

Abstract

Efficient processing of spectral unmixing is a

challenging problem in high-resolution satellite data

analysis. The decomposition of a pixel into a linear

combination of pure spectra and into their corresponding

proportions is often very time-consuming. In this paper, a

fast unmixing algorithm is proposed based on classifying

pixels into a full unmixing group for subset selection

requiring intensive computational procedures and a

partial unmixing group for proportion estimation with

known spectra endmembers. The classification is based

on n-band spectral segmentation using the quick-shift

algorithm. A subset selection algorithm applied on real

satellite data evaluates accuracy and approximation, and

experimental results show significant performance

acceleration compared with the original algorithm.

Parallelization strategies are also presented and verified

on NVIDIA GTX TITAN X.

1. Introduction

Hyper-spectral imaging is a very useful imaging

technique with wide applications in environment

monitoring, natural disaster control and accurate

agricultural monitoring, to enumerate only a few. The

spectral unmixing process is the well-known inverse

problem: given a hyper-spectral image and a spectra

library, find the collection of constituent spectra, or

endmembers combinations, and their corresponding

fractions, or abundances that indicate the proportion of

each endmember present in the pixel. The mixing process

can be considered to be linear or non-linear. The

combination will be basically linear if the endmembers in

a pixel appear in spatially segregated patterns [1, 2, 3].

There are several techniques in the literature to

estimate land-cover proportions within mixed pixels

based on fuzzy set theory [4, 5, 6], neural networks [7]

and spectral mixture analysis (SMA) [8]. Although

unmixing processes can be non-linear, linear methods are

the most used, specifically linear spectral mixture

analysis (LSMA). In recent years, many authors have

proposed more complex models that provide a higher

accuracy and use less computing time [9].

In this research on spectral mixture analysis, a variable

subset selection (VSS) based linear regression model is

used to estimate the land-cover fraction in remotely

sensed spectral data for its high accuracy. The model is

adopted by some commercial packages, for example in

minerals detection [10, 11]. The problem is as follows:

assume ܩ pure spectra in the spectral library, written as ܆ ∈ Rୈ×ୋ,and a given spectrum ࢟ ∈ Rୈ, corresponding to

a pixel in a spectral image. Both X and ࢟	 contain ܦ

wavelengths. If we believe that our spectrum is a mixture

of ܯ materials, and ܯ ≪ VSS searches for the best ,ܩ

linear combination in terms of the least residual sum of

squares (RSS) among all possible combinations: min|࣭|ୀ|࢟ − ሺͳሻ																																		झझ|ଶଶ܆
where ࣭ is a subset of variables (columns) from ܆ ,܆झ is a

submatrix retaining columns specified by ࣭ , झ is the

regression coefficient, and |࣭| is the cardinality of set ࣭.

The solution to Eq. (1) given ܆झ is the left product of the

Moore–Penrose pseudo inverse of ܆झ and ࢟: झ = ሺ܆झ܆ࢀझሻି܆झ࢟ࢀ																														ሺʹሻ
and the RSS associated with set ࣭, written as ܴ࣭ܵܵ is: ܴ࣭ܵܵ = ࢟܂࢟ − ሺ͵ሻ																		࢟ࢀझ܆झሻି܆ࢀझ܆झሺ܆܂࢟

Although this linear regression model has shown its

superiority over other existing unmixing algorithms [10,

झ܆ ,[11 has to be determined for every pixel ࢟ in the

spectral image. The computational complexity of

minimizing Eq. (1) which is a subset selection problem, is

of the order of	ܱሺܯܦଶ൫ெீ൯ሻ, and it increases dramatically

with number ܯ.

Under the linear spectral mixing model, unmixing

approaches mainly involve two procedures: endmember

acquisition and proportion estimation [12], with both

normally performed at pixel or sub-pixel level. The high

spatial resolution of modern hyper-spectral sensors and

technology poses challenges [13] to real-time processing.

This issue has been addressed in unmixing algorithms

based on real datasets [11]. Moreover, due to the large

size of intermediate data generated in unmixing

A Fast Approximate Spectral Unmixing Algorithm based on Segmentation

Jing Ke1, 2, Yi Guo3, Arcot Sowmya1
1- School of Computer Science and Engineering, University of New South Wales

2- Commonwealth Scientific and Industrial Research Organization Data 61

3- School of Computing, Engineering and Mathematics, Western Sydney University

 Sydney, Australia
crystal.ke@data61.csiro.au, Y.Guo@westernsydney.edu.au

66

computation and the special spectral data layout,

parallelization is often performed at basic arithmetic

instruction level rather than pixel level, and the

performance speedup is limited compared to the massive

parallel computing power of GPUs. Fast and efficient

approaches are required to resolve these performance

issues.

