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Abstract

Detection of anomalous pixels within hyperspectral im-

agery is frequently used for purposes ranging from the lo-

cation of invasive plant species to the detection of mili-

tary targets. The task is unsupervised because no infor-

mation about target or background spectra is known or as-

sumed. Some of the most commonly used detection algo-

rithms assume a statistical distribution for the background

and rate spectral anomalousness based on measures of de-

viation from the statistical model; but such assumptions

can be problematic because hyperspectral data rarely meet

them. More recent algorithms have employed data-driven

machine learning techniques in order to improve perfor-

mance. Here we investigate a novel kernel-based method

and show that it achieves top detection performance rela-

tive to seven other state-of-the-art methods on a commonly

tested data set.

1. Introduction

Typical three-color cameras lack the spectral sensitivity

required for accurate material detection and/or identifica-

tion in remote sensing applications. In response, rather than

coarsely dividing the incoming light into three bands, im-

agers that capture multispectral and hyperspectral imagery

(MSI/HSI) seek to generate finer samplings of the spectrum

such that useful identifying information about the underly-

ing materials is not averaged out by the sampling process.

It is frequently the case that information pertaining to

specific targets is unavailable or unknown. In addition,

knowledge of background statistics is usually unknown

for real-world applications. This leads to an unsuper-

vised anomaly detection problem for which a variety of

algorithms have been proposed in the remote sensing and

MSI/HSI literature. The goal is to classify pixels as be-

longing to a background or anomalous class given a set, Ω,

comprised of the N L-dimensional pixels, xi ∈ R
L, i =

1, . . . , N , that make up an image. Most of the pixels are as-

sumed to represent background with just a very few anoma-

lous pixels present as well.

The most commonly employed algorithm is the RX de-

tector introduced by Reed and X. Yu [16] which assumes

that each spectral channel is Gaussian-distributed and thus

the pixels can be modeled as L-dimensional multi-variate

Gaussian distributions. Statistics governing the RX model

are calculated globally from the entire image but can also

be considered locally about each pixel under test. A test

pixel is considered anomalous if it exceeds a threshold cor-

responding to a certain number of standard deviations from

the data mean. Details regarding calculation of global RX

detection statistics are provided in Section 2 along with

variants of the basic RX algorithm.

Additional detection algorithms exploiting the kernel

trick and graph-theoretic techniques have also been pro-

posed. Kwon and Nasrabadi [9] saw improved performance

by introducing a kernelized version of the RX algorithm un-

der the assumption that background and target would be de-

scribed by Gaussian distributions in the high-dimensional

feature space. Basener et al [2] introduced the Topologi-

cal Anomaly Detector (TAD) which builds a graph from the

data and measures the connectedness of graph components

to describe the background then measures nearest neighbor

distances to the background components as a measure of

anomalousness .

Our “skeleton kPCA” method builds a better background

model by combining kernel PCA (kPCA) [18] with a sub-

sampling of the image and calculates a detection statisic by

employing a measure of reconstruction error introduced by

Hoffmann [8]. We compare the performance of this algo-

rithm to seven other algorithms using Forest Radiance im-

agery from the HYDICE sensor (described in Section 4),

which is a standard data set common throughout the hy-

perspectral literature. We begin with a description of the

comparison algorithms in Section 2, detail our detection

paradigm in Section 3, describe the parameter optimizations

performed for each algorithm and subsequent experimental
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results in Section 4, and conclude in Section 5.

2. A Summary of Anomaly Detection Algo-

rithms

Here we provide a description of the tested anomaly de-

tection algorithms. As described previously, x ∈ R
L is a

test vector (or hyperspectral pixel) drawn from the image

data set Ω.

2.1. RX

The Reed-Xiaoli [16] or RX anomaly detector (some-

times referred to as global RX) is based upon the Maha-

lanobis distance between x and the background:

DRX(x) = (x− µ)Σ−1(x− µ)T , (1)

where the mean, µ, and covariance, Σ, are calculated glob-

ally from all pixels in the image. Values ofDRX that fall be-

low some user-defined threshold, γ, belong to background

pixels while pixels that yield larger values are classified as

anomalous.

