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Abstract

A 16-band plenoptic camera allows for the rapid ex-

change of filter sets via a 4x4 filter array on the lens’s

front aperture thus allowing an operator to quickly adapt

to a different locale or threat intelligence. Typically, such

a system incorporates a default set of 16 equally spaced,

non-overlapping, flat-topped filters. Knowing the operating

theater or the likely targets of interest it becomes advanta-

geous to tune the filters; we propose a differential evolution

approach to search over a set of commercial off-the-shelf

(COTS) filters for an optimal collection of filters. We ex-

amine two independent tasks: general spectral sensing and

target detection. For general spectral sensing, we utilize

compressive sensing and find filters that generate codings

which minimize the reconstruction error. For target detec-

tion, we select filters to optimize the separation between the

background and a set of targets. We compare the results

obtained using the selected COTS filters to the default fil-

ter set and full spectral resolution hyperspectral (HS) filter

set for target detection and general spectral sensing on a

previously obtained HS image.

1. Introduction

Multispectral (MS) and hyperspectral (HS) imaging sen-

sors diverge from traditional panchromatic or RGB sen-

sors by offering a much finer sampling (i.e., more bands)

of the continuous electromagnetic (EM) spectrum; in the

case of MS tens of bands and in the case of HS hundreds

of bands. This finer sampling is fundamental for the two

major uses of MS/HS technology, separating known tar-

gets from complex backgrounds and general spectral sens-

ing (e.g, anomaly detection) when there is no available tar-

get information. MS and HS technology are now widely

used in military and civilian realms for numerous applica-

tions ranging from anomaly detection to natural resource

exploration. Due to the long development cycles, funda-

mental optical technology involved and great cost of these

MS/HS imaging systems the tuning of the spectral filters

for a particular task or set of targets would be technologi-

cally difficult and detrimental to a wide range of other tasks.

The traditional imaging paradigm calls for the separation of

the design of the imaging system and post-processing algo-

rithms.

This separation between the two designs can be seen in

the large number of post processing algorithms which se-

lect optimal collections of spectral bands or transform the

data into a feature space representation. These two classes

of algorithms, band selection and feature extraction, both

seek to find an optimal representation of recorded high di-

mensional data for a specific task which is usually of a

lower dimensionality. High dimensionality in data is prob-

lematic because of the curse of dimensionality [3] or the

empty space phenomenon [27]. The curse of dimensional-

ity describes situations where the complexity of a problem

grows exponentially with the number of dimensions and the

empty space phenomenon illustrates that when data is de-

scribed by a few observations then the high-dimensional

space becomes sparse. Both these observations lead to

classifiers overfitting the data which reduces the general-

ity. Band selection algorithms perform this dimensional-

ity reduction by finding an optimal subset of the recorded

bands or by grouping together sets of adjacent bands. Pop-

ular band selection techniques include Mutual Information-

based selection [14], Kullback-Leibler divergence-based se-

lection [20], Bhattacharya distance-based grouping [10],

classification-based grouping [15], and Sequential For-

ward Search (SFS) [26]. Feature selection algorithms per-

form this dimensionality reduction by mapping the origi-

nal recorded spectrums into a feature space; this mapping

need not be linear. Popular techniques here include Prin-

ciple Component Analysis (PCA) [25], Laplacian Eigen-

maps (LE) [4], Maximum Noise Fraction [13], and Deci-

sion Boundary Feature Extraction (DBFE) [16].

Recently, a novel MS plenoptic camera from Surface Op-

tics Corp., which we will discuss in Section 2, was devel-

oped which allows for the rapid exchange of optical filters

via an array on the lens. In this new imaging system a filter

set can be tuned for a specific mission and thus the data col-
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lected will be better able to address the mission task. Also,

by tuning the filters, only the relevant features of the scene

are captured eliminating the need for post-processing algo-

rithms (e.g., band selection or feature extraction). When the

particular mission or locale changes the filter set can easily

be exchanged for a more relevant one without the need to

any adjustments to the larger optical system.