In this paper, an accelerating approach to the unmixing

algorithm is proposed based on the assumption that in

high spatial satellite images, pixels from homogeneous

and neighboring regions are likely to contain a similar

endmember combination but different relative

proportions of ground cover components, while pixels

from heterogeneous and distant regions are likely to

contain quite different endmember combinations.

Assuming spatial smoothness in remotely sensed images,

an optimized and efficient unmixing approach based on a

subset selection algorithm is proposed in this work. The

main contributions are as follows:

i. We present a fast spectral unmixing framework for

endmember selection and proportion estimation.

Satellite image pixels are separated into two groups

requiring different computational workload using

the quick-shift segmentation approach on the n-band

spectral image. Only those pixels determined as the

root of a segment are unmixed into their constituent

classes from a spectral library, and require intensive

computation. Using the computed endmembers

combinations of the root pixel, all other pixels in the

segment dictated by the root pixels for endmembers

go through spectra proportion estimation. An

unmixing benchmark based on a subset selection

algorithm on real satellite spectral images shows

significant performance speedup.

ii. We propose a segmentation-based method to

improve the “roughness” problem between adjacent

pixels due to noise variance in the obtained spectral

data and imperfection in the linear model.

Experiments using the original brute-force

algorithm based on per-pixel level computation

show that linear combinations of endmembers for

neighboring pixels may be quite different even for

highly similar observations. By assuring spatial

smoothness for normalized spectral data based on

segmentation, the proposed method facilitates

subsequent steps after unmixing such as finding a

particular mineral or segmentation of one or two

combinations of geometrical features [11].

iii. We provide efficient GPU-based parallelization

strategies for further acceleration with performance

analysis. This framework is also applicable to many

other multi-spectral or hyper-spectral unmixing

algorithms for high-resolution spatial data.

2. Fast unmixing framework

In the current work, preprocessing of spectral data is

performed to generate the covariance matrix. Quick-shift

algorithm based segmentation is then used to identify the

roots pixel for each pixel in the segment. Only the root

pixels are involved in the time-consuming full unmixing

procedure to define endmember spectra. For all other

pixels, estimation of pure spectra proportions is achieved

with a much smaller computation workload. The pipeline

of acceleration procedures is displayed in Fig. 1. The

steps are discussed in the subsections.

Figure 1: Basic pipeline of spectral unmixing acceleration

2.1. Preprocessing

Rescaling is applied to the spectral matrix dataset to

reduce brightness variation for the subsequent

segmentation and matrix multiplication:

൦ݕଵᇱݕଶᇱݕڭᇱ ൪ 	= 	 ͳඥሺݕଵଶ ଶଶݕ ݕڮଶሻ
 ሺͶሻ																											ݕڭଶݕଵݕ

2.2. Constraints

To estimate the best-fitting pure materials, we need to

verify that reflectance coefficient vector 	ߚ lies within

(0,1] (which means that the logarithms must be

non-positive) for every material. The full additive

condition requires the fractions to sum to one in Eq. (2),

as the non-negative condition requires all abundances to

be non-negative [9]. Estimating the number of materials

is another constraint in Eq. (1). The obvious way to

estimate the number of materials in a mixture is to keep

adding more materials to the mixture until an appropriate

goodness of fit measure (e.g. the RSS in Eq. (1)) is

sufficiently small. The RSS values for the best mixtures

of one, two, three and four materials cannot be simply

compared against each other. However, they can be

compared when fitting consecutive “models”, for

example, models containing ܯ and ܯ ͳ materials. The

best fitting mixture of ܯ materials is called “model ܯ”,

and 	ܴܵܵெ is denoted the ܴܵܵ for model ܯ	 . A model

comparison metric is described as: 		ܴெ,ெାଵ 	= 	ܴܵܵெ / 	ܴܵܵெାଵ (5) ܯ is independent of the scaling used to compute RSS,

as used for instance in Eq. (5). Model ܯ ͳ is preferred

to model ܯ if: 		ܴெ,ெାଵ 	 	 ሺሻ																																			ݎ	
where 	ݎ	is chosen according to some criterion as well as

users’ requirement [11].

