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Abstract

This paper proposes a novel approach for colorizing

near infrared (NIR) images using a Deep Convolutional

Generative Adversarial Network (GAN) architecture. The

proposed approach is based on the usage of a triplet model

for learning each color channel independently, in a more

homogeneous way. It allows a fast convergence during the

training, obtaining a greater similarity between the colored

NIR image and the corresponding ground truth. The pro-

posed approach has been evaluated with a large data set of

NIR images and compared with a recent approach, which is

also based on a GAN architecture where all the color chan-

nels are obtained at the same time.

1. Introduction

Image acquisition devices have largely expanded in re-

cent years, mainly due to the decrease in price of electron-

ics together with the increase in computational power. This

increase in sensor technology has resulted in a large family

of images, able to capture different information (from dif-

ferent spectral bands) or complementary information (2D,

3D, 4D); hence, we can have: HD 2D images; video se-

quences at a high frame rate; panoramic 3D images; multi-

spectral images; just to mention a few. In spite of the large

amount of possibilities, when the information needs to be

provided to a final user, the classical RGB representation is

preferred. This preference is supported by the fact that hu-

man visual perception system is sensitive to (400-700nm);

hence, representing the information in that range help user

understanding. In this context, the current paper tackles the

near infrared (NIR) image colorization, trying to generate

realistic RGB representations.

The NIR spectral band is the closest in wavelength to the

radiation detectable by the human eye; hence, NIR images

share several properties with visible images. The interest of

using NIR images is related with their capability to segment

images according to the object’s material. Surface reflection

in the NIR spectral band is material dependent, for instance,

most pigments used for material colorization are somewhat

transparent to NIR. This means that the difference in the

NIR intensities is not only due to the particular color of the

material, but also to the absorption and reflectance of dyes.

The absorption/reflectance properties mentioned above

are used for instance in remote sensing applications for

crop stress and weed/pest infestations. NIR images are also

widely used in video surveillance applications. In these two

contexts (i.e., remote sensing and video surveillance), it is

quite difficult for users to orientate when NIR images are

provided, since the lack of color discrimination or wrong

color deploy. In this work a neural network based approach

for NIR image colorization is proposed. Although the

problem shares some particularities with image colorization

(e.g., [6], [3], [15]) and color correction/transfer (e.g., [8],

[9]) there are some notable differences. First, in the im-

age colorization domain—gray scale image to RGB—there

are some clues, such as the fact that luminance is given by

grayscale input, so only the chrominance need to be esti-

mated. Secondly, in the case of color correction/transfer

techniques, in general three channels are given as input to

obtain the new representation in the new three dimensional

space. In the particular problem tackled in this work (NIR to

visible spectrum representation) a single channel is mapped

into a three dimensional space, making it a difficult and

challenging problem. The manuscript is organized as fol-

lows. Related works are presented in Section 2. Then, the

proposed approach is detailed in Section 3. Experimental

results with a large set of images are presented in Section 4.

Finally, conclusions are given in Section 5.
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2. Related work

Colorization techniques have been largely studied in re-

cent years. Several methods have been proposed to solve

this challenging task. However, most of them are not fully

automatic, some techniques require some user interactions

or utilize user-defined search table. The problem addressed

in the current paper is related with infrared image coloriza-

tion, as mentioned above, somehow it shares some com-

mon problems with monocromatic image colorization ap-

proaches proposed during last decades. Colorization tech-

niques algorithms mostly differ in the ways they obtain and

treat the data for modeling the correspondences between

grayscale and color.

Coarsely speaking colorization techniques can be classi-

fied into parametric and non-parametric approaches. Para-

metric methods learn prediction functions from large

datasets of color images at training time, posing the problem

as either regression onto continuous color space or classifi-

cation of quantized color values. Non-parametric methods,

on the other hand, given an input grayscale image, firstly

they define one or more color reference images (provided

by an user or automatically retrieved) to be used as source

data. Then, following the image analogy framework, color

is transferred onto the input image from analogous regions

of the reference image(s).

Welsh et al. [13] describe a semi-automatic technique for

colorizing a grayscale image by transferring color from a

reference color image. They examine the luminance values

in the neighborhood of each pixel in the target image and

transfer the color from pixels with matching neighborhoods

in the reference image. This technique works well on im-

ages where differently colored regions give rise to distinct

luminance clusters, or possess distinct textures. In other

cases, the user must direct the search for matching pixels

by specifying swatches indicating corresponding regions in

the two images. It is also difficult to fine-tune the outcome

selectively in problematic areas.

