
 

 

Abstract 

 

Efficient processing of spectral unmixing is a 

challenging problem in high-resolution satellite data 

analysis. The decomposition of a pixel into a linear 

combination of pure spectra and into their corresponding 

proportions is often very time-consuming. In this paper, a 

fast unmixing algorithm is proposed based on classifying 

pixels into a full unmixing group for subset selection 

requiring intensive computational procedures and a 

partial unmixing group for proportion estimation with 

known spectra endmembers. The classification is based 

on n-band spectral segmentation using the quick-shift 

algorithm. A subset selection algorithm applied on real 

satellite data evaluates accuracy and approximation, and 

experimental results show significant performance 

acceleration compared with the original algorithm. 

Parallelization strategies are also presented and verified 

on NVIDIA GTX TITAN X.  

1. Introduction 

Hyper-spectral imaging is a very useful imaging 

technique with wide applications in environment 

monitoring, natural disaster control and accurate 

agricultural monitoring, to enumerate only a few. The 

spectral unmixing process is the well-known inverse 

problem: given a hyper-spectral image and a spectra 

library, find the collection of constituent spectra, or 

endmembers combinations, and their corresponding 

fractions, or abundances that indicate the proportion of 

each endmember present in the pixel. The mixing process 

can be considered to be linear or non-linear. The 

combination will be basically linear if the endmembers in 

a pixel appear in spatially segregated patterns [1, 2, 3].  

There are several techniques in the literature to 

estimate land-cover proportions within mixed pixels 

based on fuzzy set theory [4, 5, 6], neural networks [7] 

and spectral mixture analysis (SMA) [8]. Although 

unmixing processes can be non-linear, linear methods are 

the most used, specifically linear spectral mixture 

analysis (LSMA). In recent years, many authors have 

proposed more complex models that provide a higher 

accuracy and use less computing time [9].  

In this research on spectral mixture analysis, a variable 

subset selection (VSS) based linear regression model is 

used to estimate the land-cover fraction in remotely 

sensed spectral data for its high accuracy. The model is 

adopted by some commercial packages, for example in 

minerals detection [10, 11]. The problem is as follows: 

assume ܩ pure spectra in the spectral library, written as ܆ ∈ Rୈ×ୋ,and a given spectrum ࢟ ∈ Rୈ, corresponding to 

a pixel in a spectral image. Both X and ࢟	  contain ܦ 

wavelengths. If we believe that our spectrum is a mixture 

of ܯ materials, and ܯ ≪  VSS searches for the best ,ܩ

linear combination in terms of the least residual sum of 

squares (RSS) among all possible combinations:  min|࣭|ୀ|࢟ −  ሺͳሻ																																		झझ|ଶଶ܆
where ࣭ is a subset of variables (columns) from ܆ ,܆झ is a 

submatrix retaining columns specified by ࣭ , झ  is the 

regression coefficient, and |࣭| is the cardinality of set ࣭. 

The solution to Eq. (1) given ܆झ is the left product of the 

Moore–Penrose pseudo inverse of ܆झ and ࢟: झ = ሺ܆झ܆ࢀझሻି܆झ࢟ࢀ																														ሺʹሻ 
and the RSS associated with set ࣭, written as ܴ࣭ܵܵ is: ܴ࣭ܵܵ = ࢟܂࢟ −  ሺ͵ሻ																		࢟ࢀझ܆झሻି܆ࢀझ܆झሺ܆܂࢟

Although this linear regression model has shown its 

superiority over other existing unmixing algorithms [10, 

झ܆ ,[11  has to be determined for every pixel ࢟  in the 

spectral image. The computational complexity of 

minimizing Eq. (1) which is a subset selection problem, is 

of the order of	ܱሺܯܦଶ൫ெீ൯ሻ, and it increases dramatically 

with number ܯ.  