67

2.3. Optimized quick-shift algorithm for spectral image

Quick shift is a kernelized version of a fast mode

seeking segmentation scheme. It initializes a

segmentation using a mean shift or medoid shift

procedure [14, 15]. It then moves each point in the feature

space to the nearest neighbor that increases the Parson

Density estimate. It has relatively good boundary

adherence and the super-pixels produced are not fixed in

approximate size or number. Segmentation with quick

shift is controlled by three parameters, namely ratio ߣ,

kernel size ߪ, and distance ߬. For each pixel ሺݔ, quick ,(ݕ

shift regards ሺݔ, ,ݕ ,ݔሺܫ ሻሻݕ as a sample from a 	݀ ʹ

dimensional vector space. It then computes the Parzen

density estimate with a Gaussian kernel of standard

deviation :[16] ߪ 		ܧሺݔ, ሻݕ 	= 	ܲሺݔ, ,ݕ ,ݔሺܫ =						 							ሻሻݕ 	 ͳሺʹߪߨሻௗାଶ௫ᇲ௬ᇲ expቌ− ͳʹߪଶ ቯ ݔ − ݕᇱݔ − ,ݔሺܫᇱݕ ሻݕ − ,ᇱݔሺܫ ᇱሻቯଶݕ
ଶቍ	ሺሻ

Then quick-shift constructs a tree connecting each image

pixel to its nearest neighbor that has greater density value.

Formally, ሺݔᇱ, ᇱሻݕ ሺݔ, ሻݕ if and only if ܲሺݔᇱ, ,ᇱݕ ,ᇱݔሺܫ ᇱሻሻݕ ܲሺݔ, ,ݕ ,ݔሺܫ ሻሻݕ . Each pixel ሺݔ, ሻݕ is

connected to the closest higher density pixel parent	ሺݔ, ሻݕ
that achieves the minimum distance in: ݀݅ݐݏሺݔ, ሻݕ = ݉݅݊ሺ௫ᇲ,௬ᇲሻவሺ௫,௬ሻ ሺݔ − ᇱሻଶݔ 	 	ሺݕ − 	ᇱሻଶݕ 																					‖ܫሺݔ, ሻݕ − ,ᇱݔሺܫ	 ሺͺሻ																																													ᇱሻ‖ଶଶݕ

 The algorithm computes a forest of pixels whose

branches are labeled with a distance value. This specifies

a hierarchical segmentation of the image, with segments

corresponding to subtrees. When the quick-shift

algorithm is applied to color image segmentation [16], the

raw RGB values are augmented with the ሺݔ, positions	ሻݕ

in the image. So, the feature space is five dimensional. ߣ

is the trade-off between spatial importance ሺݔ, ,ݕ ܴ, ,ܩ ሻܤ
and color importance ሺܴ, ,ܩ ሻܤ , and it balances

color-space proximity and image-space proximity, with a

value from 0 to 1. A small ratio gives more importance to

the spatial component and higher values give more weight

to color-space. In the segmentation of multi-spectral and

high-spectral images, we consider different weights for

different spectral wavelengths in feature space: ܧሺݔ, 	ሻ =ݕ ͳሺʹߪߨሻௗାଶ௫ᇲ௬ᇲ ݔ݁ ቌ− ͳʹߪଶ ቯ ݔ − ݕᇱݔ − ,ݔሺܫᇱܹ൫ݕ ሻݕ − ,ᇱݔሺܫ ᇱሻ൯ቯଶݕ
ଶቍ	ሺͻሻ

This will be useful when we focus on a material of

specific frequency in a hyper-spectral image where some

bands are reflected well by this material. The distance

computation is described by:

,ݔሺݐݏ݅݀ ሻݕ = ݉݅݊ሺ௫ᇲ,௬ᇲሻவሺ௫,௬ሻ ሺݔ − ᇱሻଶݔ 	 	ሺݕ − 	ᇱሻଶݕ 																				‖ܹሺܫሺݔ, ሻݕ − ,ᇱݔሺܫ	 	ሺͳͲሻ																																				ᇱሻሻ‖ଶଶݕ
where:

ܹ	 = 	 ێێۏ
ଵݓۍ ଶݓ ⋱ ۑۑےݓ

 ሺͳͳሻ																							ې
The pseudo-code of the quick-shift based segmentation

is described in Algorithm 1. The inputs are the

segmentation parameters, normalized spectral ࢟ and

their corresponding positions. The outputs are the roots of

all input pixels identifying the segments that they are

classified to.

