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Abstract

We present a framework for robust face detection and

landmark localisation of faces in the wild, which has been

evaluated as part of ‘the 2nd Facial Landmark Localisa-

tion Competition’. The framework has four stages: face

detection, bounding box aggregation, pose estimation and

landmark localisation. To achieve a high detection rate,

we use two publicly available CNN-based face detectors

and two proprietary detectors. We aggregate the detected

face bounding boxes of each input image to reduce false

positives and improve face detection accuracy. A cascaded

shape regressor, trained using faces with a variety of pose

variations, is then employed for pose estimation and im-

age pre-processing. Last, we train the final cascaded shape

regressor for fine-grained landmark localisation, using a

large number of training samples with limited pose vari-

ations. The experimental results obtained on the 300W

and Menpo benchmarks demonstrate the superiority of our

framework over state-of-the-art methods.

1. Introduction

Facial landmarks provide important information for face

image analysis such as face recognition [4, 43, 45, 46],

expression analysis [14, 15, 24] and 3D face reconstruc-

tion [26, 27, 30, 36, 60]. Given an input face image, the task

of facial landmark localisation is to obtain the coordinates

of a set of pre-defined facial landmarks. These facial land-

marks usually have specific semantic meanings, such as the

nose tip and eye corners, and are instrumental in enabling

the subsequent face image analysis.

The most well-known facial landmark localisation algo-

rithms, which emerged from the early research efforts on

this topic, are based on Active Shape Model (ASM) [7],

Active Appearance Model (AAM) [8] and Constrained Lo-

cal Model (CLM) [11]. These algorithms perform well in

constrained scenarios, but cannot cope reliably with faces

obtained in unconstrained conditions. The current research

attempts to redress this situation. Its aim is to design algo-

rithms for robust and accurate face landmarking of uncon-

strained faces in the presence of extreme appearance varia-

tions in pose, expression, illumination, makeup, occlusion

etc. To this end, the recent trend has been to resort to dis-

criminative approaches such as Cascaded Shape Regression

(CSR) [6, 13, 17, 18, 19, 50] and Deep Neural Networks

(DNN) [44, 47, 49, 55, 56]. Both have shown promising

landmarking results for faces in the wild.

To evaluate the performance of facial landmark localisa-

tion algorithms, a number of face datasets have been col-

lected or annotated, such as the IMM [35], BioID [29],

XM2VTS [34], LFPW [3], COFW [5], AFLW [31], HE-

LEN [32] and 300W [39] datasets. However, their key char-

acteristics such as dataset size, appearance variation types,

number of landmarks and landmark quality are not always

all satisfactory or well defined. To comprehensively eval-

uate and compare facial landmark localisation algorithms,

the Menpo benchmark has been conceived [54, 47]. It con-

tains 8979 training images and 7281 test images, which

have been semi-automatically annotated with 68 facial land-

marks for semi-frontal faces and 39 landmarks for pro-

file faces. The Menpo images were selected from the

AFLW [31] and FDDB [28] datasets, exhibiting a wide

range of appearance variations.

In contrast to the previous evaluation campaigns, the

Menpo benchmark does not provide face bounding boxes

for landmark initialisation, which better reflects practical

applications. However, the accuracy of landmark locali-

sation algorithms highly relies on the consistency of the

detected face bounding boxes for every input image. To

achieve robust face detection and landmark localisation, we

develop a coarse-to-fine framework designed to enhance the

consistency of detected face designation as well as the ac-

curacy of facial landmarking. The proposed framework has

four stages including face detection using multiple face de-

tectors, face bounding box aggregation, pose estimation and

facial landmark localisation, as shown in Fig. 1. The key in-
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Figure 1. The pipeline of our proposed facial landmark localisation framework.

novation of the proposed framework is twofold: 1) we pro-

pose the use of multiple face detection experts to provide

input to a bounding box aggregation strategy to improve the

accuracy of face detection; 2) we divide the original CSR

method into a number of coarse-to-fine steps that further

improve the accuracy of facial landmark localisation.

The paper is organised as follows. We first overview the

related literature and introduce the basic cascaded shape re-

gression method in Sections 2 and 3. Then the proposed

coarse-to-fine framework and its four main stages are pre-

sented in Section 4. In Section 5, we report the experimen-

tal results obtained on the 300W and Menpo benchmarks.