In this paper, utilizing the plenoptic camera framework,

we propose to select a subset of available COTS filters for

two distinct imaging tasks. In Section 2 we will describe the

novel plentoptic imaging system which serves as the phys-

ical environment for our developed numerical methods. In

Section 3 we describe the COTS filter collection which we

will seek to find an optimal subset of. In Section 4 we de-

scribe the optimization process for the filter selection which

involves defining the fitness functions for both sensing tasks

and the differential evolution (DE) optimization strategy. In

Section 5 we conduct a numerical experiment on an existing

HS image comparing the optimized filter set to the default

plenoptic filters and the full spectral resolution HS filter set.

In Section 6 we provide some conclusions.

2. Plenoptic Camera

For this research we will focus on designing filters for

the novel Surface Optics Corp. VNIR plenoptic camera

(SOC716) [8]. The SOC716 is a 16-band full motion video

spectral imager with interchangeable filters contained in

a mosaic filter array (MFA) that can be mounted on the

lens. As a standard plenoptic camera, the micro lens ar-

ray (MLA), located in close vicinity of the focal plane, im-

age the objective aperture onto the focal plane array (FPA),

creating what is nominally a 4x4 sampling of the aperture

with square sub-apertures. Each lenslet forms a conjugate

real image of the MFA on the focal plane. Therefore, each

super-pixel samples nominally the same spatial content with

16 different aperture functions. The FPA is aligned with

these replicated images so that each FPA pixel receives light

from only one filter of the MFA. The MLA has a 640x540

format and is rigidly mounted to the FPA. The default filter

set has sixteen independent and contiguous spectral chan-

nels made up of approximately flat-top bandpass filters with

center wavelengths ranging from 450 to 950 nm.

We note that the proposed imaging paradigms which we

will present in this paper are agnostic to the actual imaging

system and can all be easily extended to a number of other

MS imagers including: filter wheel [6], camera array [31],

and filtered active illumination [9] MS imaging systems. In

addition our techniques are not limited to a specific spectral

region.

Figure 1: Collection of COTS filters. Each filter is plotted

with wavelength on the x-axis ranging from 450-950 nm

and transmittance on the y-axis from 0-100%.

3. COTS Filters

To alleviate the high cost of producing custom optical

filters as was done in [12] we choose to utilize a collection

of COTS optical filters. These COTS filters are a fraction

of the cost to purchase and don’t require the lengthy opti-

cal design process necessary to produce custom filters. We

choose a collection of 39 Semrock multi-band fluorescence

single substrate bandpass filters to comprise our collection

of filters. Due to their manufacture method these filters have

high transmission with steep, well-defined edges and good

blocking between bandpasses. For each filter we down-

load the predicted transmittance values over the wavelength

range of the FPA on the plenoptic camera (450−950 nm) at

a resolution of 0.2nm. The collection of filters chosen can

be seen in Figure 1. Once the set of 16 filters has been se-

lected they can be diced and arranged in the 4× 4 gridAfter

spectral cross-talk calibration (which can also be done af-

ter a mission) the system will acquire video rate 640× 540
16-band MS data.
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4. Filter Optimization

We view the multi-filter specification problem as a multi-

objective design where one can vary the relative importance

of various task-specific objectives. It is instructive to think

of these design objectives as residing at two ends of a scale

as shown in Figure 2. We have the freedom to select the

spectral filters such that the sensor can better emphasize one

or the other objective depending on their relative weight-

ings, γ and (1 − γ), γ ∈ [0, 1], in the design performance

function, P . Here we consider weightings that balance be-

tween target detection performance (PT ) and spectral reso-

lution performance (PR) such that:

P = γPT + (1− γ)PR. (1)

Our filter selection method allows for the specification of

a set of spectral filters which can be tuned between em-

phasizing either of these task-specific objectives. The fil-

ter search involves solving an optimization problem in

high-dimensional space. The formal optimization problem

(shown here, without loss of generality, as a maximization)

can be written as

F∗ = max
F

g(F|D), (2)

where the goal is to find a set of filters, F∗, from our filter

collection, that maximize the objective function for a given

dataset. We will utilize a DE search strategy to efficiently

search the space which we describe in Section 4.1. To ac-

complish the general spectral resolution task we will need

the theory of compressive sensing (CS) which we describe

in Section 4.2. In Section 4.3 we define the fitness func-

tion for the target detection task-specific objective and in

Section 4.4 we define the fitness function for the general

spectral recovery task-specific objective.

