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Abstract

There is a vital need to map seagrass ecosystems in order

to determine worldwide abundance and distribution. Cur-

rently there is no established method for mapping the pot-

hole or scars in seagrass. Detection of seagrass with optical

remote sensing is challenged by the fact that light is attenu-

ated as it passes through the water column and reflects back

from the benthos. Optical remote sensing of seagrass is only

possible if the water is shallow and relatively clear. In re-

ality, coastal waters are commonly turbid, and seagrasses

can grow under 10 meters of water or even deeper. One of

the most precise sensors to map the seagrass disturbance is

side scan sonar. Underwater acoustics mapping produces

a high definition, two-dimensional sonar image of seagrass

ecosystems. This paper proposes a methodology which de-

tects seagrass potholes in sonar images. Side scan sonar

images usually contain speckle noise and uneven illumi-

nation across the image. Moreover, disturbance presents

complex patterns where most segmentation techniques will

fail. In this paper, the quality of image is improved in the

first stage using adaptive thresholding and wavelet denois-

ing techniques. In the next step, a novel level set technique

is applied to identify the pothole patterns. Our method is

robust to noise and uneven illumination. Moreover it can

detect the complex pothole patterns. We tested our pro-

posed approach on a collection of underwater sonar images

taken from Laguna Madre in Texas. Experimental results in

comparison with the ground-truth show the efficiency of the

proposed method.

1. Introduction

Almost 65% of original seagrass communities have been

lost over time in Europe, North America, and Australia be-

cause of indirect and direct effects of humans [7]. The

widespread loss of seagrass beds is largely caused by

the rapid expansion of human populations around coastal

waterways[7]. The removal of seagrass for the creation of

harbors and channels are examples of direct impact. Addi-

tionally, coastal expansion will result in an increase in recre-

ational and commercial activities on the water.

A variety of remote sensing approaches have been used

for mapping and observing seagrass since the 1990s [2].

Detection of seagrass with optical remote sensing (both

satellite imagery and aerial photography) is complicated by

the fact that light is attenuated as it passes through the water

column and reflects back from the benthos. Attenuation is

a function of the overlying water column’s depth and sedi-

ment loads. Therefore, optical remote sensing of seagrass is

only possible if the water is shallow and relatively clear. In

reality, coastal waters are commonly turbid, and seagrasses

can grow under 10 meters of water or even deeper. The

principal advantage of optical remote sensing in identifying,

classifying and mapping of terrestrial vegetation is the high

contrast between the visible and the near-infrared (NIR) re-

flectance of vegetation, which has led to the development of

Vegetation Index (VI) for quantifying vegetation greenness

and health. However this approach is not feasible for remote

sensing of seagrass, because the overlying water column ab-

sorbs the NIR spectrum of light. Only the visible bands

of multispectral satellite sensors, (e.g., Landsat) are com-

monly used to map seagrass habitats in coastal waters [8].

Water absorption of NIR limits the utility of optical remote
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sensing for mapping seagrass health or disturbance. Addi-

tionally, pixels sizes of the freely available satellite images

vary from 30 m (Landsat) to 250 m (MODIS), which are

not adequate for mapping the propeller scars or other dis-

turbances that occur at much smaller spatial scales. Spectral

mixture analysis (SMA) has recently been applied to quan-

tify the percentage of vegetated and disturbed areas within

a satellite pixel [1], but with little success. Additionally,

SMA cannot produce a detailed map of the disturbed areas.

Underwater acoustics mapping produces a high defini-

tion, two-dimensional sonar image of seagrass ecosystems.

The acoustic profile of this benthic ecosystem is created

when sound waves are relayed from the transducer of a

sonar device. The intensity and contours of the image are

then determined by the amount of time a sound wave takes

to return to the transducer and how the waves were reflected.