Algorithm 1 Quick-shift based segmentation algorithm

Input: ݕ, ܹ,ܪ

Input: segmentation	parameters	ߣ, ,ߪ ߬

Output: ݐݎሺ݆ͳ, ݆ʹሻሻ, ݕܽݎݎܣݐݎ

foreach ݅ͳ in W do

 foreach ݅ʹ in H do

 computation for density ܧሺ݅ͳ, ݅ʹሻ
 foreach ݆ͳ in ߬ do

 foreach ݆ʹ in ߬ do

 if ܧሺ݆ͳ, ݆ʹሻ 	 ,ሺ݅ͳܧ	 ݅ʹሻ then

 computation for distሺ݆ͳ, ݆ʹሻ
 if distሺ݆ͳ, ݆ʹሻ ൏ ߬ଶ and

 									distሺ݆ͳ, ݆ʹሻ ൏ ,௦௧ሺ݅ͳݐݏ݅݀ ݅ʹሻ then

,௦௧ሺ݅ͳݐݏ݅݀						 ݅ʹሻ 	= distሺ݆ͳ, ݆ʹሻ	
,ሺ݆ͳݐݎ ݆ʹሻ 	= ݆ͳ ܹ ∗ ݆ʹ

 end if

 end if

 end loop

 end loop

,ሺ݅ͳݐݎ ݅ʹሻ = ,ሺ݆ͳݐݎ	 ݆ʹሻ
 if ݐݎሺ݅ͳ, ݅ʹሻ 	== (݅ͳ, ݅ʹ) then

 add ݐݎሺ݅ͳ, ݅ʹሻ into ݕܽݎݎܣݐݎ

 end if // identify roots pixel

 end loop

end loop

Given a spectral image of size 512x512 with its

pseudo-color image shown in Fig. 2, the segmentation

results of the spectral image with ߣ = Ͳ.ͷ and ܹ = areܫ

shown in Fig. 3.

 Figure 2: Pseudo-color image

68

2.4. Comparison with original brute-force algorithm

 In the original brute-force algorithm for VSS based

spectral unmixing procedures [10, 11], for every pixel,

combinations of two, three and four materials from the

libraries are all tested for smallest RSS. It has not been

widely used in real-time unmixing applications due to its

significant computational workload. In an image, given	݅
is the index of pixels, ݕ = ሼݕଵ , …ଶݕ , represents	ேሽ்ݕ

mixed pixel vectors, ܩ is the number of items of

covariance matrix ߤ in the library, ܯ is the number of

pure endmembers (ܯ ≪ The output is a covariance .(ܩ

matrix of pure endmembers ܺ, ܺ = ሼߤଵ, …ଶߤ , ெሽ forߤ

every pixel and their relative proportion vector ߚ={ߚଵ, ,ଶߚ … ெ}. The pseudo-code of the Brute-Forceߚ

algorithm is described in Algorithm 2.

Algorithm 2 Original brute-force algorithm

Input: ݕ, ߤ ܪ,ܹ,ܯ ,ܩ ,

Output: ܺ,	ߚ,		ܴܵܵ
foreach ݅ in	ܹ ∗ do	ܪ

 foreach c in 	൫ெீ൯	do

 composite ܯ ∗ ܺ	ݔݎ݅ݐܽ݉	ܦ from ߤ in library 													if meetConstrainsሺߚ = ሺ்ܺ ܺሻିଵ்ܺ ሻ then	ݕ

 						ܴܵ ܵ = ݕ்ݕ − ்ܺሺ்ܺݕ ܺሻିଵ்ܺ ݕ 		
 if ܴܵܵ 	൏ 	ܴܵܵ then

 ܴܵܵ 	= ܴܵܵ

ߚ 	= 	 ሺ்ܺ ܺሻିଵ்ܺ ݕ 	
 ܺ = ܺ

 end if

 end if

 end loop

 output ܺ 	, ߚ ,		ܴܵܵ
end loop

In the optimized approach, the M combinations of

materials from the library are computed only once and

read by subsequent matrix operations. After spectral

segmentation, only the roots pixels are involved in full

unmixing processing for smallest RSS in Eq. (3) and the

non-roots pixels undergo estimation of pure spectral

proportions only in Eq. (2). The pseudo-code of the

optimized fast unmixing algorithm is described in

Algorithm 3. Constraints in Section 2.2 for 	ߚ are used in

selection of the smallest RSS.