4.1. Differential Evolution

In general, the optimization problem in Equation 2 is

non-convex (i.e., characterized by the presence of multiple

optima) and therefore we find it useful to employ a global

optimization algorithm (search routine) that is capable of

(but cannot guarantee) convergence to a global (rather than

local) optimum. In particular, we employ DE [29], an algo-

rithm that, by mimicking the evolutionary processes from

biology, iteratively improves a set of candidate solutions,

X , according to the objective (fitness) function, g(·). Dur-

ing each iteration, the algorithm proposes new candidate so-

lutions, X ′, by the mutation and cross-over of members of

the population (which is composed of previous candidate

solutions). These new proposed candidate solutions and the

current candidate solutions are evaluated by the fitness func-

tion and only the top performing candidate solutions are re-

tained for the next iteration. This process continues until

Figure 2: Conceptual diagram of the range of camera op-

erational modes for a L = 16 filter (4 × 4 array) plenop-

tic camera. P is the total performance of the sensor, PT is

the detection performance, PR quantifies spectral resolution

and reconstruction performance, and γ is a weighting term.

Target detection performance is exclusively favored when

γ = 1. Spectral resolution is favored when γ = 0, yielding

a spectral CS sensor that can recover L′ > L spectral bands.

a stopping condition based on the number of iterations or

the output of the fitness function. The basic DE algorithm

is stated in Algorithm 1. For our particular task-specific

optimization problems we constrain the population to in-

clude binary vectors with a sum of 16 and length equal to

the number of filters in the collection (39). We constrain

the mutation and cross-over to produce solutions which live

in the desired population set by performing modulus opera-

tions and randomly including or deleting filters to ensure a

population members which sum to 16.

4.2. Compressive Sensing

CS is a technique used to recover a signal with fewer

samples than that required by the Shannon-Nyquist Sam-

pling theorem [28] under the restriction that the signal is

sparse and the sensing matrix is incoherent relative to a se-

lected signal model [7, 11]. For a recorded signal Y , a sens-

ing matrix Φ, a signal model or basis (frame) Ψ; a CS recov-

ery seeks to find α̂, which minimizes the underdetermined

system:

α̂ = min
α

{

‖Y − ΦΨα‖2
2
+ τ‖α‖1

}

, (3)

where τ is a sparseness parameter. Having found the mini-

mizer, α̂, an estimate of the true spectrum can be recovered

by applying the signal model,

p̂ = Ψα̂. (4)

For notational purposes let CS(ΦY,Ψ) be the outcome

of an algorithm which returns an estimate of the underly-

ing true signal. The problem described in Equation 3 can

be solved for with numerous techniques, e.g,. linear pro-

gramming [5], Bergman iteration methods [22], Matching
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Algorithm 1 Differential Evolution

1: Initialize:

Create a random population of P candidate

solutions, X , which are contained in the

D-dimensional search space. Choose

fitness function g : RD 7→ R, cross over

probability CR ∈ [0, 1], and differential

weight WF ∈ [0, 2].
2: for n = 1 to Stop do

3: for x ∈ X do

4: Choose a, b, c ∈ X\x such that they are distinct

5: z = a+WF × (b− c)
6: Pick a random integer index R ∈ [1,D]
7: Choose r, a D × 1 vector, from U(0, 1)
8: for d = 1 to D do

9: x′(d) =

{

z(d) d = R or r(d) ≤ CR

x(d) r(d) > CR

10: end for

11: Constrain x to be a valid population member

12: if g(x′) > g(x) then

13: Replace x with x′ in the population

14: end if

15: end for

16: end for

Pursuit [18] and Orthogonal Matching Pursuit [23]. For

simplicity we will utilize linear programming with equal-

ity constraints.