Conclusions are drawn in Section 6.

2. Related Work

The early advances in facial landmark localisation were

mainly driven by ASM, AAM and CLM, in which a gen-

erative PCA-based shape model is used for face shape rep-

resentation. Typically in these methods, the statistical dis-

tribution of the samples used for the shape model training

provides a prior for the model fitting process. To fit the

shape model to an input image, an objective function is

designed to optimise the model parameters. For example,

AAM uses the intensity difference between an input im-

age and a texture model as the loss for model optimisation.

These models and their extensions have achieved great suc-

cess in facial landmarking for faces with controlled appear-

ance variations [1, 9, 20, 21, 23, 33, 40]. However, for faces

in the wild, the PCA-based shape model may miss some

shape details and in consequence it is not able to represent

complex shapes faithfully. To address this issue, cutting-

edge techniques use learning-based discriminative methods

that employ the non-parametric Point Distribution Model

(PDM) [10] for shape representation. Given an input face

image and an initial shape estimate, a discriminative model

learns a mapping function from the shape-related features

to a shape update, driving the landmarks of the initial shape

estimate to their optimal locations.

In recent years, discriminative models, in particular

CSR-based methods, have become the state-of-the-art in

robust facial landmark localisation of unconstrained faces.

The key to the success of CSR is the architecture cascad-

ing multiple weak regressors, which greatly improves the

generalisation capacity and accuracy of a single regression

model. To form a CSR, linear regression [18, 50, 52], ran-

dom forests or ferns [6, 37] and deep neural networks [44,

47, 57] have been used as weak regressors. To further

improve landmark localisation accuracy of CSR-based ap-

proaches, new architectures have been proposed. For exam-

ple, Feng et al. proposed to fuse multiple CSRs to improve

the accuracy of a single CSR model [18]. Xiong et al. pro-

posed the global supervised descent method using multiple

view-based CSRs to deal with the difficulties posed by ex-

treme appearance variations [51]. Moreover, data augmen-

tation [17, 19, 58] and 3D-based approaches [58] have also

been used to enhance existing CSR-based facial landmark

localisation approaches.

3. Cascaded Shape Regression

Given a face image I, the face shape is repre-

sented in the form of a vector consisting of the coor-

dinates of L pre-defined 2D facial landmarks, i.e. s =
[x1, ..., xL, y1, ..., yL]

T . To automatically obtain the face

shape for the input image, CSR is used in our proposed

framework. In fact, CSR is a strong regressor, Φ, formed

by a set of weak regressors:

Φ = {φ1, ..., φM}, (1)

where φm is the mth weak regressor and M is the number

of weak regressors. It should be noted that any regression

method can be used as a weak regressor in CSR. In this

paper, we adopted ridge regression for each weak regressor.

Suppose we have N training samples, {In, s
∗

n}
N
n=1

,

where In is the nth training image and s
∗

n is the ground truth

face shape. We construct a CSR by progressively training

a set of cascaded weak regressors. To this end, we first ini-

tialise the face shape estimate, s′n, for each training image
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input : image I and a trained CSR model

Φ = {φ1, ..., φM}
output: facial landmarks s′

1 initialise the current face shape, s′, using the detected

face bounding box;

2 for m← 1 to M do

3 extract shape-related features, f(I, s′), from the

image using the current shape estimate;

4 apply the mth weak regressor to obtain the shape

update δs using Eq. (3);

5 update the current shape estimate s
′ ← s

′ + δs;

6 end

Algorithm 1: Cascaded shape regression for facial

landmark localisation.