Under the linear spectral mixing model, unmixing 

approaches mainly involve two procedures: endmember 

acquisition and proportion estimation [12], with both 

normally performed at pixel or sub-pixel level. The high 

spatial resolution of modern hyper-spectral sensors and 

technology poses challenges [13] to real-time processing. 

This issue has been addressed in unmixing algorithms 

based on real datasets [11]. Moreover, due to the large 

size of intermediate data generated in unmixing 
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computation and the special spectral data layout, 

parallelization is often performed at basic arithmetic 

instruction level rather than pixel level, and the 

performance speedup is limited compared to the massive 

parallel computing power of GPUs. Fast and efficient 

approaches are required to resolve these performance 

issues. 

In this paper, an accelerating approach to the unmixing 

algorithm is proposed based on the assumption that in 

high spatial satellite images, pixels from homogeneous 

and neighboring regions are likely to contain a similar 

endmember combination but different relative 

proportions of ground cover components, while pixels 

from heterogeneous and distant regions are likely to 

contain quite different endmember combinations. 

Assuming spatial smoothness in remotely sensed images, 

an optimized and efficient unmixing approach based on a 

subset selection algorithm is proposed in this work. The 

main contributions are as follows:  

i. We present a fast spectral unmixing framework for 

endmember selection and proportion estimation. 

Satellite image pixels are separated into two groups 

requiring different computational workload using 

the quick-shift segmentation approach on the n-band 

spectral image. Only those pixels determined as the 

root of a segment are unmixed into their constituent 

classes from a spectral library, and require intensive 

computation. Using the computed endmembers 

combinations of the root pixel, all other pixels in the 

segment dictated by the root pixels for endmembers 

go through spectra proportion estimation. An 

unmixing benchmark based on a subset selection 

algorithm on real satellite spectral images shows 

significant performance speedup.  

ii. We propose a segmentation-based method to 

improve the “roughness” problem between adjacent 

pixels due to noise variance in the obtained spectral 

data and imperfection in the linear model. 

Experiments using the original brute-force 

algorithm based on per-pixel level computation 

show that linear combinations of endmembers for 

neighboring pixels may be quite different even for 

highly similar observations. By assuring spatial 

smoothness for normalized spectral data based on 

segmentation, the proposed method facilitates 

subsequent steps after unmixing such as finding a 

particular mineral or segmentation of one or two 

combinations of geometrical features [11].  

iii. We provide efficient GPU-based parallelization 

strategies for further acceleration with performance 

analysis. This framework is also applicable to many 

other multi-spectral or hyper-spectral unmixing 

algorithms for high-resolution spatial data. 

2. Fast unmixing framework 

In the current work, preprocessing of spectral data is 

performed to generate the covariance matrix. Quick-shift 

algorithm based segmentation is then used to identify the 

roots pixel for each pixel in the segment. Only the root 

pixels are involved in the time-consuming full unmixing 

procedure to define endmember spectra. For all other 

pixels, estimation of pure spectra proportions is achieved 

with a much smaller computation workload. The pipeline 

of acceleration procedures is displayed in Fig. 1. The 

steps are discussed in the subsections. 

 
Figure 1: Basic pipeline of spectral unmixing acceleration 

2.1. Preprocessing  

Rescaling is applied to the spectral matrix dataset to 

reduce brightness variation for the subsequent 

segmentation and matrix multiplication:  