4.3. Target Detection Fitness Function

Let p ∈ I be the N -dimensional spectral pixel from a

training dataset I of size NI . Let M(p|F) be a function

which applies the encoded candidate filters, F , to a pixel p
to yield the M -dimensional pixel p′:

p′ = M(p|F) = Fp. (5)

Let us also denote a set of indicator functions T = {Ti}
NT

i=1
,

where NT is the number of distinct targets,

Ti(p) =

{

1 p is a member of target class i,

0 otherwise,
(6)

with associated target spectral signatures Ti ∈ R
N .

In target detection mode (γ = 1) our goal is to select a

filter that increases the probability that pixels belonging to

each of the target classes will be correctly assigned to their

appropriate class while simultaneously limiting the number

of false alarm detections associated with background pixels

that are erroneously labeled target pixels. We use the Adap-

tive Cosine Estimator (ACE) [19] as a similarity measure to

quantify how closely each transformed pixel, p′, matches a

given target spectrum, Ti, given a filter set F :

mi(p|Ti,F) =
(ΩTF )

2

ΩTTΩFF

, (7)

where,

ΩTF = (M(Ti|F)− µBG)
TΣ−1

BG(M(p|F)− µBG), (8)

ΩTT = (M(Ti|F)− µBG)
TΣ−1

BG(M(Ti|F)− µBG), (9)

ΩFF = (M(p|F)− µBG)
TΣ−1

BG(M(p|F)− µBG), (10)

for a known target signature Ti, background spec-

tral mean of all the transformed pixels, µBG =
1

NI

∑

p∈I M(p|F), and background covariance, ΣBG =
1

NI−1

∑

p∈I(M(p|F)− µBG)
T (M(p|F)− µBG).

Let us now measure the mean, µtarget
i , and standard devi-

ation, σtarget
i , of the ACE statistics for each target signature:

µtarget
i =

1

ti

∑

p∈I

mi(p|Ti,F)Ti(p), (11)

σtarget
i =

√

1

ti − 1

∑

p∈I

∣

∣mi(p|Ti,F)− µtarget
i

∣

∣

2

Ti(p), (12)

where ti =
∑

p∈I Ti(p). Similar calculations can be made

for µbackground
i and σbackground

i by considering 1− Ti(p).
To avoid the problem of saturating target separability

from the background we use a linear discriminant technique

to define the target detection fitness function:

gT (F) =

NT
∑

i=1

µtarget
i − µbackground

i

(σtarget
i )2 + (σbackground

i )2
. (13)

Other measures for quantifying target detection quality

such as mutual information [14] or the Battacharya distance

[10] are possible.

4.4. General Spectral Recovery Fitness Function

Each channel of the imager in CS mode (γ = 0) pro-

vides a single CS measurement composed of weighted lin-

ear combinations of spectral sub-bands for each pixel. The

goal in this case is to design filters that allow reconstruc-

tion of spectral pixels with a relative resolution finer than

the B/L resolution offered by a naive filter design based

on uniform, disjoint spectral sampling of a fixed spectral

band of size B. This operational mode requires significant

computational resources as each spectral pixel must be in-

dividually reconstructed by solving the sparsity-regularized

CS reconstruction program. We improve our ability to ob-

serve a general spectrum at the expense of specific target

detection performance and increased computational load.