by scaling and translating the mean shape so that it per-

fectly fits into the detected face bounding box. Next, the

shape difference between the current shape estimate and

the ground truth shape of each training sample is calcu-

lated, i.e. δs∗n = s
∗

n − s
′

n. Then the first weak regressor,

φ1 = {A1, e1}, is obtained by solving the optimisation

problem:

argmin
A1,e1

N∑

n=1

||A1 ·f(In, s
′

n)+e1−δs
∗

n||
2

2
+λ||A1||

2

F , (2)

where A1 ∈ R
2L×Nf is the trained projection matrix for

the first weak regressor, Nf is the dimensionality of the ex-

tracted shape-related features using f() and e1 ∈ R
2L is

the offset. f(I, s′) is a mapping function that extracts local

features, e.g. HOG, LBP or SIFT, from the neighbourhood

around each landmark of the current shape estimate, s′, and

concatenates them into a long vector. Solving Eq. (2) is a

typical least square estimation problem that has a closed-

form solution. Once we obtain the first weak regressor, we

use it to predict the shape update,

δs = A · f(I, s′) + e, (3)

for each training sample. Last, the current shape estimates

of all the training samples are updated for the second weak

regressor training, i.e. s′n ← s
′

n + δsn (n = 1, ..., N). We

repeat this process several times until all the M weak re-

gressors are learnt.

For a test image, we first initialise the current shape es-

timate using the detected face bounding box as mentioned

above. Then the pre-trained weak regressors are progres-

sively applied to the current shape estimate for shape up-

date, as summarised in Algorithm 1.

4. The Proposed Framework

The proposed facial landmark localisation framework

has four main stages, as shown in Fig. 1. Because the

Menpo benchmark does not provide face bounding boxes

for landmark initialisation, we first perform face detection

for a given image. To improve the detection rate, we use

four different face detectors. Second, the detected face

bounding boxes are filtered and fused using an aggregation

algorithm to reduce false positives and improve the accu-

racy. Third, we predict the pose of the face image for pre-

processing, e.g. image rotation and flipping. Last, cascaded

shape regression is used to obtain the final facial landmark

localisation result.

4.1. Face Detection

As aforementioned, our face detection stage uses four

face detectors. The first two are public available face detec-

tors: the Convolutional Neural Network (CNN-) based dlib

face detector 1 and the Multi-Task CNN (MTCNN) face de-

tector [56]. In addition, we train two proprietary face detec-

tors to further improve the detection rate. One of them is a

general deep-learning-based face detector and the other one

is a regression-based face detector specifically tailored for

the Menpo benchmark.

Recently, the state of the art in deep-learning-based ob-

ject detection advanced significantly [41, 25, 38]. Region-

based methods like Faster Region-based CNN (Faster R-

CNN) [38] and its variants emerged as state-of-the-art in de-

tection. Besides the two publicly available CNN-based face

detectors, we train a new deep-learning-based face detector

using Faster R-CNN. Faster R-CNN consists of two main

components: Region Proposal Network (RPN) and Fast R-

CNN [22]. RPN takes an image as input and generates rect-

angular object proposals, each with probability of belonging

to foreground objects (objectiveness) vs background. The

RPN proposals are passed through non-maximum suppres-

sion and then sorted out with respect to objectiveness. Then

top-N rectangular proposals are fed into Fast R-CNN for

classification into different categories and refinement of the

bounding box for these proposals. For face detection, Fast

R-CNN is trained to detect only one class, i.e. human faces.

We use VGG 16 layers network [42] as shared convolutional

feature maps and use approximate joint training to update

parameters.

We train our face detector using the WIDER FACE

dataset [53]. In order to adapt to the characteristics of the

challenge, we remove all the tiny faces (faces consisting of

less that 80 pixels area) from the training set of WIDER

FACE. Furthermore, the trained face detector is fine-tuned

on the training set of the Menpo benchmark. In the chal-

lenge, a face covers a significant area of the image, there-

fore, we use regions with intersection-over-union (IoU) of

more than 0.75 with the ground truth box as positive sam-

ples, and regions with IoU of less than 0.35 with the ground

truth as negative samples in the fine tuning stage. Our

1http://dlib.net
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Figure 2. Face bounding box aggregation: the first row shows the initial face detection results using the dlib (green), MTCNN (magenta),

our own trained Faster R-CNN (red) and regression-based (blue) face detectors; the second row shows the final aggregated face bounding

box for each image.

Faster-R-CNN-based face detector has achieved very com-

petitive results on the well-known Face Detection Dataset

and Benchmark (FDDB) [28].