൦ݕଵᇱݕଶᇱݕڭᇱ ൪ 	= 	 ͳඥሺݕଵଶ  ଶଶݕ ݕڮଶሻ 
 ሺͶሻ																											ݕڭଶݕଵݕ

2.2. Constraints 

To estimate the best-fitting pure materials, we need to 

verify that reflectance coefficient vector 	ߚ  lies within 

(0,1] (which means that the logarithms must be 

non-positive) for every material. The full additive 

condition requires the fractions to sum to one in Eq. (2), 

as the non-negative condition requires all abundances to 

be non-negative [9]. Estimating the number of materials 

is another constraint in Eq. (1). The obvious way to 

estimate the number of materials in a mixture is to keep 

adding more materials to the mixture until an appropriate 

goodness of fit measure (e.g. the RSS in Eq. (1)) is 

sufficiently small. The RSS values for the best mixtures 

of one, two, three and four materials cannot be simply 

compared against each other. However, they can be 

compared when fitting consecutive “models”, for 

example, models containing ܯ and ܯ  ͳ materials. The 

best fitting mixture of ܯ materials is called “model ܯ”, 

and 	ܴܵܵெ  is denoted the ܴܵܵ  for model ܯ	 . A model 

comparison metric is described as: 		ܴெ,ெାଵ 	= 	ܴܵܵெ / 	ܴܵܵெାଵ                   (5) ܯ is independent of the scaling used to compute RSS, 

as used for instance in Eq. (5). Model ܯ  ͳ is preferred 

to model ܯ if: 		ܴெ,ெାଵ 	 	       ሺሻ																																			ݎ	
where 	ݎ	is chosen according to some criterion as well as 

users’ requirement [11]. 
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2.3. Optimized quick-shift algorithm for spectral image 

Quick shift is a kernelized version of a fast mode 

seeking segmentation scheme. It initializes a 

segmentation using a mean shift or medoid shift 

procedure [14, 15]. It then moves each point in the feature 

space to the nearest neighbor that increases the Parson 

Density estimate. It has relatively good boundary 

adherence and the super-pixels produced are not fixed in 

approximate size or number. Segmentation with quick 

shift is controlled by three parameters, namely ratio ߣ, 

kernel size ߪ, and distance ߬. For each pixel ሺݔ,  quick ,(ݕ

shift regards ሺݔ, ,ݕ ,ݔሺܫ ሻሻݕ  as a sample from a 	݀  ʹ 

dimensional vector space. It then computes the Parzen 

density estimate with a Gaussian kernel of standard 

deviation :[16] ߪ 		ܧሺݔ, ሻݕ 	= 	ܲሺݔ, ,ݕ ,ݔሺܫ =						 							ሻሻݕ 	 ͳሺʹߪߨሻௗାଶ௫ᇲ௬ᇲ expቌ− ͳʹߪଶ ቯ ݔ − ݕᇱݔ − ,ݔሺܫᇱݕ ሻݕ − ,ᇱݔሺܫ ᇱሻቯଶݕ
ଶቍ	ሺሻ 

Then quick-shift constructs a tree connecting each image 

pixel to its nearest neighbor that has greater density value. 

Formally, ሺݔᇱ, ᇱሻݕ  ሺݔ, ሻݕ  if and only if ܲሺݔᇱ, ,ᇱݕ ,ᇱݔሺܫ ᇱሻሻݕ  ܲሺݔ, ,ݕ ,ݔሺܫ ሻሻݕ . Each pixel ሺݔ, ሻݕ  is 

connected to the closest higher density pixel parent	ሺݔ,  ሻݕ
that achieves the minimum distance in: ݀݅ݐݏሺݔ, ሻݕ = ݉݅݊ሺ௫ᇲ,௬ᇲሻவሺ௫,௬ሻ ሺݔ − ᇱሻଶݔ 	 	ሺݕ − 	ᇱሻଶݕ  																					‖ܫሺݔ, ሻݕ − ,ᇱݔሺܫ	  ሺͺሻ																																													ᇱሻ‖ଶଶݕ

 The algorithm computes a forest of pixels whose 

branches are labeled with a distance value. This specifies 

a hierarchical segmentation of the image, with segments 

corresponding to subtrees. When the quick-shift 

algorithm is applied to color image segmentation [16], the 

raw RGB values are augmented with the ሺݔ,  positions	ሻݕ

in the image. So, the feature space is five dimensional. ߣ 

is the trade-off between spatial importance ሺݔ, ,ݕ ܴ, ,ܩ  ሻܤ
and color importance ሺܴ, ,ܩ ሻܤ , and it balances 