1.1. Related work

Pattern recognition techniques have been applied on

sonar images for detecting concrete objects mainly on sandy

sea floor. A Markovian segmentation algorithm was used by

Mignotte et al. [10] to segment the sonar image. Addition-

ally, Mignotte et al. created another method[11] where they

segmented sonar images using an unsupervised hierarchical

MRF model to segment shadow and sea-bottom reverber-

ation. Even though they obtained good results for simple

objects on sandy sea floor, their particular method would

be complicated and computationally costly to segment sea-

grass images with complex patterns. Furthermore, another

sonar segmentation method is described by Lianantonakis

et al. [6]. Their particular research focuses on the segment-

ing of sonar images. The first step on their method is to

extract texture features from a sonar image which contains

only two regions. Then, an active contour model is applied

on the feature image. An automatic approach for the detec-

tion of meter-sized concrete artificial reefs on the sea floor

was proposed by Tian et al. [12]. In this algorithm features

were extracted using co-occurrence matrix and then clas-

sified by a Bayesian classifier. Another sonar image seg-

mentation method was created by Ye et al. [13]. Based on

Gauss-Markov random field model and the level-set energy

functions, they first extracted the local features of sonar im-

ages. Although the side scan sonar (SSS) has been used for

benthic mapping there is no existing method that automat-

ically detects the extent of seagrass beds or automatically

identifies and maps its disturbance.

Sonar images usually suffer from having speckle noise

which makes it difficult to segment continuous seagrass

areas vs. disturbances. Additionally, brightness levels

throughout the entire image can be non-uniform, which

make a real challenge in the segmentation of natural and

man-made disturbance in sea-grass. Moreover, disturbance

presents complex patterns where most segmentation tech-

Figure 1. Sidescan sonar image with uneven illumination across

the image.

niques would normally fail. Here we propose a novel tech-

nique that will address all of the issues in a three-step pro-

cedure.

In this paper, we propose a three-phase model for recog-

nition of potholes on seagrass structure depicted on sonar

images. In the first step, adaptive thresholding will be ap-

plied on the sonar images to uniform the brightness value; in

the second step, wavelet transformation will be applied on

the image to reduce the speckle noise. Finally a novel level

set algorithm is developed to detected natural and man-

made disturbance in seagrass.

1.2. Sensing modality

Side scan sonar uses two parallel transducers to transfer a

high frequency acoustic signal in the water. The transducers

are installed underneath a ‘towfish,’ which stays suspended

in water and is dragged by a boat traveling at an optimum

speed of five to six knots. The acoustic signal is sent out at

a narrow beam angle perpendicular to the boat’s direction.

The signal travels to the sea floor, and the strength of the re-

flected signal depends on the morphology and nature of the

sea bottom. Reflected signal is received by the transduc-

ers and transmitted to a recorder on the boat. The elapsed

time between the emitted and the reflected signals gives the

location of an object. Side-scan sonar images often show

striking variations in brightness due to the fact that objects

closer to the transducer will create higher reflections. Fig-

ure 1 shows a sonar image. As it can be seen in Figure 1 the

brightness values varies across the image. In the middle of

the image, where the boat is moving there is higher inten-

sity of reflection and the image is bright while in the side of

the image, the reflection is of lower intensity and the image

looks darker.

2. Proposed approach

Sonar images suffer from speckle noise and uneven illu-

mination. Seagrass disturbance present complex patterns. It

is much harder to detect seagrass disturbance patterns and
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potholes than detecting concrete objects with regular geo-

metric shape. We address these challenges in three phases.

To compensate the uneven illumination in reflectance, we

use adaptive thresholding. To remove noise we use wavelet

transform and finally to detect pothole we use a novel level

set technique.

2.1. Adaptive thresholding

To compensate the non-uniformities in reflectance we

used Gaussian adaptive thresholding technique. In this

method, a variable threshold was calculated at every point,

(x,y) based on the properties computed in a neighborhood

of (x,y). In Gaussian adaptive thresholding, the threshold

value is a weighted sum of the small neighborhood around

pixel. The neighborhood windows are chosen small enough

so that the illumination of each is approximately uniform.

A threshold is calculated for each pixel based on the convo-

lution of the image with Gaussian function as following:

T (x, y) =

a
∑

k=−a

b
∑

l=−b

G(s, t)f(x− k, y − l) (1)

where G is the Gaussian function of two variables and has

the basic form of

G (x, y) =
1

2πσ2
e−

x
2+y

2

2σ2 (2)

where σ is the standard deviation.

2.2. Wavelet Denoising

Image acquisition by sonar sensor produces some

speckle noise and it is necessary to remove them before fur-

ther processing. There are generally two ways to remove

noise from the image: 1- Spatial domain, 2- transformed

domain. In the first approach, the noise reduction opera-

tors will be carried on the grey values of the original image

such as mean, median, and adaptive filters. However, in the

second approach the procedure will be performed on the

transformed images. The wavelet denoising belongs to the

second category.