To optimize the spectral resolution we again define p ∈
I to be the N -dimensional spectral pixel from a train-

ing dataset I of size NI . Using M(p|F) as defined in
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equation (5) and selecting LR = 16 filters to produce an

LR-dimensional feature vector, p′, we can then estimate

p̂ ∈ R
N using the CS recovery equations (3) and (4). In

short, our complete forward model for spectral recovery is

given by:

MR(p|F) = CS(M(p|F),Ψ) (14)

and our objective function becomes:

gR(F) =
1

∑

p∈I ‖MR(p|F)− p‖2
2

, (15)

which quantifies how well we recover each N -dimensional

pixel in our data set given LR-dimensional samples where

LR < N .

We now need a signal model Ψ which will sparsely

represent our spectral signal. Here we choose to use

end-members learned from the Vertex Component Analy-

sis (VCA) algorithm [21] for the signal model (Ψ); this

choice is made for convenience of implementation and that

VCA has shown to provide good sparse representations of

HS data. Broadly speaking there are two types of signal

models: fixed and learned. Fixed models include mathe-

matical transformations such as the discrete cosine trans-

form (DCT), discrete wavelet transform (DWT) and dis-

crete Fourier transform (DFT) [1]. Learned signal mod-

els offer potentially sparser representations but must be

tuned to a particular dataset; learned signal model cre-

ation algorithms include non-negative matrix factorization

(NNMF) [24], K-singular value decomposition (K-SVD)

[2], method of optimal directions (MOD) [17], general-

ized principle component analysis (GPCA) [30] and end-

member algorithms [32]. The method presented in this pa-

per does not require a specific signal model, only one which

can sparsely express the sensor data.

4.5. Joint Taskspecific Optimization

Though not done here, one could allow γ ∈ (0, 1) and

optimize for both problems. This would allow for the op-

timized detection of several targets while at the same time

allowing for good general spectral sensing of other materi-

als in the scene. Such an optimization can be accomplished

by creating a joint fitness function or by designating filters

to belong solely to one of the two extremal tasks. In the

latter option, the filters selection would be iteratively up-

dated, switching between the two tasks and freezing the fil-

ters which have been selected for the other task.

5. Experiment

In this section we utilize a previous collected HS data set

to optimize the selection of COTS filters for the different

task-specific areas. We will test both the target detection

and general spectral recovery task-specific extremes and

compare the COTS optimized results to the default plenop-

tic filter set. To search the space of filters we performed

10, 000 iterations of the DE algorithm with a population of

20, CR = 0.5, and WF = 0.5.

5.1. Data

An AVIRIS HS cube acquired in February 2002 over the

San Diego Airport was used for the experiment; a RGB

representation of the scene can be seen in Figure 3. The

cube was cropped to 400 × 400 pixels in size and spectral

channels with water absorption, poor SNR, or outside of

the plenoptic sensor range were removed leaving 51 bands.

Three target signatures and associated target masks were se-

lected from the scene for ROC curve analysis. The AVIRIS

cube will represent the ground truth as well as what is pos-

sible with a HS sensor.

Figure 3: RGB representation of the AVIRIS cube. (Best

viewed in color)

We numerically simulate how the 16-band default plen-

toptic filter set would sense the scene by creating flat-top,

non-overlapping filters, and applying them to the data. For

the COTS filters we perform a cubic interpolation to match

the 51 AVIRIS wavelength centers then apply the interpo-

lated filters.

5.2. Target Detection

Using the DE algorithm and the target detection fitness

function presented in Equation 13 we found a collection of

16 COTS filters which maximized the fitness function dur-

ing the DE optimization search; the fitness function evalua-

tions can be seen in Figure 4. In Figure 5, we plot the ROC

curve for each of the 3 selected targets from the AVIRIS

scene. The ROC curves compare the probability of detec-

tion (pd) to the probability of false alarm (pfa). As was

expected, by selecting filters from a modestly-sized set of
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Figure 4: Evolution of fitness value for target detection task.