Algorithm 3 Fast unmixing algorithm

Input: ݕ,	ߤ, ݕܽݎݎܣݐݎ ,ܪ,ܹ,ܯ ,ܩ

Output:	 ܺ,	ߚ, 	ܴܵܵ
foreach c in 	൫ࡹࡳ൯ do

ܣ 	= ሺ்ܺ ܺሻିଵ்ܺ

ܯ 	= ܺܣ // compute coefficient matrix

foreach ݎ in rootsArray do

 foreach c in 	൫۵ۻ൯ do

 if meetConstrainsሺߚ = ሺ்ܺ ܺሻିଵ்ܺ ሻ then	ݕ

 											ܴܵܵ = ݕ்ݕ − 		 ݕܯ்ݕ
 if ܴܵܵ 	൏ 	ܴܵܵ then

 								ܴܵܵ 	= ܴܵܵ

ߚ 	= ߚ	

 					ܺ 	= 	ܺ // best combination for roots

 end if

 end if

 end loop

end loop

foreach ݅ in ܹ ∗ 						 do ܪ ܺ = ܺ
ߚ	 =	 ሺ்ܺܺሻିଵ்ܺݕ
 				ܴܵ ܵ = ݕ்ݕ − // estimate proportionsݕܯ்ݕ

 output ܺ 	, ߚ ,		ܴܵ ܵ
end loop

 (a) (b) (c) (d)

Figure 3: Segmentation for different and . (a) segmentation on color of pseudo-color image (b) segmentation on normalized image (c)

boundaries of segmentation (d) roots pixels of spectra segmentation. =1, =10 in the first row and =3, =3 in the second.

69

3. Parallelization Strategies on GPU

Parallelization strategies are the key to performance

speedup in unmixing processing on GPUs. In the

preprocessing stage of segmentation, quick shift operates

on each pixel of an image, and the computations of each

pixel are independent of its surrounding pixels. This is a

good candidate for implementation on the parallel

architecture of GPU [14]. For distance computation

within a ߬ x߬ window per pixel, one approach is the

sequential computing of a two-layer traversal of i1, i2 for

the whole window in Algorithm 1. As a result, pixel-level

parallelization is performed. Another solution with higher

parallelism is achieved by computing distance in one

GPU thread and the intermediated data generated by

threads for best distance is communicated through shared

memory in thread blocks [17]. In this case, the loop of ݆ͳ

and ݆ʹ is also parallelized with a higher degree of

parallelism compared with the first parallelization

strategy. However, these two solutions at segmentation

stage do not make much difference to the overall

performance, as the performance bottleneck of the whole

pipeline lies in selection of the best endmember

combination of root pixels, with massive matrix

multiplication workload.

It has been shown in many experimental tests that

parallelism at matrix multiplication level is much more

efficient than single thread computing on CPUs [17, 18,

19]. Typically, when a kernel is launched,

two-dimensional grids of two-dimensional thread blocks

are created and queued for multiplication and addition

from row entries and column entries simultaneously,

which can be executed either by accessing global memory

alone or shared memory as well [17].

However, in this research, we found that peak

performance is not always reached by parallelism at

matrix multiplication level, due to the specialty of matrix

size of hyper-spectral data and unmixing algorithms. In a ܦxܯ matrix involved in unmixing computation, ܯ	is the

number of endmembers and limited to four, as the case of

more than four pure endmembers in one pixel is seldom

considered. ܦ is the spectral band, valued from three to

hundreds for multi-spectral and hyper-spectral imagery.

The benchmark was carried out on NVIDIA GeForce

GT750M with 384 CUDA cores, NVIDIA GTX TITAN

X with 3072 CUDA cores, and the CPU of 2.5 GHz Intel

Core i7. The performance results of computing ࢄझࢄࢀझ in

Eq. (2) or Eq. (3) at pixel-level parallelism and

matrix-level parallelism are shown in Fig. 4. They show

that matrix-level parallelism at smaller bands is not as

efficient as pixel-level parallelism, as the result of low

occupancy of GPU hardware resources caused by

insufficient number of threads and expensive

synchronization. However, with increasing number of

bands, the performance of matrix-level parallelism

increases dramatically and significantly exceeds that of

pixel-level parallelism. Therefore, the best parallelization

strategy is dependent on the spectral data layout and GPU

hardware features.