color-space proximity and image-space proximity, with a 

value from 0 to 1. A small ratio gives more importance to 

the spatial component and higher values give more weight 

to color-space. In the segmentation of multi-spectral and 

high-spectral images, we consider different weights for 

different spectral wavelengths in feature space:  ܧሺݔ, 	ሻ =ݕ ͳሺʹߪߨሻௗାଶ௫ᇲ௬ᇲ ݔ݁ ቌ− ͳʹߪଶ ቯ ݔ − ݕᇱݔ − ,ݔሺܫᇱܹ൫ݕ ሻݕ − ,ᇱݔሺܫ ᇱሻ൯ቯଶݕ
ଶቍ	ሺͻሻ 

This will be useful when we focus on a material of 

specific frequency in a hyper-spectral image where some 

bands are reflected well by this material. The distance 

computation is described by: 

,ݔሺݐݏ݅݀ ሻݕ = ݉݅݊ሺ௫ᇲ,௬ᇲሻவሺ௫,௬ሻ ሺݔ − ᇱሻଶݔ 	 	ሺݕ − 	ᇱሻଶݕ  																				‖ܹሺܫሺݔ, ሻݕ − ,ᇱݔሺܫ	  	ሺͳͲሻ																																				ᇱሻሻ‖ଶଶݕ
where:  

ܹ	 = 	 ێێۏ
ଵݓۍ ଶݓ ⋱ ۑۑےݓ

 ሺͳͳሻ																							ې
The pseudo-code of the quick-shift based segmentation 

is described in Algorithm 1. The inputs are the 

segmentation parameters, normalized spectral ࢟  and 

their corresponding positions. The outputs are the roots of 

all input pixels identifying the segments that they are 

classified to.  

 

Algorithm 1 Quick-shift based segmentation algorithm 
 

Input: ݕ, ܹ,ܪ 

Input: segmentation	parameters	ߣ, ,ߪ ߬ 

Output:  ݐݎሺ݆ͳ, ݆ʹሻሻ, ݕܽݎݎܣݐݎ 

foreach ݅ͳ in W do 

    foreach  ݅ʹ in H do 

         computation for density ܧሺ݅ͳ, ݅ʹሻ  
          foreach ݆ͳ in ߬ do 

               foreach ݆ʹ in ߬ do 

                     if ܧሺ݆ͳ, ݆ʹሻ 	 ,ሺ݅ͳܧ	 ݅ʹሻ then       

                           computation for distሺ݆ͳ, ݆ʹሻ 
                           if distሺ݆ͳ, ݆ʹሻ ൏ ߬ଶ  and    

                      									distሺ݆ͳ, ݆ʹሻ ൏ ,௦௧ሺ݅ͳݐݏ݅݀ ݅ʹሻ then 

,௦௧ሺ݅ͳݐݏ݅݀						                                 ݅ʹሻ 	= distሺ݆ͳ, ݆ʹሻ	   
,ሺ݆ͳݐݎ                                       ݆ʹሻ 	= ݆ͳ ܹ ∗ ݆ʹ  

                           end if 

                      end if 

                end loop 

           end loop 

,ሺ݅ͳݐݎ            ݅ʹሻ = ,ሺ݆ͳݐݎ	 ݆ʹሻ 
           if ݐݎሺ݅ͳ, ݅ʹሻ 	== (݅ͳ, ݅ʹ) then 

                 add ݐݎሺ݅ͳ, ݅ʹሻ into ݕܽݎݎܣݐݎ 

           end if                                                // identify roots pixel 

    end loop 

end loop 
 

Given a spectral image of size 512x512 with its 

pseudo-color image shown in Fig. 2, the segmentation 

results of the spectral image with ߣ = Ͳ.ͷ and ܹ =   areܫ

shown in Fig. 3. 