The approaches presented above have been implemented

using classical image processing techniques. However,

recently Convolutional Neural Network (CNN) based ap-

proaches are becoming the dominant paradigm in almost

every computer vision task. CNNs have shown outstanding

results in various and diverse computer vision tasks such as

stereo vision [14], image classification [12] or even difficult

problems related with cross-spectral domains [1] outper-

forming conventional hand-made approaches. Hence, we

can find some recent image colorization approaches based

on deep learning, exploiting to the maximum the capacities

of this type of convolutional neural networks. As an ex-

ample, we can mention the approach presented on [15]. It

proposes a fully automatic approach that produces brilliant

and sharpen colored images. They model the unknown un-

certainty of the desaturated colorization levels, designing it

as a classification task and using class-rebalancing at train-

ing time to augment the diversity of colors in the result.

On the contrary, [5] presents a technique that combines

both global priors and local image features. Based on a

CNN, a fusion layer merges local information, dependent

on small image patches, with global priors, computed us-

ing the entire image. The model is trained in an end-to-end

fashion, so this architecture can process images of any res-

olution. They leverage an existing large-scale scene clas-

sification database to train the model, exploiting the class

labels of the dataset to more efficiently and discriminatively

learn the global priors. A recent research on a colorization

technique, focused on images of the infrared spectrum, has

proposed to use convolutional neural networks to perform

an automatic integrated colorization from a single channel

NIR image to RGB images [7]. In this paper the author

proposes a deep multi-scale convolutional neural network

to perform a direct estimation of the low RGB frequency

values. Additionally, it requires a final step that filters the

raw output of the CNN and transfers the details of the input

image to the final output image.

Deep Convolutional Generative Adversarial Networks

(DCGANs) are a class of neural networks that have gained

popularity in recent years. They allow a network to learn

to generate data with the same internal structure as other

data. GANs are powerful and flexible tools, one of their

most common applications is image generation. In the GAN

framework [4], generative models are estimated via an ad-

versarial process, in which simultaneously two models are

trained: a generative model G that captures the data dis-

tribution, and a discriminative model D that estimates the

probability that a sample came from the training data rather

than G. The training procedure for G is to maximize the

probability of D making a mistake. This framework cor-

responds to a min-max two-player game. In the space of

arbitrary functions G and D, a unique solution exists, with

G recovering the training data distribution and D equal to

1/2 everywhere. In [10] some techniques to improve the

efficiency of the generative adversarial networks have been

proposed; one of them, referred to as the virtual batch nor-

malization, allows to significantly improve the network op-

timization using the statistics of each set of training batches.

Recently, [11] proposes a NIR image colorization using

a DCGAN architecture. In that work, a colorization model

is obtained based on a GAN architecture. On the contrary

to that work, in the current paper a triplet based colorization

model is proposed to generate the colorized images, in the

same scheme of architectures of DC Generative Adversarial

Networks. The proposed model generates three instances,

each corresponding to one of channels of the (R,G,B) im-

age. This model shares learning parameters and its output

is then measured by its probability of being as similar as

possible to the image given as ground truth. The details of
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the implementation are presented in the following section.

3. Proposed approach

This section presents the approach proposed for NIR im-

age colorization. As mentioned above, a recent work on

colorization [11] has proposed the usage of a deep convo-

lutional adversarial generative learning network. It is based

on a traditional scheme of layers in a deep network. In the

current work we also propose the usage of a DCGAN but

in a triplet learning layer architecture scheme. These mod-

els have been used to solve other types of problems such

as learning local characteristics, feature extraction, simi-

larity learning, face recognition, etc. Based on the results

that have been obtained on this type of solutions, where

improvements in accuracy and performance have been ob-

tained, we propose the usage of a learning model that al-

lows the multiple representation of each of the channels of

an image of the visible spectrum (R, G, B). Therefore, the

model will receive as input the same image of the near in-

frared spectrum (NIR), with a Gaussian noise added in each

channel of the image to generate the necessary variability

of the training set, to be able to generalize the learning of

the colorization process. A global loss function is used

to minimize the overall classification error in the training

set, which can improve the generalization capability of the

model.