2.2. SSRX

Subspace RX (SSRX) [17] performs global RX on a sub-

set of principal components calculated from the data covari-

ance matrix. Principal Component Analysis (PCA) [14] is

applied to the hyperspectral data cube in order to find the

directions of maximum variation. Background information

is presumed to be represented by the eigenvectors corre-

sponding to the largest principal components. Dropping the

largest principal components and performing RX on the re-

tained eigenvectors is assumed to improve anomaly detec-

tion because confounding information pertaining chiefly to

background spectra has been removed from the analysis.

2.3. UTD

The Uniform Target Detector (UTD) [7] supposes that

because we don’t know anything about the anomalous data

we should assume a uniform spectra as the matched signal

such that the detector becomes

DUTD(x) = (1L − µ)Σ−1(x− µ)T , (2)

where 1L is a unity vector of length L.

2.4. UTDRX

The UTD and RX detectors can be combined, as pro-

posed in [7]:

DUTD−RX(x) = DUTD(x)−DRX(x)

= (x− 1L)Σ
−1(x− µ)T . (3)

2.5. OSPRX

Orthogonal Subspace Projection RX (OSPRX) [5], or

RX after OSP, is a variant of the RX algorithm which seeks

to better model the background of a scene. OSPRX condi-

tions the data by projecting it onto the several of the leading

singular vectors of the singular value decomposition (SVD)

of the covariance matrix, C = UΛUT , where U is a matrix

of eigenvectors of the decomposition and Λ is a diagonal

matrix of decreasing eigenvalues. The eigenvectors associ-

ated with the largest eigenvalues are assumed to expresses

the background. The detector can be formulated as:

DOSPRX(x) = (x− µ)T (Ib′ −MMT )(x− µ), (4)

where Ib′ is the b′ × b′ identity matrix, M = [U1, . . . , Ub′ ]
is the truncated matrix of singular vectors, and 1 ≤ b′ ≤ b
is the number of retained singular vectors.

2.6. TAD

The Topological Anomaly Detection (TAD) algorithm

[2, 3] does not assume the same Gaussian distribution as the

previous detectors but instead measures the connectedness

of graph components. The corresponding detection statistic

is given by Algorithm 1.

Algorithm 1 TAD Algorithm

1: Perform optional normalization to the data.

2: For a sampling S , construct a graph representation of

the subsampled data by connecting the closest 10% of

all edge pairs.

3: Define the background set, B, as all pixels belonging to

graph components containing at least 2% of the sam-

ples.

4: Calculate the anomalous rank of each pixel,

DTAD(x) =

5
∑

i=3

δi(x,B), (5)

where δi(x,B) is the i-th smallest distance between

points in B and x.

2.7. KRX

Kernel RX (KRX) [9] first transforms the pixels into a

high-dimensional feature space, F , using the kernel trick.

Both the transformed background pixels and transformed

anomalies are assumed to be Gaussian-distributed in the

feature space but each with different means. Anomalous-

ness is determined by calculating the Mahalanobis distance

of each test pixel in the feature space. A spherical deci-

sion surface in the feature space corresponding to a selected
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threshold, γ, yields a highly nonlinear decision surface in

the original spectral (ambient) space. A nonlinear decision

surface calculated in this manner is expected to yield im-

proved performance because it better conforms to the actual

data distribution.

Given the transformation xi → Φ(xi) that maps a pixel

into the feature space we can conceptually represent the de-

tection statistic as:

DKRX(x) = (Φ(x)− µk)
TΣ−1

k (Φ(x)− µk)), (6)

where µk and Σk represent, respectively, the mean and co-

variance of all the features. Given a kernel function such

as:

k(xi, xj) = exp(−‖xi − xj‖
2

2
/σ2), (7)

that quantifies the similarity between pixels, the actual

transformation Φ(·) need never be calculated and all calcu-

lations requiring inner products in the feature space can be

determined using kernel (adjacency) matrices. Thus Equa-

tion 6 may be determined as a function of various adjacency

matrices but we leave the details to reference [9].

3. Skeleton Kernel PCA

We provide background on and a description of kPCA

and then detail our skeleton kPCA method.