 
 Figure 2:  Pseudo-color image  
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2.4. Comparison with original brute-force algorithm 

    In the original brute-force algorithm for VSS based 

spectral unmixing procedures [10, 11], for every pixel, 

combinations of two, three and four materials from the 

libraries are all tested for smallest RSS. It has not been 

widely used in real-time unmixing applications due to its 

significant computational workload. In an image, given	݅ 
is the index of pixels, ݕ = ሼݕଵ , …ଶݕ ,  represents	ேሽ்ݕ

mixed pixel vectors, ܩ  is the number of items of 

covariance matrix ߤ in the library, ܯ is the number of 

pure endmembers (ܯ ≪  The output is a covariance .(ܩ

matrix of pure endmembers ܺ, ܺ = ሼߤଵ, …ଶߤ ,  ெሽ forߤ

every pixel and their relative proportion vector ߚ={ߚଵ, ,ଶߚ …  ெ}. The pseudo-code of the Brute-Forceߚ

algorithm is described in Algorithm 2. 

 

Algorithm 2 Original brute-force algorithm 
 

Input: ݕ, ߤ  ܪ,ܹ,ܯ ,ܩ ,

Output: ܺ,	ߚ,		ܴܵܵ 
foreach ݅ in	ܹ ∗  do	ܪ

     foreach c in 	൫ெீ൯	do 

           composite ܯ ∗ ܺ	ݔݎ݅ݐܽ݉	ܦ  from ߤ  in library  													if meetConstrainsሺߚ = ሺ்ܺ ܺሻିଵ்ܺ  ሻ then	ݕ

           						ܴܵ ܵ = ݕ்ݕ − ்ܺሺ்ܺݕ ܺሻିଵ்ܺ ݕ 		 
                 if ܴܵܵ 	൏ 	ܴܵܵ then 

                     ܴܵܵ 	= ܴܵܵ 

ߚ                      	= 	 ሺ்ܺ ܺሻିଵ்ܺ ݕ 	 
                     ܺ = ܺ  

                end if 

            end if 

     end loop 

     output  ܺ 	, ߚ ,		ܴܵܵ 
end loop 
 

In the optimized approach, the M combinations of 

materials from the library are computed only once and 

read by subsequent matrix operations. After spectral 

segmentation, only the roots pixels are involved in full 

unmixing processing for smallest RSS in Eq. (3) and the 

non-roots pixels undergo estimation of pure spectral 

proportions only in Eq. (2). The pseudo-code of the 

optimized fast unmixing algorithm is described in 

Algorithm 3. Constraints in Section 2.2 for 	ߚ are used in 

selection of the smallest RSS.  

 

Algorithm 3 Fast unmixing algorithm 
 

Input: ݕ,	ߤ, ݕܽݎݎܣݐݎ ,ܪ,ܹ,ܯ ,ܩ 

Output:	 ܺ,	ߚ, 	ܴܵܵ 
foreach c in 	൫ࡹࡳ൯ do 

ܣ     	= ሺ்ܺ ܺሻିଵ்ܺ  

ܯ     	= ܺܣ                                  // compute coefficient matrix  

foreach ݎ in rootsArray do 

     foreach c in 	൫۵ۻ൯ do 

          if meetConstrainsሺߚ = ሺ்ܺ ܺሻିଵ்ܺ  ሻ then	ݕ

    											ܴܵܵ = ݕ்ݕ −  		 ݕܯ்ݕ
              if ܴܵܵ 	൏ 	ܴܵܵ then 

            								ܴܵܵ 	= ܴܵܵ 

ߚ                     	=  ߚ	

                					ܺ 	= 	ܺ                     // best combination for roots 

              end if 

          end if 

      end loop 

end loop                                             

foreach ݅ in ܹ ∗ 						 do ܪ ܺ = ܺ  
ߚ	      =	 ሺ்ܺܺሻିଵ்ܺݕ 
  				ܴܵ ܵ = ݕ்ݕ −                    // estimate proportionsݕܯ்ݕ

      output  ܺ 	, ߚ ,		ܴܵ ܵ 
end loop 
 

                       (a)                                       (b)                                      (c)                               (d) 

         