A DCGAN network based architecture is selected due to

several reasons: i) its fast convergence capability; ii) the

capacity of the generator model to easily serve as a den-

sity model of the training data; and iii) sampling is simple

and efficient. The network is intended to learn to generate

new samples from an unknown probability distribution. In

our case, the generator network has been modified to use

a triplet to represent the learning of each image channel

independently; at the output of the generator network, the

three resulting image channels are recombined to generate

the RGB image. This will be validated by the discriminative

network, which will evaluate the probability that the col-

orized image (RGB) is similar to the real one, which is used

as ground truth. Additionally, the generator model, in order

to obtain a true color, the DCGAN framework is reformu-

lated for a conditional generative image modeling tuple. In

other words, the generative model G(z; θg) is trained from

a near infrared image plus some Gaussian noise, in order to

produce a colored RGB image; additionally, a discrimina-

tive model D(z; θd) is trained to assign the correct label to

the generated colored image, according to the provided real

color image, which is used as a ground truth. Variables (θg)
and (θd) represents the weighting values for the generative

and discriminative networks.

The DCGAN network has been trained using Stochastic

AdamOptimazer since it prevents overfitting and leads to

convergence faster. Furthermore, it is computationally effi-

cient, has little memory requirements, is invariant to diag-

onal rescaling of the gradients, and is well suited for prob-

lems that are large in terms of data and/or parameters. Our

image dataset was normalized in a (-1,1) range and an ad-

ditive Gaussian Distribution noise with a standard deviation

of 0.00011, 0.00012, 0.00013 added to each image chan-

nel of the proposed triplet model. The following hyper-

parameters were used during the learning process: learning

rate 0.0002 for the generator and the discriminator networks

respectively; epsilon = 1e-08; exponential decay rate for the

1st moment momentum 0.5 for discriminator and 0.4 for

the generator; weight initializer with a standard deviation

of 0.00282; weight decay 1e-5; leak relu 0.2 and patch’s

size of 64×64.

The Triplet architecture of the baseline model is con-

formed by convolutional, de-convolutional, relu, leak-relu,

fully connected and activation function tanh and sigmoid

for generator and discriminator networks respectively. Ad-

ditionally, every layer of the model uses batch normaliza-

tion for training any type of mapping that consists of multi-

ple composition of affine transformation with element-wise

nonlinearity and do not stuck on saturation mode. It is very

important to maintain the spatial information in the genera-

tor model, there is not pooling and drop-out layers and only

the stride of 1 is used to avoid downsize the image shape. To

prevent overfiting we have add a l1 regularization term (λ)

in the generator model, this regularization has the particu-

larity that the weights matrix end up using only a small sub-

set of their most important inputs and become quite resistant

to noise in the inputs, this characteristics is very useful when

the network try to learn which features are contributing to

the learning proccess. Figure 1 presents an illustration of

the proposed Triplet GAN architecture.

The generator (G) and discriminator (D) are both feed-

forward deep neural networks that play a min-max game be-

tween one another. The generator takes as an input a near in-

frared image blurred with a Gaussian noise patch of 64×64

pixels, and transforms it into the form of the data we are

interested in imitating, in our case a RGB image. The dis-

criminator takes as an input a set of data, either real image

(z) or generated image (G(z)), and produces a probability of

that data being real (P(z)). The discriminator is optimized

in order to increase the likelihood of giving a high proba-

bility to the real data (the ground truth given image) and a

low probability to the fake generated data (wrongly colored

NIR image), as introduced in [4]; thus, it is formulated as

follow:

maxDV(D,G) =▽θg

1

m

m
∑

i=1

[logD(x(i)) (1)

+log(1−D(G(z(i))))],

where m is the number of patches in each batch, x is the
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CNN Generative Adversarial Architecture

(G) Generator Network with Model Triplet

(D) Discriminator Network
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Figure 1. Illustration of the network architecture used for NIR image colorization.

ground truth image and z is the colored NIR image gen-

erated by the network. The weights of the discriminator

network (D) are updated by ascending its stochastic gradi-

ent. On the other hand, the generator is then optimized in

order to increase the probability of the generated data being

highly rated:

minGV(D,G) =▽θg

1

m

m
∑

i=1

log(1−D(G(z(i)))), (2)

where m is the number of samples in each batch and z is

the colored NIR image generated by the network. Like in

the previous case, the weights of the generator network (G)

are updated by descending its stochastic gradient.

4. Experimental Results

The proposed approach has been evaluated using NIR

images and their corresponding RGB obtained from [2].

