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Abstract

Automatic infrared target recognition (ATR) is a tradi-

tionally unsolved problem in military applications because

of the wide range of infrared (IR) image variations and lim-

ited number of training images, which is caused by vari-

ous 3D target poses, non-cooperative weather conditions,

and difficult target acquisition environments. Recently, deep

convolutional neural network-based approaches in RGB

images (RGB-CNN) showed breakthrough performance in

computer vision problems, such as object detection and

classification. The direct use of the RGB-CNN to IR ATR

problem fails to work because of the IR database problems.

This paper presents a novel infrared variation-optimized

deep convolutional neural network (IVO-CNN) by consider-

ing database management, such as increasing the database

by a thermal simulator, controlling the image contrast au-

tomatically and suppressing the thermal noise to reduce the

effects of infrared image variations in deep convolutional

neural network-based automatic ground target recognition.

The experimental results on the synthesized infrared images

generated by the thermal simulator (OKTAL-SE) validated

the feasibility of IVO-CNN for military ATR applications.

1. Introduction

Automatic target recognition (ATR) in infrared (IR) im-

ages has been an active research topic historically because

of its military applications with 24 hour operation capability

[2, 17]. Although the original ATR covers target detection

(region of interest extraction), classification, tracking, and

threat assessment [2, 17], this paper focuses only the IR tar-

get classification problem to solve IR variations. IR images

can visualize hot targets regardless of the time, but IR target

images show wide range of intensities depending on the 3D

target poses and weather conditions.

Since the 1980s, model-based approaches were popular

and targets were recognized by alignment methods such as

geometric hashing [11]. Since then, various image learning-

based target recognition methods have been proposed by

considering both the feature extractors and classifiers to

cope with IR variations. The Markov tree feature [3],

IR wavelet feature [16], scale invariant feature transform

(SIFT) [6], histogram of oriented gradients (HOG) [24], and

moment features [19, 25] are recently proposed infrared fea-

tures and showed promising recognition results on their own

applications. Simple machine learning-based classification

methods, such as nearest neighbor classifier [6], Bayesian

classifier, conventional neural network, Adaboost [13], and

support vector machine (SVM) [24] are frequently used to

discriminate the target features for classification.

Recently, deep learning-based algorithms have been pro-

posed and showed excellent performance in RGB-based

object classification on ImageNet [10] and CIFAR image

database [21]. On the other hand, AlexNet requires 1.2 mil-

lion high-resolution images to learn 60 million parameters

and 650,000 neurons consisting of five convolutional lay-

ers [10]. ATR researchers have attempted to apply deep

convolutional neural network (CNN) algorithms to IR tar-

get classification problems. Rodger et al. trained a CNN

consisting of 5 convolutional layers with 10,000 long-wave

IR instances sampled over 6 object classes [18]. Although

the deep learning results shows promising results for the

trained database, it lacks the analysis of an IR variation ef-

fect on the CNN. Akula et al. presented a CNN-based 4

category (auto, human,ambassador, and background) clas-
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Figure 1. Examples of IR variations depending on (a) season, (b)

day/night time, and (c) weather conditions.

sification and provided a classification accuracy of 88.15%

using only 378 training images, which is too small to learn

the complex CNN architecture [1].

The success of deep learning for object classification us-

ing RGB color images provides the starting point of IR ATR

and recent deep learning applications to IR ATR highlight

the feasibility. The key success of IR-based deep learning

depends strongly on how to handle the infrared variations

[9]. As shown in Fig. 1, the IR target images show quite dif-

ferent intensity variations caused by the target states (pose,

heat), recording time, weather, and climate, which alters the

image contrast, thermal noise, and blurring level. In gen-

eral, if there are large image variations, deep learning sys-

tems need many training images to handle the variations.

Furthermore, the infrared ground target recognition prob-

lem can be more difficult if the surveillance area cannot be

accessed directly due to the restricted image acquisition.

This paper focuses on the IR variation problem in deep

convolutional neural network-based target recognition and

proposes a novel IR variation optimized convolutional neu-

ral network (IVO-CNN) by considering an IR variation re-

duction strategy. A synthetic IR image generator, OKTAL-

SE, was adopted to make various IR images by varying

the target pose and atmospheric parameters [12, 20, 5]. In

particular, a 14-layered CNN (four convolutions) was con-

structed and the IR variation optimization block was in-

serted in front of the CNN architecture.

Section 2 presents the proposed IVO-CNN architecture,

including variable DB generation. Section 3 validates the

proposed method by applying this to the IR DB and Section

4 concludes the paper.