All the covariance matrices X࣭ for OሺDMଶ൫ୋ൯ሻ
combinations are loaded in global memory, and each

thread is launched to perform the numerical solution to Eq.

(3), with GPU shared memory used for intermediate data

communication for the smallest RSS selection. Root

pixels are processed sequentially due to the large number

of linear combinations X࣭ . For the last stage of

proportions estimation in Eq. (2), parallelization is

performed at per-pixel level, taking full advantage of the

massive parallel computing power of GPUs.

4. Evaluations

The benchmark tests were carried out on a set of

satellite images on GPU devices. Given the uncertainty of

real endmember combinations and relative proportions of

real spectral data, we propose two approaches to evaluate

the fast unmixing algorithm.

The first approach is to compare the estimated ܴܵܵ to

all the ܴܵܵ of ܯ combinations of library templates to

find the combinations that are better than the estimated

combination by minimizing Eq. (3). Experimental test

results in Fig. 5 are the empirical cumulative probability

function (CDF) of RSS ratios and the log likelihood of the

number of endmember combinations that are better than

the approximate one, with typical parameters ܯ = ʹ, 3, ߬ = ͵, Ͷ,		 and ߪ is sampled from 0.4 to 5.

 An alternative approach to evaluate precision is to

compare the hit rate of endmembers by the fast

approximating algorithm and the original best-fitting

algorithm, and the results are shown in Table 1.

Normally more segments will result in the lower

performance speedup but better hit ratio. However, with

more homogeneous regions and higher resolution of

satellite imagery, the approach works well for both

performance speedup and accuracy estimation.

Figure 4: Performance of matrix multiplication on bands ܦ

for combination number 4=ܯ on GeForce GT750M and GTX

TITAN X

70

 Nevertheless, the linear models do not easily lead to

exact accurate solutions, along with noise variance in

spectral data. As a result, the segmentation approach

provides a good solution for spatial smoothness as well.

5. Conclusion

We have presented a fast approximate unmixing

framework for endmember selection and proportion

estimation for multi-spectral and hyper-spectral satellite

imagery. The approach provides significant performance

acceleration with the quick-shift based segmentation

algorithm. It also improves spatial smoothness and

eliminates the potential “roughness” problem among

adjacent pixels.

The GPU-based parallelization strategies are also

analyzed with implementations for further performance

acceleration.

For evaluation, the linear regression model of subset

selection was used as a base comparison with good

approximation and performance speedup. This

framework can be implemented for other unmixing

algorithms as well.

Figure 5: Empirical CDF of RSS ratio (upper row) and the log likelihood of the number of endmember combinations better than the

estimated combination (bottom row) of M=2 (left column) and M=3(right column).

Table 1: Materials hit ratios and speedup with fast approximate unmixing algorithm

 hit

ratio

=3,
=0.4

=3,
=0.6

=3,
=1.0

=3,
=2.0

=3,

=3

=3,

=4

=3,

=5

=4,

=0.4

=4,

=0.6

=4,
=1.0

=4,
=2.0

=4,

=3

=4,

=4

=4,

=5
M=2 hit 0 25.5% 31.2% 26.3% 31.5% 27.6% 32.0% 31.4% 35.4% 32.5% 37.5% 32.5% 38.7% 32.3% 38.8%

hit 1 31.6% 35.6% 32.5% 35.7% 33.6% 36.3% 36.3% 38.1% 36.3% 38.9% 36.6% 39.3% 37.0% 39.7%

hit 2 42.9% 33.2% 41.1% 32.8% 38.9% 31.8% 32.3% 26.4% 31.2% 23.5% 30.9% 22.0% 30.7% 21.5%