The urban and old-building categories have been consid-

ered for evaluating the performance of the proposed ap-

proach. These categories have been selected since they look

quite similar; the intention is to evaluate the capability of the

network to be used in scenarios containing similar objects,

which have not been used during the training stage. Figure

2 and Fig. 3 presents three pairs of images from each of

these categories. The urban category contains 58 pairs of

images of (1024×680 pixels), while the old-building con-

tains 51 pairs of images of (1024×680 pixels). From each

of these categories 250.000 pairs of patches of (64×64 pix-

els) have been cropped both, in the NIR images as well as in
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Figure 2. Pair of images (1024×680 pixels) from [2], urban cate-

gory: (top) NIR images to colorize; (bottom) RGB images used

as ground truth.

Figure 3. Pair of images (1024×680 pixels) from [2], old-building

category: (top) NIR images to colorize; (bottom) RGB images

used as ground truth.

the corresponding RGB images. Additionally, 2500 pairs of

patches of (64×64 pixels) have been also generated for val-

idation. It should be noted that images are correctly regis-

tered, so that a pixel-to-pixel correspondence is guaranteed.

The DCGAN network proposed in the current work

for NIR image colorization has been trained using a 3.2

eight core processor with 16Gb of memory with a NVIDIA

GeForce GTX970 GPU. On average every training process

took about 28 hours. The proposed architecture has been

evaluated using three different training schemes. Firstly,

the DCGAN network has been trained with the urban cate-

gory and evaluated with both urban and old-building cate-

gories. The same process was applied but by training with

the old-building category and testing with both urban and

old-building categories. Finally, the DCGAN network has

been trained with both data sets and evaluated indepen-

dently in each of them, urban and old-building categories.

The same scheme has been applied to the GAN model pre-

sented in [11] and compared with the results obtained with

the proposed approach.

Colored images are referred to as (RGBNIR) while the

corresponding RGB images, provided in the given data set,

are referred to as (RGBGT ) and used as ground truth. The

quantitative evaluation consists of measuring at every pixel

the angular error (AE) between the obtained result (col-

orized NIR image) and the corresponding RGB image pro-

Table 1: Average angular errors obtained with the proposed

Triplet based DCGAN architecture.
Training Evaluation

urban old-building

urban 4.8 8.6

old-building 9.8 7.1

both categories 7.4 8.2

Table 2: Average angular errors obtained with the approach

presented in [11].
Training Evaluation

urban old-building

urban 8.6 12.5

old-building 11.7 10.6

both categories 9.9 11.4

vided in the given data set as ground truth value :

AE = cos−1

(

dot(RGBNIR, RGBGT )

norm(RGBNIR) ∗ norm(RGBGT )

)

(3)

This angular error is computed over every single pixel of

the whole set of images used for validation. Table 1 presents

the average angular errors (AE) obtained with the three

schemes mentioned above. The same evaluation scheme

has been used with the approach presented in [11]; the re-

sults obtained with that approach are presented in Table 2.

It can be appreciated that in all the cases the results with the

proposed DCGAN are better that those obtained with [11].

Qualitative results are presented in Fig. 4 and Fig. 5.

Figure 4 shows NIR images from the urban category col-

orized with the DCGAN network trained with images from

that category. On the contrary, Fig. 5 depicts NIR images

from the old-building category colorized with the DCGAN

network trained with images from the urban category. It

should be noticed that although the weights of the network

have been obtained from a different category, colorized im-

ages look quite similar to the ground truth ones. Coloriza-

tion results from other training schemes are similar.

5. Conclusions

This paper tackles the challenging problem of NIR im-

age colorization by using a novel Deep Convolutional Gen-

erative Adversarial Network architecture model. Results

have shown that in most of the cases the network is able

to obtain a reliable RGB representation of the given NIR

image. Additionally, comparison with a recent approach

shows the advantages of the proposed DCGAN architecture.

Future work will be focused on evaluating other network ar-

chitecture, like autoencoders, conditional GAN, which have

shown appealing results in recent works. Finally, the pro-

posed approach will be tested in other image categories try-

ing to exploit the transfer learning approaches.
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Figure 4. (top) NIR images from the urban category. (middle)

Images colorized with the DCGAN network trained with urban

images. (bottom) Ground truth images.

Figure 5. (top) NIR images from the old-building category.

(middle) Images colorized with the DCGAN network trained

with urban images. (bottom) Ground truth images.
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