3.1. Kernel PCA

kPCA was introduced by Schölkopf et al. [18] and

adapted to the anomaly detection problem by Hoffmann [8].

The idea is to exploit the “kernel trick” and map data that

are not linearly separable in the original (ambient) space

into a high-dimensional (possibly infinite-dimensional) fea-

ture space, F , via the transformation

xi → Φ(xi), (8)

whereupon linear decision surfaces can be constructed in F
that yield highly nonlinear decision surfaces in the ambient

space.

kPCA is a nonlinear version of PCA, based on calculat-

ing the principal components of the data after the nonlinear

mapping has been applied. If a nonlinear PCA model of the

training data has been learned, then it is possible to declare

a test point anomalous by comparing it against the learned

model. Hoffmann showed that constructing a “reconstruc-

tion error” between a transformed point in F and its recon-

struction in F as synthesized from the learned model yields

an anomaly detection statistic that outperforms PCA, one-

class SVM, and the Parzen window density estimator [13]

on a number of toy problems and real-world data sets [8].

In this case the learned model is a reduced linear model

(as in standard PCA) but one that is applied in the high-

dimensional feature space. High-dimensional feature vec-

tors are synthesized as a linear combination of eigenvec-

tors calculated from the high-dimensional covariance ma-

trix. More specifically, what is required are the eigenvec-

tors Ψ = (ψ1, ψ2, . . . , ψN ) and corresponding eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λN of the high-dimensional data covari-

ance matrix:

C̃ =
1

N

N
∑

i=1

Φ̃(xi)Φ̃(xi)
T . (9)

The tilde used throughout refers to mean-centered data:

Φ̃(·) = Φ(·)−Φ0, (10)

where,

Φ0 =
1

N

N
∑

i=1

Φ(xi) ≈ E[Φ(xi)], (11)

is the centroid of the transformed data in the feature space

and E[·] is the expected value. As with standard PCA, the

data in the feature space are modeled as a linear combina-

tion of the eigenvectors, e.g.,

Φ(x) = Ψmθm, (12)

where Ψm denotes the first m < N eigenvectors cor-

responding to the largest eigenvalues, and the associated

model coefficients are θm ∈ R
m. Error between this re-

duced model and the full coordinate transformation θ =
Ψ

T
Φ(x) ∈ R

N is captured by the Euclidean norm which

can be written as:

DK(x′) = Φ̃(x′) · Φ̃(x′)−Ψ
T
mΦ̃(x′) ·ΨT

mΦ̃(x′), (13)

for test point x
′. Large errors indicate anomalous test

points. The reason for writing the model error as in Eq.

(13) is that inner products in the high-dimensional space

can be easily computed without having to form the high-

dimensional vectors themselves.

Hoffman showed that Eq. (13) could be written solely

as a function of the N × N kernel (adjacency) matrix,

K ≡ Kij = k(xi,xj) = Φ(xi) ·Φ(xj), associated with an

underyling kernel function, k(·, ·), that quantifies the simi-

larity between data points. In short, Eq. (13) can be written

as:

DK(x′) = DS(x
′)−

m
∑

l=1

gl(x
′)2, (14)

where m ≤ N is the number of retained eigenvectors,

DS(x
′) is the spherical potential (discussed below), and

where
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gl(x
′) = Φ̃(x′) ·ψl =

N
∑

i=1

αil

[

k(x′,xi)−
1

N

N
∑

s=1

k(xi,xs)

−
1

N

N
∑

s=1

k(x′,xs)

+
1

N2

N
∑

r,s=1

k(xr,xs)

]

, (15)

which computes the projection of Φ̃(x′) on ψl, is itself a

function of k(·, ·) and the eigenvectors, αl ∈ R
N , l =

1, . . . , N , associated with the centered inner-product matrix

given by:

K̃ij = Kij −
1

N

N
∑

s=1

Kis −
1

N

N
∑

r=1

Krj +
1

N2

N
∑

r,s=1

Krs.