M=3 hit 0 13.1% 16.1% 13.6% 16.4% 14.3% 16.8% 16.2% 18.7% 17.0% 20.3% 16.9% 20.7% 17.4% 21.5%

hit 1 30.4% 34.9% 31.5% 35.3% 32.5% 35.7% 35.4% 38.1% 36.0% 39.3% 35.9% 39.8% 35.9% 40.2%

hit 2 26.7% 28.2% 27.6% 28.5% 28.2% 28.8% 28.8% 29.1% 28.0% 28.4% 27.9% 27.9% 27.4% 27.3%

hit 3 29.7% 20.8% 27.4% 19.8% 25.1% 18.7% 19.6% 14.2% 19.0% 12.0% 19.2% 11.6% 19.4% 11.0%

speedup 7.1 8.9 11.0 16.3 14.3 12.7 11.9 14.6 18.3 22.4 47.9 61.3 54.7 47.4

71

References

[1] P. Ksieniewicz, D. Jankowski, B. Ayerdi, K. Jackowski,

M. Grana, and M. Wozniak. A novel hyperspectral

segmentation algorithm—concept and evaluation. Logic

Journal Of The Igpl, 2015 Feb, Vol.23(1), pp.105-120.

[2] N. Keshava and J. F. Mustard, Spectral unmixing. IEEE

Signal Processing Magazine, vol. 19, no. 1, pp. 44-57, Jan

2002.

[3] N. Keshava, Performance comparisons for spectral

unmixing algorithms. Proceedings of SPIE. The

International Society for Optical Engineering, 2002,

Vol.4480, pp.40-48.

[4] G. M. Foody. Cross-entropy for the evaluation of the

accuracy of a fuzzy land cover classification with fuzzy

ground data. ISPRS Journal of Photogrammetry and

Remote Sensing, 1995, Vol.50(5), pp.2-12.

[5] G. M. Foody. 1996, Approaches for the production and

evaluation of fuzzy land cover classifications from

remotely sensed data. International Journal of Remote

Sensing. 1996, Vol.17(7), pp.1317-1340.

[6] G. M. Foody and D. P. Cox. Sub-Pixel land cover

composition estimation using a linear mixture model and

fuzzy membership model and fuzzy membership functions.

International Journal of Remote Sensing. 1994, Vol.15(3),

p.619-631.

[7] G. M. Foody, R. M. Lucas, P. J. Curran and M. Honzak.

Non-linear mixture modeling without end-members using

an artificial neural network. International Journal of

Remote Sensing, 1997, Vol.18(4), p.937-953.

[8] B. TSO, B. and P. M Mather. Classification Methods for

Remotely Sensed Data (London and New York: Taylor and

Francis), 2001.

[9] C. Quintano, A. Fernández-Manso, Y. E. Shimabukuro and

G. Pereira. Spectral unmixing. International Journal of

Remote Sensing, Vol.33(17), p.5307-5340

[10] Y. Guo, M. Berman and J. Gao. Group subset selection for

linear regression. Computational Statistics and Data

Analysis. July 2014, Vol.75, pp.39-52

[11] M. Berman, L. Bischof, R. Lagerstron, Y. Guo, J.

Huntington and P. Mason. An unmixing algorithm based

on a large library of shortwave infrared spectra, in:

Technical Report EP117468, CSIRO Mathematics,

Informatics and Statistics, 2011.

[12] B. Luo and J. Chanussot. Supervised Hyperspectral Image

Classification Based on Spectral Unmixing and

Geometrical Features. Journal of Signal Processing

Systems, 65, 457–468, 2011.

[13] T. Akgun, Y. Altunbasak, and R. M. Mersereau.

Super-resolution reconstruction of hyperspectral images.

IEEE Trans. Image Process. vol. 14, no. 11, pp. 1860–

1875, Nov. 2005.

[14] B. Fulkerson and S. Soatto. Really quick shift: Image

segmentation on a GPU. Lecture Notes in Computer

Science. 2012, Vol.6554 (2), pp.350-358.

[15] A. Vedaldi and S. Soatto. Quick shift and kernel methods

for mode seeking. Lecture Notes in Computer Science.

2008, Vol.5305(4), pp.705-718.

[16] A. Ibrahim, A, M. Salem and H. A. Ali, (2014). Automatic

quick-shift segmentation for color images. International

Journal of Computer Science Issues (IJCSI), 11(3),

122-127.

[17] NVIDIA. Programming guide :: CUDA Toolkit

Documentation, 2017.

[18] S. Sanchez, A. Plaza, B. Huang, A. J. Plaza. A

Comparative Analysis of GPU Implementations of

Spectral Unmixing Algorithms. High-Performance

Computing in Remote Sensing, 2011, Vol.8183(1),

pp.81830E-81830E-10.

[19] R. Hochberg. Matrix Multiplication with CUDA — A

basic introduction to the CUDA programming model.

SHODOR technical document. Aug 2012.

72