         
Figure 3:  Segmentation for different  and . (a) segmentation on color of pseudo-color image (b) segmentation on normalized image (c) 

boundaries of segmentation (d) roots pixels of spectra segmentation. =1, =10 in the first row and =3, =3 in the second. 
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3. Parallelization Strategies on GPU 

Parallelization strategies are the key to performance 

speedup in unmixing processing on GPUs. In the 

preprocessing stage of segmentation, quick shift operates 

on each pixel of an image, and the computations of each 

pixel are independent of its surrounding pixels. This is a 

good candidate for implementation on the parallel 

architecture of GPU [14]. For distance computation 

within a ߬ x߬  window per pixel, one approach is the 

sequential computing of a two-layer traversal of i1, i2 for 

the whole window in Algorithm 1. As a result, pixel-level 

parallelization is performed. Another solution with higher 

parallelism is achieved by computing distance in one 

GPU thread and the intermediated data generated by 

threads for best distance is communicated through shared 

memory in thread blocks [17]. In this case, the loop of ݆ͳ 

and ݆ʹ  is also parallelized with a higher degree of 

parallelism compared with the first parallelization 

strategy. However, these two solutions at segmentation 

stage do not make much difference to the overall 

performance, as the performance bottleneck of the whole 

pipeline lies in selection of the best endmember 

combination of root pixels, with massive matrix 

multiplication workload.   

It has been shown in many experimental tests that 

parallelism at matrix multiplication level is much more 

efficient than single thread computing on CPUs [17, 18, 

19]. Typically, when a kernel is launched, 

two-dimensional grids of two-dimensional thread blocks 

are created and queued for multiplication and addition 

from row entries and column entries simultaneously, 

which can be executed either by accessing global memory 

alone or shared memory as well [17].  

However, in this research, we found that peak 

performance is not always reached by parallelism at 

matrix multiplication level, due to the specialty of matrix 

size of hyper-spectral data and unmixing algorithms. In a ܦxܯ matrix involved in unmixing computation, ܯ	is the 

number of endmembers and limited to four, as the case of 

more than four pure endmembers in one pixel is seldom 

considered. ܦ is the spectral band, valued from three to 

hundreds for multi-spectral and hyper-spectral imagery. 

The benchmark was carried out on NVIDIA GeForce 

GT750M with 384 CUDA cores, NVIDIA GTX TITAN 

X with 3072 CUDA cores, and the CPU of 2.5 GHz Intel 

Core i7. The performance results of computing ࢄझࢄࢀझ in 

Eq. (2) or Eq. (3) at pixel-level parallelism and 

matrix-level parallelism are shown in Fig. 4. They show 

that matrix-level parallelism at smaller bands is not as 

efficient as pixel-level parallelism, as the result of low 

occupancy of GPU hardware resources caused by 

insufficient number of threads and expensive 

synchronization. However, with increasing number of 

bands, the performance of matrix-level parallelism 

increases dramatically and significantly exceeds that of 

pixel-level parallelism. Therefore, the best parallelization 

strategy is dependent on the spectral data layout and GPU 

hardware features.  

All the covariance matrices X࣭  for OሺDMଶ൫ୋ൯ሻ 
combinations are loaded in global memory, and each 

thread is launched to perform the numerical solution to Eq. 

(3), with GPU shared memory used for intermediate data 

communication for the smallest RSS selection. Root 

pixels are processed sequentially due to the large number 

of linear combinations X࣭ . For the last stage of 

proportions estimation in Eq. (2), parallelization is 

performed at per-pixel level, taking full advantage of the 

massive parallel computing power of GPUs. 

4. Evaluations 

The benchmark tests were carried out on a set of 

satellite images on GPU devices. Given the uncertainty of 

real endmember combinations and relative proportions of 

real spectral data, we propose two approaches to evaluate 

the fast unmixing algorithm.  