IVO-CNN

14-Layered CNN

- Input: 1

- Convolution: 4

- Pooling: 3

- RELU: 4

- FC: 1 

- Output: 1 

IR Variation 

Optimization (IVO)

- Automatic contrast

control

- Smoothing for 

noise and blurring

OKTAL-SE

IR DB

Train

Test

Figure 2. Proposed IR Variation Optimized deep Convolutional

Neural Network (IVO-CNN) for automatic ground target recog-

nition with synthetic image generator.

2. Proposed IR variation optimized deep con-

volutional neural network (IVO-CNN)

IR-based ATR for military applications has two critical

issues: limited number of IR target images and large IR

image variations. The small sized IR DB problem in deep

learning can be mitigated using either transfer learning [14]

or a synthetic IR image generator. The former can be im-

plemented easily to IR ATR by extracting the features from

AlexNet [10] and training an SVM classifier. This can be a

feasible solution but it shows degraded performance on var-

ious IR images because the Alexnet has not been optimized

to the IR images. The key idea of the second issue is to

use the IR variation optimization (IVO) block during CNN

training and testing, as shown in Fig. 2. Various IR target

DB were constructed using OKTAL-SE by changing the ge-

ometric and environmental parameters. The core block, IR

variation Optimization, is located in front of the 14-layered

CNN to reduce the IR variations. Details of the proposed

method will be explained in the following subsections.

2.1. OKTAL-SE: synthetic IR image generation

A synthetic IR image generator is useful for acquiring

the target images in inaccessible areas and evaluating the

effect of IVO block to the CNN-based target recognition

quantitatively. Among the various IR image generators

such as RadTherm-IR, IR-Workbench (OKTAL-SE), and F-

TOM [20], the OKTAL-SE [12] was selected because it is

the only simulator that can synthesize both passive (EO/IR)

and active (synthetic aperture radar) data. Fig. 3 summa-

rizes the overall flow of IR synthesis. Given the simula-

tion parameters, such as weather and time, the atmospheric

transmittance was calculated. The scenario program can

select the background and target trajectory, and SE-RAY-

IR then synthesizes the IR sequences using the ray tracing

method. Fig. 4 shows the synthesized IR target images ac-

cording to the depression (imaging) angle, weather condi-
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Figure 3. OKTAL-SE-based synthetic IR image generation

flow: SE-ATMOSPHERE generates atmospheric data and SE-

SCENARIO controls targets and background. SE-RAY-IR syn-

thesize IR images by ray tracing and SE-SIGNAL-VIEWER visu-

alizes the results.
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Figure 4. Synthesized IR target examples using the OKTAL-SE

for a T72 target by varying the target attributes, imaging geometry,

and atmospheric parameters.

tion, thermal noise, and thermal blur. Note that the same

target (T72) shows different levels of image contrast, noise

level, and image blur. IR image variations can be affected

by the target attributes (pose, heat status, and thermal stealth

coating), camera geometry (imaging angle (depression an-

gle), distance), and atmospheric conditions (weather, noise,

and blur).

2.2. Proposed IR variation optimization

- IR variation reduction strategy I: Training all the im-

ages

The simplest way to handle object variations in a deep

convolutional network is to train all possible examples, such

as AlexNet that used 1.2 million RGB images to train 1,000

EdgeIntensity

- Input: 1 (96x96x1)

- Convolution: 4

- Pooling: 3

- RELU: 4

- FC: 1 

- Output: 1 

14-Layered CNN

(a)

- Input: 1 (24x24x8)

- Convolution: 2

- Pooling: 1

- RELU: 3

- FC: 1 

- Output: 1 

9-Layered CNNACF

(b)

Edge-CNN

ACF-CNN

Figure 5. Basic flow of strategy II (IR variation reduction in feature

space) using (a) edge information and (b) ACF information.

object categories [10]. If the same strategy is applied to

the ground IR target recognition problem, the same CNN

model cannot be trained (large residual error) because of

the limited number of IR images.

- IR variation reduction strategy II: Preprocessing in

the feature space

The next possible approach is to preprocess the IR im-

ages in feature space, which is used frequently in traditional

ATR problems. For example, a gradient magnitude map

(GMM) and gradient orientation map (GOM) are known

to be robust to thermal contrast and used frequently in

edge-based target matching [7]. Fig. 5(a) gives an exam-

ple implementation flow using the edge information (Edge-

CNN). The Aggregated Channel Feature (ACF) gave pow-

erful pedestrian detection performance using color chan-

nels, a gradient magnitude channel, and gradient orientation

channels [4]. Fig. 5(b) shows the implementation using

ACF and 9-layered CNN (ACF-CNN). If the extracted fea-

ture map (GMM, GOM, ACF) is used to train the conven-

tional CNN it works quite well with low contrast IR targets.