(16)

The spherical potential of a test point x′ is the squared

distance of that point in F from the centroid of Φ(Ω):

DS(x
′) = ‖Φ(x′)−Φ0‖

2 = Φ̃(x′) · Φ̃(x′). (17)

In terms of the kernel function, the spherical potential is

given by:

DS(x
′) = k(x′,x′)−

2

N

N
∑

i=1

k(x′,xi)+
1

N2

N
∑

i,j=1

k(xi,xj).

(18)

Given the Gaussian kernel,

kG(xi,xj) = exp
(

−
‖xi − xj‖

2

2σ2

)

, (19)

where σ is a bandwidth parameter, the first and last terms in

(18) become constant and can be ignored. Thus, the poten-

tial is governed by the middle term, which is proportional

to the Parzen window density estimator [8].

3.2. Skeleton kPCA Description

Hoffman used all available data to test anomaly detec-

tion performance in [8]. However, the expense of calculat-

ing an adjacency matrix is a primary limitation of kernel-

based methods. A uniform sub-sampling of the scene (a

data “skeleton”) was proposed in [12] to reduce the com-

putational cost of building an adjacency matrix with re-

liance on out-of-sample extension [4, 10] as a means of de-

veloping a detection statistic for the remaining unsampled

points. In particular, the Nyström extension [1, 15] was

used to extend the manifold to the unsampled points, dif-

fusion map [6] was used to learn the background model,

and a nearest-neighbor-based detection statistic was con-

structed in the manifold space. This same skeleton sub-

sampling scheme was used in [11] to build a background

model but kPCA was used to learn the model and Hoff-

man’s reconstruction error was used as the detection statis-

tic. More specifically, the background model is learned

from a uniformly sampled “skeleton” subset of the origi-

nal data, S = {xsi : si ∼ U(1, N), i = 1 · · ·NS} where

NS < N . The underlying assumption is that for the purpose

of anomaly detection, the randomly chosenNS points com-

prising a skeleton set, S , are sufficient to build an accurate

description of the background and are unlikely to contain

a large fraction of anomalies. Thus a kernel matrix of size

NS ×NS comprises the bulk of computational cost.

Building an adjacency matrix from an extracted subset

of the data is a simple concept, but it enables the realistic

application of a wide variety of kernel-based and manifold-

learning techniques to the anomaly detection problem. The

trade-off relative to approaches based on the assumption of

a statistical model is the introduction of a new set of con-

siderations such as the fraction of the data set that must be

sampled in order to guarantee sufficient background model

fidelity and the robustness of background embeddings to al-

ternate samplings of the scene.

4. Algorithm Comparison

We test the performance of our algorithm against the

anomaly detection algorithms described in Section 2 on a

hyperspectral image that is commonly tested in the litera-

ture

4.1. Data

The Hyperspectral Digital Imaging Collection Experi-

ment (HYDICE) imaging spectrometer was used during te

Forest Radiance I data collect to acquire signature data from

210 equally-spaced, contiguous spectral bands from a total

bandwidth covering approximately 400-2500 nm. Some of

the bands in the image are removed from the analysis due

to low signal-to-noise ratios (SNRs) which leaves 158 to-

tal bands. The original image is 1280 x 308 but we only

consider a 600 x 308 segment of the image in order to limit

processing times. An approximate RGB image of run05 is

shown in Figure 1. We created a truth-mask (not shown)

describing anomalous pixels corresponding to targets of in-

terest in the scene.

4.2. Parameter Selection

RX, UTD, and UTD-RX, are parameter-free by design,

but the other algorithms require tuning of free parameters to

acquire upper bounds on their performance. To measure the

change in algorithmic performance based on different pa-

rameters we utilize the area under the curve (AUC) for our

hyperspectral scene and set of anomalies. AUC numerically

integrates the receiver operator characteristic (ROC) curve

which measures the probability of detection (Pd) for each

probability of false alarm (Pfa). A distinct (Pd)-(Pfa) pair
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Figure 1: Approximate RGB image of run05 from HY-

DICE Forest Radiance I collect.