Given the noisy image g(x, y), the objective is to get an

estimation of the original image, using the wavelet denois-

ing technique (Equation 3).

g(x, y) = f(x, y) + η(x, y) (3)

At each step of the wavelet transform, the image is de-

composed into four quarter-size image. Each of the four im-

ages is formed by convolution with one of the wavelet basis

function, followed by subsampling in x and y by a factor of

two. Since the scaling and wavelet functions are separable,

each convolution can be broken down to one-dimensional

convolutions on the rows and columns. In this way, at the

stage one, we convolve the rows of the image with low pass

and high pass filters g and h and downsample the columns.

The columns then will be convolved with low pass and high

pass filters and the rows will be downsampled [9]. The re-

sult is the four N/2-by N/2 arrays required for this stage of

the transform ( Figure 2).

Figure 2. Two dimensional discrete wavelet transform (DWT)

The basic procedure for our wavelet denoising is as fol-

lows:

1. padding the width and height of the dimensions of the

image to make sure that the dimensions are a power of

two;

2. calculate the DWT of the image. Here we applied the

2D Haar wavelet transform;

3. shrinking the coefficients by using the soft threshold-

ing;

4. compute the IDWT to get the denoised estimate;

5. remove the padding to get the regular image without

the noise.

2.3. Pattern identification using levelset

Due to a large complexity of patterns in natural and

manmade seagrass disturbance, ordinary pattern recogni-

tion techniques fail to segment seagrass from disturbance.

Here we propose to use the level set technique to extract and

map disturbance in seagrass. The level set method (LSM) is

essentially a successor to the active counter method. Active

contour method (ACM), also known as Snake Model, was

first introduced in the context of image processing [3] . The

ACM is designed to detect interfaces and boundaries, of an

object in image for instance, by a set of parametrized curves

(contours) that march successively toward the desired ob-

ject until the desired interface is captured. The ACM is an

efficient tool in image and video segmentation, but it suf-

fers from certain serious issues, such as the need to handle

changes in topology of the active contour explicitly. The

LSM method overcomes this issue by capturing the bound-

aries of desired objects in the image as the intersection of
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a higher dimensional surface, called the Level Set Function

(LSF), with the zero-level plane.

In the context of image segmentation and object detec-

tion, the LSF is the solution of an initial boundary value

problem. Let ϕ = ϕ(x, t) present the LSF, where t is the

time, and x is the spatial variable defined on an image re-

gion, which we denote by Ω. The equation reads

∂ϕ
∂t

= E(ϕ), t > 0, x ∈ Ω;

ϕ(x, 0) = ϕ0, x ∈ Ω.
(4)

Here E is the energy functional whose form will be dic-

tated by the specific application. In most cases of object

detection problems, fundamental features that contribute to

the energy functional are the edge and the area; therefore,

E = E(ϕ) +A (ϕ) (5)

In this formulation, the first term presents the edge func-

tional, and the second term is the area term. We define them

as follows

E (ϕ) = λ

∫

Ω

gδ (ϕ) |∇ϕ| dx (6)

A (ϕ) = α

∫

Ω

gH (−ϕ) dx (7)

where α is a real constant and λ > 0; the function g is an

edge indication function; δ and H are the Dirac and Heavi-

side functions respectively. We will approximate them by

δε (x) =







1
2ε

(

1 + cos
(

πx
ε

))

|x| ≤ ε,

0 |x| > ε;
(8)

and

Hε (x) =



















1
2

(

1 + x
ε
+ 1

π
sin

(

πx
ε

))

|x| ≤ ε,

1

0

x > ε,

x < −ε;

(9)

where ε > 0 is a small constant.

To solve Equation 4, we will assume |∇ϕ| = 1. This

assumption will pose a computational difficulty. In the con-

ventional formulation of the LSM, the unit vector size as-

sumption for |∇ϕ| will not be necessarily kept through it-

eration steps. This can introduce irregularities in the com-

putational process. To avoid it, a need for re-initialization

at each time step may be necessary. However, this will re-

sult in a high computational cost. Several approaches have

been suggested to avoid the high computational cost. We

believe one of the best approaches to for overcoming the is-

sue of irregularities and re-initialization is suggested in [4]

and completed in [5].Inspired by certain phenomena in fluid

dynamics, we will add a diffusion type functional to stabi-

lize the process without need of re-initialization. The new

formulation of the energy functional reads

E = E(ϕ) +A (ϕ) + div(D∇ϕ) (10)

where the last term is called the distance regularization

term, with a diffusion coefficient D = D(ϕ). This diffu-

sion coefficient is constructed from a double-well potential

function p. We will define

D(ϕ) =
p′ (|∇ϕ|)

|∇ϕ|
(11)

where

p(s) =







(1− cos(2πs))/4π2 s ≤ 1;

(s− 1)
2
/2 s ≥ 1.