On the other hand, the feature-based CNN shows a poor

target recognition result to thermal noise variations due to

gradient operation.

- IR variation reduction strategy III (proposed

method): Preprocessing in image space

This paper presents a novel IR variation optimization

(IVO) in image space by introducing thermal contrast con-
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trol (TCC, fTCC) and a thermal smoothing filter (TSF,

fTSF ), as defined in eq. (1), where I(x, y) and IIV O(x, y)
present an input image and a processed image at the pixel

position (x, y), respectively.

IIV O(x, y) = fTCC(I(x, y)) ∗ fTSF (x, y, σ) (1)

As defined in eq. (2), fTCC(I(x, y)) is designed as

an intensity transformation function and tTSF (x, y, σ) is

a Gaussian smoothing kernel with a control parameter, σ

(normally 1).

IIV O(x, y) =
255 · (I(x, y) − Imin)

Imax − Imin

∗G(x, y, σ) (2)

The TCC can control the thermal contrast using the max-

imum intensity (Imax) and minimum intensity (Imin) esti-

mated in a target chip, which produces consistent thermal

contrast images. The TSF using the Gaussian kernel can

remove the thermal noise effectively because the noise of

infrared images follows a Gaussian distribution [8] and a

Gaussian mean filter can provide an unbiased optimal sig-

nal estimation [15].

Fig. 6 demonstrates the effect of IVO for various IR im-

ages for the same target (T72). IVO processing can mini-

mize IR variations by controlling the thermal contrast and

removing thermal noise. The column sectional IR data in-

dicated in the top-left (red line) of Fig. 6 is used to analyze

the IVO effect quantitatively. Fig. 7(a) shows the original

IR intensity curves for the normal, noisy, cloudy, and blurry

target images. Fig. 7(b) shows the IR intensity curves af-

ter applying the proposed IVO processing for the same in-

tensity curves. Note that the intensity curves show similar

patterns after the IVO function. The performance of the

IR variation optimization can be analyzed quantitatively, as

shown in Fig. 7(c), by calculating the standard deviation

per row. The proposed IVO can reduce the level of IR vari-

ation for each data and the average variation of the original

curves is 51.7 and that of the IVO curves is 12.1, which is

4.3 times lower than the original one.

2.3. Architecture of 14-layered CNN

As a basic deep learning-based classifier, LeNet-based

deep convolutional neural network architecture [23] is used

by changing the input size and the number of layers for 16

IR target recognition, as shown in Fig. 8. The MatConvNet

toolbox [22] was used for training and learning because this

study focused on the IR variation effect on CNN.

The architecture consists of 14 layers (IR-CNN14): 1

input layer, 4 convolutional layers, 3 pooling layers, 4 REc-

tified Linear Unit (RELU) layers, 1 fully connected (FC)

layer, and 1 output layer. The IR-CNN14 architecture can

be explained in terms of the data flow and operational flow.

Normal Noisy Cloudy Blurry

IVO

Figure 6. Examples of IR target images (top) before IVO and (bot-

tom) after IVO processing.

An input layer receives an IR image with a size of 96 ×

96. The first convolution operation using 32 kernels with a

5 × 5 support region, stride 1, and padding 2 produces 32

feature data with a 96 × 96 resolution, as shown in Fig.

8. Through the max pooling with the 3 × 3 support re-

gion, stride 2, padding ([top bottom left right]=[0 1 0 1])

and RELU, sub-sampled feature images are obtained. Two

additional convolutions, RELU, and average pooling oper-

ations, produce 64 feature data with a 12 × 12 resolution.

The fourth convolution with 64 kernels of size 12×12×64,

stride 1, padding 0 generates a feature vector of 1×64 that is

fully connected to 16 output nodes, where the softmax func-

tion is used to calculate the probability distribution over 16

targets.

3. Experimental results

3.1. Preparation of IR database

OKTAL-SE can generate various IR target images by

varying the camera setting (spectral band, detector size,

field of view, depression angle, and height), atmospheric

setting, and target pose (aspect angle). The simulation sce-

nario is assumed to be the ground surveillance on an un-

manned aerial vehicle. The spectral band is basically mid-

wave IR (MWIR) and other camera parameters are set to

produce a 5cm× 5cm resolution per pixel.