Figure 2: ROC curves corresponding to best discovered free

parameter settings for comparison algorithms. SSRX out-

performs the other algorithms over the range of small Pfa

that is of most practical interest.

was computed for every pixel in the scene. We performed

grid searches for each algorithm to reveal the optimal free

parameter choices and increased the grid size if the maxi-

mum occurred near a grid edge.

SSRX and OSPRX have a free parameter which con-

trols the number of principle components or number

of eigenvectors of the covariance matrix which are re-

tained respectively. For both of these methods we

analyzed all possible contiguous ranges of the prin-

ciple components or eigenvectors sorted in descend-

ing order of the largest corresponding eigenvalues (i.e.,

{1}, {1, 2}, {1, 2, . . . , L}, {2}, {2, 3}, . . . , {L}, where L is

dimensionality of the hyperspectral scene) and chose the

range which provided the maximum AUC.

KRX has three free parameters, the type of kernel

function, kernel function parameter, and sampling size,

|S|. We chose the Gaussian kernel based on past litera-

ture which requires only one parameter, the kernel band-

width, σ. We then performed a grid-search over σ =
{1, 3, 5, 8, 10, 15, 20, 25, 40, 60, 80, 100, 200} and |S| =
{0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 10}% of total pixels N and

chose the pair which provided the maximum AUC.

TAD has several parameters which the authors provided

112



Figure 3: ROC curves corresponding to six different skele-

ton samplings of our method (thin solid lines) as well as RX

(dotted dark blue line) and the top-performing comparison

algorithm, SSRX (solid thick blue line). Our method out-

performs the other algorithms over the range of small Pfa

that is of most practical interest. Note the smaller range of

Pfa displayed here relative to the range in Figure 2

in their algorithmic description such as percent of edges

to connect, size of graph components to count as back-

ground, and number of neighbors to consider for anoma-

lousness ranking; the authors, however, give a range for the

number of pixels, |S|, to sample for building the graph and

whether to perform the normalization procedure. We varied

|S| = {0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 10, 20}% of total pixels

N with and without the optional normalization procedure

(the first option seemed to produce better results) and chose

the pair which provided the maximum AUC.

Skeleton kPCA is governed by the choice of kernel, the

parameters governing the kernel, the number of retained

eigenvectors, and the number of points sampled for the

skeleton. Here we have selected the Gaussian kernel with

bandwidth σ. Hoffmann provided guidance for setting the

bandwidth and the number of retained eigenvectors by ex-

amining performance on a toy problem [8], but he per-

formed his analysis on the entire data set and did not con-

sider performance on a skeleton subsample of the data. A

study of said parameter settings as a function of subsam-

ple size was considered in [11] and showed that a relatively

small skeleton sample (|S| = 0.001·N ) provided consistent

results. Larger bandwidths coupled with a larger number of

retained eigenvectors were found to provide good results on

an 8-band multispectral data set. Performance consistency

between different skeleton samplings was attempted by set-

ting the bandwidth as a multiple of the largest Euclidean

distance, Dmax, calculated for a given sampling. In this

study we set σ = 16 ·Dmax and retain 32 of N total eigen-

vectors corresponding to the largest eigenvalues.

ROC curves for all algorithms other than kPCA are pro-

vided in Figure 2. SSRX is the best performing algorithm

over the range of low Pfa that are of the most interest. Fig-

ure 3 shows skeleton kPCA ROC performance for six sepa-

rate skeleton samplings using the described settings relative

to the best performing comparison algorithm (SSRX). Al-

though there is variation in ROC performance correspond-

ing to different sub-samplings, the skeleton kPCA method

outperforms or is equivalent to SSRX over the range of low

Pfa values that are of practical interest. Significant im-

provement at very low false alarm rates is shown for some

of the skeleton samplings.

5. Conclusion

We have shown that our skeleton kPCA anomaly detec-

tion algorithm outperforms seven other state-of-the-art de-

tection algorithms on a common data set. We have shown

that the algorithm is reasonably robust to performance vari-

ation driven by variability in the selection of a random sub-

sample. Although the study was performed on a commonly

tested dataset, additional analysis using a variety of other

images is required to better understand performance robust-

ness among the competing algorithms. Future work will

consider the fusion of both spatial and spectral information

using the top algorithms.
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