Red is the elite solution for each generation and the blue is

the population average. (Best viewed in color)

COTS filters we were able to outperform the default plenop-

tic filter set for all targets. Also, by tuning the filter selection

we were able to outperform the baseline HS filter set, which

had approximately 3.5 times better spectral resolution, fully

on targets 1 and 3 and partially on target 2. The DE-based

filter selection was able to perform a similar operation to the

best band or feature selection algorithms listed earlier; how-

ever, since the selection was performed optically there was

no need to perform post-processing on the collected data

saving time and computational resources.

5.3. General Spectral Recovery

Using the DE algorithm and the general spectral recov-

ery fitness function as presented in Equation 15 we found a

collection of 16 COTS filters which which were optimal for

the DE optimization search; the fitness function evaluations

can be seen in Figure 6. To quantify the improvement in

the spectral resolution acheived by using the DE optimized

COTS filter subset over the default plentoptic filter set we

will measure the distance between the recovered spectrum

and the true HS spectrum. In Figure 7 we show a plot for 4

random pixels from the scene comparing the HS spectrum

to each of the recovered spectrums (default and COTS) and

the absolute relative error between the 16 filter spectral up-

sampled image I and the hyperspectral cube H for a pixel

at location j:

error(j)i = |I(j)i −H(j)i| /H(j)i, (16)

where the subscript indicates the spectral band (1, 2 . . . , b).
We notice that the absolute relative error (shown in the

dashed red and green lines with the right y-axis) for the

COTS optimized filter set reconstruction is much lower then

Figure 5: ROC curves for the 3 targets of interest comparing

the default filter set (red), COTS optimized filter set (green),

and baseline HS filter set (blue). (Best viewed in color)

Figure 6: Evolution of fitness value for general spectral re-

covery task. Red is the elite solution for each generation and

the blue is the population average. (Best viewed in color)
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Figure 7: The HS spectral fidelity for four random pixels

from the cube for the default plentoptic filter set (red), the

COTS optimized filter set (green), and the HS ground truth

(blue). Absolute relative error shown with right y-axis and

dashed red and green lines. (Best viewed in color)

the default plenoptic filter set on the lower wavelengths and

lower to equal on the higher wavelengths. If we look at

the spectral coverage offered by the COTS filter collection

in Figure 1 we can see there is weak support on the higher

wavelengths. By adding additional COTS filters to the col-

lection which have support in this higher wavelength spec-

tral region we believe the results will further be improved.

In Figure 8 we show the spectral sum of the absolute relative

error for a pixel at location j:

errorS(j) =
b

∑

i=1

|I(j)i −H(j)i| /H(j)i. (17)

We see that the optimized COTS filters with CS reconstruc-

tion produced a spectral upsampled image cube with lower

pixel spectral errors than the default plentoptic filter set.

This increased spectral fidelity is important for analysts who

rely on spectral shapes to determine material compositions

of scenes and to compare with spectral libraries.

6. Conclusions

In this paper we have established a system in which one

can optimize the target detection performance or the gen-

eral spectral recovery of a scene by choosing filters from

a collection of COTS filters for use with a plenoptic cam-

era. By utilizing the design philosophy described in this

paper it is possible to achieve significant improvements in

task-specific imaging as compared to the default plentoptic

filter set composed of optical bandpass filters. We showed

that the DE search strategy allows for quick optimization

results that outperform the default set. We are currently

planning a field test where we will deploy the COTS col-

lection against the default filter set with various targets and

background materials. We also seek to refine the CS recov-

ery algorithms to utilize the spatial information in the scene

and explore other signal models for improved reconstruc-

tion results.

Acknowledgements

The authors would like to thank the anonymous review-

ers for their helpful comments and the Office of Naval Re-

search (ONR) for funding this work.

References

[1] M. M. Abo-Zahhad, A. I. Hussein, and A. M. Mohamed.

Compressive sensing algorithms for signal processing appli-

cations: A survey. International Journal of Communications,

Network and System Sciences, 8(06):197, 2015.

[2] M. Aharon, M. Elad, and A. Bruckstein. rmK-SVD: An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006.