Table 1 lists the composition of the target DB for train-

ing and testing for IVO-CNN. The total number of targets is

16; among them 10 targets are military targets (BMP3, T72,

AMX10, AMX10RC, Leclerc, Jeep, TMM, Rada Camo,

SA9 Inch Camo, and VAB OBS) and 6 targets are non-

military targets (Audi, Bus, Clio, Firetruck, Oil tanker, and

Ford transit). Three kinds of training DB were prepared,

such as normal, noise, and long-wave IR (LWIR), for the IR

variation analysis in CNN. In the case of a normal DB, each

target template has a 96×96 image resolution with a depres-

sion angle of 65, 70, 75, and80◦ and aspect angle of 5◦. The

total number of normal training DB was 4,608 (16 targets ×
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Figure 7. Quantitative analysis of the IR variations for the column

sectional data: (a) original IR data, (b) IR data after IVO, (c) com-

parison of the IR variations in terms of the standard deviation.

72 aspect angles × 4 depression angles). Fig. 9 shows the

16 targets (top) and 72 aspect views for the T72 at a depres-

sion angle of 75◦ (bottom). The noise and LWIR DBs were

prepared by adding thermal camera noise and changing the

spectral band in the OKTAL-SE for IR variation analysis.

In the testing phase, thermal noise was inserted and image

blurring was applied artificially to the training DB. The total
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Figure 8. Details of 14-layered deep convolutional network for 16

IR target recognition.

Table 1. Composition of the training and test DB

Mode No. DB Size Dep. angle Asp. angle

Train

normal 4,608 96×96 65,70,75,80◦ 5◦

noise 1,152 96×96 75◦ 5◦

LWIR 1,152 96×96 75◦ 5◦

Test artificial noise adding and blurring

number of noise DB was 1,152, where a depression angle of

75◦ was considered. Similarly, the LWIR DB has the same

number of IR images as the noise DB.

3.2. Evaluation of the proposed IVO-CNN

In the first experiment, strategy I (simply increasing

training DB in the CNN) was conducted to handle the IR

variation problem and the learning result was checked. The

basic training set is just a normal DB (aspect views with

different depressions) in Table 1. Additional IR variation

sets are noise and LWIR images, which should be learned

in strategy I. Fig. 10(a) shows the limitation of direct IR

variation learning in the IR-CNN14. The objective function

cannot be reduced after epoch 10, which leads to a large top

1 residual error (15%). If the proposed IVO (strategy III)

is adopted in the CNN learning, both the objective function

and top 1 error curves show successful learning, as shown

in Fig. 10(b) after epoch 25.

In the second experiment, the Edge-CNN, ACF (to-

tal, orientation only)-CNN, and the proposed IVO-CNN

method were compared in terms of the IR image variations,

such as blur level (controlled by σS) and thermal noise level

(controlled by σN ). These methods were trained using the

train DB, as listed in Table 1. The test images were pre-

pared by artificially adding Gaussian blur and thermal noise

to the training DB. Fig. 11(a) presents the performance

comparison results for the IR images blurred with differ-

ent levels. The proposed IVO-CNN showed the best ro-

bustness to IR image blurring followed by ACF(tot)-CNN,

ACF(ori)-CNN, and Edge-CNN. The Edge-CNN showed

the worst target classification rate because image blur sup-

presses the details of edge information. Fig. 11(b) shows

the performance comparison results for the noisy IR im-
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Figure 9. Composition of the IR target database: (top) 16 ground

targets, (bottom) 72 aspect views of T72 at depression angle 75
◦.

ages. The proposed IVO-CNN showed the best robustness

to noisy IR images followed by Edge-CNN, ACF(tot)-CNN,

and ACF(ori)-CNN. The ACF(ori)-CNN showed the poor-

est target classification rate because the orientation informa-

tion was obtained by the noise-sensitive gradient and arc-

tangent operations.

4. Conclusions

This paper presented a novel Infrared (IR) Variation Op-

timized deep Convolutional Neural Network (IVO-CNN)

for ground infrared target recognition. The IR variations are

still an unsolved problem due to the target variations them-

selves and atmospheric condition variations. Recently, deep

convolutional neural networks showed breakthrough per-

formance in computer vision problems by learning a huge

number of training images, which is difficult in IR-based

target recognition due to the military specialty. This paper

proposed a novel IR image variation optimization method

(a)

(b)

Figure 10. (a) Problem of strategy I (training IR variation by in-

creasing DB) in CNN, (b) the effect of IVO in CNN training.

by thermal contrast control (TCC) and a thermal smoothing

filter (TSF) in CNN-based target recognition. The 16 IR

target DB was prepared by changing the depression angle,

aspect angle, and atmospheric parameters in the OKTAL-

SE simulator. The proposed IVO-CNN can provide stable

IR target recognition to a wide range of IR variations. In ad-

dition, it can remove the residual training error effectively

compared to the other baseline methods (Edge-CNN and

ACF-CNN). In the future, the IVO-CNN method will be

fused with synthetic aperture radar (SAR-CNN) for more

confident target recognition regardless of the weather con-

ditions.
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