(12)

Given the above formulation, one can drive the energy

minimization PDE system:

∂ϕ
∂t

= λδε (ϕ) div
(

g ∇ϕ
|∇ϕ|

)

+αgδε (ϕ)

+µdiv
(

p′(|∇ϕ|)
|∇ϕ| ∇ϕ

)

t > 0, x ∈ Ω;

ϕ(x, 0) = ϕ0(x), x ∈ Ω;

∇.ϕ = 0, on∂Ω.

(13)

The last equation expresses the Neumann boundary condi-

tion. The initial condition is set by the middle equation. The

initialization function is commonly considered to be a step

function defined as

ϕ0 =







−c0 x ∈ Ω0,

c0 x ∈ Ω/Ω0;
(14)

where c0 > 0 is a constant, and Ω0 is a region inside the

image region Ω.

In most applications of the LSM, the object to be cap-

tured has some sort of regularity; or there are other features

in the image that can contribute to the convergence of the

LS process. Our images are highly noisy; moreover, there

is a track left by the boat in each image. However, our ex-

periments show that the choice of an initial region Ω0 is

flexible as long as it is not too big or wide. We will treat

the desired object as a self-organized entity. In this way,

the object will be captured gradually starting from a simple

pattern that will grow to a more complex one. The pres-

ence of the diffusion term in the Equation 13 prevents the

destabilizing effects of other terms.
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One final tuning in the algorithm will be the addition of

the narrow band technique. As described at the beginning of

this section, the LSM will take our two dimensional prob-

lem to a three dimensional level. This is going to respect

the topology of initialization function through the process,

unlike the ACM. However, this comes with a higher com-

putational price: instead of two-dimensional object, we will

be capturing a three-dimensional one. Therefore, to boost

up our computation we will also implement a LS technique

known as the narrow band technique. In this approach, our

computation is performed in a narrow neighborhood of the

level set curve in the level set function. In other words, in-

stead of updating the entire level set function in each time

step, we will update only a small neighborhood of the level

set curve on the surface of the level set function.

3. Results

3.1. Data collection

The data was collected in Laguna Madre which contains

75% of the seagrass of Texas’s coastline.

To collect data we built a prototype side scan sonar (Fig-

ure 3).

Figure 3. Our prototype side scan sonar.

We used two Lowrance Structure Scan HD LSS-2 trans-

duces as our side scan transducers. These transducers can

produce 455 KHz and 800 KHz frequencies. Our bathymet-

ric sounder is a Dual Beam 200 KHz transducer. All three

of these transducers were connected to a Huminbird 998c

HD SI combo head unit. We built a towfish from a 1.2 m

long, 7.5 cm diameter, galvanized steel pipe, capped one

end and attached four fins at the other end to stabilize and

streamline its movement under water. The transducers were

Figure 4. The sonar image collected with our prototype sonar.

installed on the bottom of the towfish. The towfish was im-

merged in water using a crane in front of a 21-ft boat. The

boat was driven at a constant speed of six knots. Each re-

flected beam produces one narrow line of sonogram of the

sea floor from both sides of the boat, at a pixel size depend-

ing on the sonar frequency, intensity, and ‘ping’ rate of the

transducer. Boat’s position is measured with a GPS receiver,

and the water’s depth is determined using a bathymetric

sounder. Navigation information is recorded continuously

along with the reflected acoustic signals. Combining each

line of reflected signal with its position, time and depth, and

mosaicking all lines in the chronological sequence produces

an image of the seafloor (Figure 4). A mosaic of size ap-

proximately 5000 × 60000 pixels covering an area of about

12,000 m2 was created in this research.

3.2. Experimental results

The proposed method was tested on several sonar images

collected from Laguna Madre. Figure 4 shows a represen-

tative image.

As it can be seen in Figure 4, the image has different il-

lumination across the image. The image is brighter in the

center, while towards the edge the image gets darker. In

addition, all of sonar images have speckle noise. Here we

applied adaptive thresholding and wavelet denoising to at-

tenuate noise and improve uneven illumination (Figure 5).