105



(a) (b)

(c) (d)

Figure 8: Absolute relative error between the full spectral resolution HS scene and the default plenoptic filter set reconstruc-

tion ((a) and (c)). Absolute relative error between the full spectral resolution HS scene and COTS optimized CS reconstruction

(b) and (d). Top and bottom show same error data (colormap on top and z-axis on bottom). Note that the scales are the same.

(Best viewed in color)

[3] R. E. Bellman. Adaptive Control Processes: A Guided Tour,

volume 4. Princeton University Press, 1961.

[4] J. J. Benedetto, W. Czaja, J. Dobrosotskaya, T. Doster,

K. Duke, and D. Gillis. Integration of heterogeneous data

for classification in hyperspectral satellite imagery. In Al-

gorithms and Technologies for Multispectral, Hyperspectral,

and Ultraspectral Imagery XVIII, Proc. SPIE,, volume 8390,

pages 8390–78. International Society for Optics and Photon-

ics, 2012.

[5] S. Boyd and L. Vandenberghe. Convex optimization. Cam-

bridge University Press, 2004.

[6] J. Brauers, N. Schulte, and T. Aach. Multispectral filter-

wheel cameras: Geometric distortion model and compensa-

tion algorithms. IEEE Transactions on Image Processing,

17(12):2368–2380, 2008.

[7] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal re-

covery from incomplete and inaccurate measurements. Com-

munications on Pure and Applied Mathematics, 59(8):1207–

1223, 2006.

[8] D. B. Cavanaugh, J. M. Lorenz, N. Unwin, M. Dombrowski,

and P. Willson. VNIR hypersensor camera system. In

SPIE Optical Engineering+ Applications, pages 74570O–

74570O. International Society for Optics and Photonics,

2009.

[9] C. Chi, H. Yoo, and M. Ben-Ezra. Multi-spectral imaging by

optimized wide band illumination. International Journal of

Computer Vision, 86(2-3):140, 2010.

[10] S. De Backer, P. Kempeneers, W. Debruyn, and P. Scheun-

ders. A band selection technique for spectral classification.

IEEE Geoscience and Remote Sensing Letters, 2(3):319–

323, 2005.

[11] D. L. Donoho. Compressed sensing. IEEE Transactions on

Information Theory, 52(4):1289–1306, 2006.

[12] T. Doster, C. C. Olson, E. Fleet, M. Yetzbacher, A. Kanaev,

P. Lebow, and R. Leathers. Designing manufacturable fil-

ters for a 16-band plenoptic camera using differential evolu-

tion. In Algorithms and Technologies for Multispectral, Hy-

106



perspectral, and Ultraspectral Imagery XXIII, Proc. SPIE,.

International Society for Optics and Photonics, 2017.

[13] A. A. Green, M. Berman, P. Switzer, and M. D. Craig. A

transformation for ordering multispectral data in terms of

image quality with implications for noise removal. IEEE

Transactions on Geoscience and Remote Sensing, 26(1):65–

74, 1988.

[14] B. Guo, S. R. Gunn, R. Damper, and J. Nelson. Band se-

lection for hyperspectral image classification using mutual

information. IEEE Geoscience and Remote Sensing Letters,

3(4):522–526, 2006.

[15] S. Kumar, J. Ghosh, and M. M. Crawford. Best-bases fea-

ture extraction algorithms for classification of hyperspectral

data. IEEE Transactions on Geoscience and Remote Sensing,

39(7):1368–1379, 2001.

[16] C. Lee and D. A. Landgrebe. Feature extraction based on

decision boundaries. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 15(4):388–400, 1993.

[17] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Discriminative learned dictionaries for local image analysis.

In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[18] S. G. Mallat and Z. Zhang. Matching pursuits with time-

frequency dictionaries. IEEE Transactions on Signal Pro-

cessing, 41(12):3397–3415, 1993.

[19] D. Manolakis and G. Shaw. Detection algorithms for hy-

perspectral imaging applications. IEEE Signal Processing

Magazine, pages 29–43, January 2002.
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