The first approach is to compare the estimated ܴܵܵ to 

all the ܴܵܵ  of ܯ  combinations of library templates to 

find the combinations that are better than the estimated 

combination by minimizing Eq. (3). Experimental test 

results in Fig. 5 are the empirical cumulative probability 

function (CDF) of RSS ratios and the log likelihood of the 

number of endmember combinations that are better than 

the approximate one, with typical parameters ܯ = ʹ, 3, ߬ = ͵, Ͷ,		 and ߪ is sampled from 0.4 to 5. 

 An alternative approach to evaluate precision is to 

compare the hit rate of endmembers by the fast 

approximating algorithm and the original best-fitting 

algorithm, and the results are shown in Table 1.   

Normally more segments will result in the lower 

performance speedup but better hit ratio. However, with 

more homogeneous regions and higher resolution of 

satellite imagery, the approach works well for both 

performance speedup and accuracy estimation. 

Figure 4:  Performance of matrix multiplication on bands ܦ 

for combination number 4=ܯ on GeForce GT750M and GTX 

TITAN X
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 Nevertheless, the linear models do not easily lead to 

exact accurate solutions, along with noise variance in 

spectral data. As a result, the segmentation approach 

provides a good solution for spatial smoothness as well. 

5. Conclusion 

We have presented a fast approximate unmixing 

framework for endmember selection and proportion 

estimation for multi-spectral and hyper-spectral satellite 

imagery. The approach provides significant performance 

acceleration with the quick-shift based segmentation 

algorithm. It also improves spatial smoothness and 

eliminates the potential “roughness” problem among 

adjacent pixels.  

The GPU-based parallelization strategies are also 

analyzed with implementations for further performance 

acceleration.   

For evaluation, the linear regression model of subset 

selection was used as a base comparison with good 

approximation and performance speedup. This 

framework can be implemented for other unmixing 

algorithms as well.   

                   

                     
Figure 5: Empirical CDF of RSS ratio (upper row) and the log likelihood of the number of endmember combinations better than the 

estimated combination (bottom row) of M=2 (left column) and M=3(right column). 

Table 1: Materials hit ratios and speedup with fast approximate unmixing algorithm 

 hit 

ratio 

=3, 
=0.4  

=3, 
=0.6 

=3, 
=1.0 

=3, 
=2.0 

=3,

=3 

=3,

=4 

=3,

=5 

=4,

=0.4 

=4,

=0.6 

=4, 
=1.0 

=4, 
=2.0 

=4,

=3 

=4,

=4 

=4,

=5 
M=2 hit 0 25.5% 31.2% 26.3% 31.5% 27.6% 32.0% 31.4% 35.4% 32.5% 37.5% 32.5% 38.7% 32.3% 38.8% 

hit 1 31.6% 35.6% 32.5% 35.7% 33.6% 36.3% 36.3% 38.1% 36.3% 38.9% 36.6% 39.3% 37.0% 39.7% 

hit 2 42.9% 33.2% 41.1% 32.8% 38.9% 31.8% 32.3% 26.4% 31.2% 23.5% 30.9% 22.0% 30.7% 21.5% 

M=3 hit 0 13.1% 16.1% 13.6% 16.4% 14.3% 16.8% 16.2% 18.7% 17.0% 20.3% 16.9% 20.7% 17.4% 21.5% 

hit 1 30.4% 34.9% 31.5% 35.3% 32.5% 35.7% 35.4% 38.1% 36.0% 39.3% 35.9% 39.8% 35.9% 40.2% 

hit 2 26.7% 28.2% 27.6% 28.5% 28.2% 28.8% 28.8% 29.1% 28.0% 28.4% 27.9% 27.9% 27.4% 27.3% 

hit 3 29.7% 20.8% 27.4% 19.8% 25.1% 18.7% 19.6% 14.2% 19.0% 12.0% 19.2% 11.6% 19.4% 11.0% 

speedup 7.1 8.9 11.0 16.3 14.3 12.7 11.9 14.6 18.3 22.4 47.9 61.3 54.7 47.4 
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