After this step the proposed level set technique was ap-

plied on the sonar image to detect pothole patterns in sea-

grass. Figure 6 shows the result of the proposed method

applied on Figure 5. In Figure 6, the top picture shows the

initial curve for level set method, the middle image shows

the result of the method aftre 250 iterations, and the last im-

age shows the result of the method after 750 iterations. As it
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Figure 5. The sonar image after removing uneven illumination and

noise using adaptive thresholding and wavelet denoisng.

can be seen, although the initial curve is located only on the

center of the image, after 250 iterations, it will evolve and

detect almost all potholes in the sonar image. By increasing

the iterations number, some of the curves will be merged to-

gether, some of the curves will grow and some of them will

split. Finally after 750 iterations the results converge.

In the next test (Figure 7), both open curve and closed

curves are depicted as the initial curve. Figure 7 shows the

disturbance pattern of seagrass with this initial curve and in

different iterations. Here the level set converges with lower

number of iterations. Some part of the boat path is separated

form pothole.

3.3. Evaluation

To evaluate the performance of our proposed method first

we need to set up some benchmarks. For any particular

piece of data that we are evaluating there are four states.

Whether it correctly belongs to a class or does not belong

to a class. This information is normally displayed in a con-

fusion matrix. In confusion matrix, TP is true positive or

correct result, FP is false positive or unexpected result, FN

is false negative or missing results, and TN is true negative.

From the confusion matrix recall (R) and precision (P) are

calculated as follow:

P =
TP

TP + FP
(15)

Precision, the exactness of a classifier, and recall, the

completeness of a classifier, can be combined to produce

a single metric known as F-measure, which is the weighted

harmonic mean of precision and recall. The F-measure, de-

fined in Equation 16, captures the precision and recall trade-

off.

F =
1

α
P
+ 1−α

R

=
(β2 + 1)PR

β2P +R
, (16)

The F-measure varies between 0 and 1, where larger val-

ues are more wanted. In this paper we used balanced F-

Figure 6. Disturbance pattern depicted by the propose method.

Top:Initial curve middle: disturbance pattern after 250 iterations

Bottom: disturbance pattern after 750 iterations

measure, i.e. with β = 1.
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Figure 7. Disturbance pattern depicted by the propose method.

Top: Initial curve middle: disturbance pattern after 250 iterations

Bottom: disturbance pattern after 500 iterations

After setting up our benchmarks, we calculated the F-

measure of each output with respect to the ground-truth.

Figure 9 shows the representative ground-truth result. Here

Figure 8. The initial curve for different experiments.

the expert manually labeled the boundary of pothole in

sonar image. We calculated precision, recall and F-measure

for all images in dataset in respect to the ground-truth im-

age. Table 1 shows the average precision, recall, and F-

measure in our experiment.

Precision Recall F-Measure

0.83 0.73 0.78

Table 1. Evaluation of our results.

We tested our algorithm with different initial curves.

Figure 8 shows the initial curves of different experi-

ments. Our experiment shows that the location of initial

curve does not have great effect on final accuracy (Ta-

ble 2 and 3). A random initial curve on any part of the

image will automatically detect all of the boundaries. How-

ever, the more accurate initial curve on areas where potholes

are located will result in a faster convergent of the evolv-

ing curve. For example, because the closed initial curve in

Figure 7 contains only the pothole, the proposed approach

could converge with higher speed.

4. Conclusion

In this paper, we proposed an automatic approach which

detects seagrass potholes in sonar images. In the first step

we used the adaptive thresholding and wavelet denoising to

remove the uneven illumination and noise that are available

in sonar images. In next step we proposed an automatic

levelset technique which detects the boundary of pothole

quickly. The proposed method was applied on sonar images
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TP TN FP FN

Exp1 277814 296326 57462 102985

Exp2 289818 276093 74069 90981

Exp3 271768 305026 48593 109031

Exp4 271113 300933 53869 109686

Table 2. Confusion matrix for different experiments in Figure 8.

Figure 9. Ground-truth result.

Precision Recall F-Measure

Exp1 0.83 0.73 0.78

Exp2 0.80 0.76 0.78

EXp3 0.85 0.71 0.78

Exp4 0.83 0.71 0.77

Table 3. Evaluation of our results for experiments with various

initial curve location.

taken from Laguna Madre in Texas. Experimental results in

comparison with the ground truth show the high accuracy of

the proposed technique. In future we are planning to extend

this work for real-time identification of seagrass disturbance

patterns.
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