

algorithm on the training data set. The versions are listed

below:

Version 1: D was formed entirely from randomly selected

samples of the non-meeting training dataset. No prior

location/speaker information was added, thus making all

8 classes equally probable. The classification algorithm is

essentially reduced to maximum likelihood estimation.
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Table 2. Orientation estimation accuracy with dictionary Dopt and location and speaker based priors.

Training Data Set Testing Data Set

P1 P2 P3 P4 Average P1 P2 P3 P4 Average

Differ by 0 class 93.3 94.1 91.2 83.4 90.5 88 65.3 89.2 80.7 80.8

Differ by at most 1 class 99.5 99.2 93 94.3 96.5 97.7 99.4 95 100 98

Figure 8. The accuracy of different versions of the orientation es-

timation algorithm.

Version 2: The same D as in Version 1 was used. The prior

probabilities were modeled based on relative locations of

the participants without any speaker/audio information.

Version 3: The same D as in Version 1 was used. The prior

probabilities were modeled based on location and speaker

information as described in Section 4.3.2.

Version 3: The formation of the matrix D was modified to

leverage actual meeting data as described in the beginning

of this section. The optimal dictionary Dopt was used.

The prior probabilities were based on location and speaker

information, as in Version 3.

From Figure 8, we note that the average classification

accuracy increases by about 7% when introducing priors

based on location alone and by about 17% when model-

ing prior probabilities based on both location and speaker

information. Introducing training samples from the actual

meeting to form the dictionary gives an additional 4% boost

to the average accuracy. Thus, the final version of the al-

gorithm gives an improvement of approximately 30% over

the first version. We also noted that the median filtering at

the end of the algorithm improved the average accuracy by

approximately 3–7%, as compared to the same algorithm

without any filtering.

6. Conclusions and Future Work

We described a method for estimating the seated orienta-

tion of individuals using a fusion of time-of-flight and audio

data. The system can be used for group meeting analysis

and facilitation, in which a smart room needs to know the

exact location, pose, and orientation of each participant.

At present, we are using individual lapel microphones

for recording the audio information. In the future, we intend

to replace these microphones with a custom 16-channel am-

bisonic (spherical) microphone [8, 9]. The 16 channels can

be combined differently to point at each of the instantaneous

participant locations obtained by the ToF tracking system,

allowing us to more clearly understand the focus of atten-

tion of participants in the meeting, and make the sensing

even less obtrusive.

Another constraint in this dataset is that the participants’

positions were basically fixed for the entire duration of the

meeting. In a more natural meeting scenario, a participant

may walk up to the board to present something, leave the

meeting early, or get up and sit in a different seat. We plan to

integrate these realistic scenarios in our future experiments

and test the robustness of our algorithm.

Finally, we want to integrate the location, pose, and ori-

entation information with other verbal and non-verbal cues

to detect the visual focus of attention of the group, deter-

mine interaction links between participants, and study pro-

ductivity and participation shifts in a group meeting. We be-

lieve such smart rooms that provide accurate time-stamped

information of participants’ location, pose, orientation, and

speech would be of immense value to social psychologists

who study group dynamics in real physical environments.
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