When testing on the training set of the Menpo bench-

mark, even using these three deep-learning-based face de-

tectors, it is not always possible to detect all the faces in an

input image. To address this issue, we develop a 4th face

detector optimised for the Menpo benchmark by leverag-

ing the benchmark rules, namely that ‘each image contains

a single annotated face and it is the one that is closer to

the centre of the image’. This face detector is regression-

based, which is similar to the face bounding box refinement

step used in the Dynamic Attention-Controlled CSR (DAC-

CSR) [19]. The difference is that DAC-CSR uses only one

regression model for bounding box refinement, but we cas-

cade multiple weak regressors for face bounding box regres-

sion.

The training of this cascaded bounding box regression,

Φb = {φb,1, ..., φb,M}, (4)

is similar to the training of a CSR introduced in Section 3.

Here, each weak regressor updates the current face bound-

ing box estimate, b = [x, y, w, h]′, instead of the current

face shape, s, for an image, where (x, y), w and h are the

coordinates of the left-upper corner, width and hight of a

face bounding box. For face bounding box initialisation,

we simply use the bounding box covering the whole region

of an input image. The ground truth bounding box of a face

is obtained by using the one that exactly encloses all the

landmarks of the face. As features f(I,b), we extract multi-

scale HOG and LBP descriptors from the image patch inside

the current face bounding box. This regression-based face

detector is trained on the training set of the Menpo bench-

mark using 2 weak regressors.

4.2. Face Bounding Box Aggregation

The use of multiple face detectors results in a number

of face bounding boxes as output, including false positives.

However, the Menpo benchmark protocol specifies the face

closer to the centre of an input image as the correct one.

To improve the accuracy of the face detection module and

reduce false positives, we perform face bounding box ag-

gregation of all the detected faces of an input image. Fig. 2

shows some examples of our initially detected faces and the

final bounding boxes based on our aggregation approach.

To perform face bounding box aggregation, we first filter

the face bounding boxes detected by the first three deep-

learning-based face detectors. In this step, we eliminate

all the detected face bounding boxes that satisfy one of the

following conditions: 1) the detection confidence score is

lower than 0.85; 2) the bounding box height is smaller than

1/5 of the image height; and 3) the bounding box does

not include the image centre. After that, we perform face

bounding box refinement for the remaining face bounding

boxes output by the first three face detectors. The face

bounding box refinement step is the same as the one used

in DAC-CSR [19]. However, we train three of them for

the three deep-learning-based face detectors separately. The

training is similar to that of our 4th regression-based face

detector, as introduced in the last section. However, here

we use the detected face bounding box of a face detector,

rather than the one covering the whole image, for bounding

box initialisation. The refined bounding boxes are averaged

to obtain the final result. If all the detected face bounding

boxes are eliminated during the filtering stage, we use the

one with the highest score among all the original bound-

ing boxes output by the dlib and MTCNN face detectors for

bounding box refinement. Last, if dlib and MTCNN have

not detected any faces, we just simply use the bounding box
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Figure 3. Pose estimation and image pre-processing for semi-

frontal (first row) and profile (second row) faces.

output from our 4th regression-based face detector as the

final face detection result.

4.3. Pose Estimation

The Menpo benchmark has two test sets, semi-frontal

and profile, that are evaluated separately. These two test

sets consist of face images with a variety of in-the-plane

pose rotations. In addition, the profile subset has either left-

or right-rotated face images with respect to yaw angle rota-

tion. Based on the face bounding boxes output from the first

two stages of our framework, we could train a model using

a dataset with a wide range of in-the-plane and out-of-plane

pose variations for facial landmark localisation. The result-

ing model would cope well with pose variations due to the

property of the training data. However, the accuracy of fa-

cial landmark localisation using a model trained on such

an extreme range of face poses is limited. To mitigate this

problem, we estimate the face pose in each input image for

image pre-processing before the last facial landmark locali-

sation stage.

In the pose estimation stage, we first perform rough fa-

cial landmark localisation by cascading only 2 weak regres-

sors. Then, for a semi-frontal face image, we use two land-

marks (ID-28 and ID-34) to determine its in-the-plane ro-

tation. For a profile face, we use the landmarks with ID-3

and ID-20 to determine the yaw rotation. Once the pose is

estimated, we use this information to apply an appropriate

pose normalisation. We rotate the image when the estimated

pose is larger than 45◦ away from upright for semi-frontal

faces, and flip right-rotated profile face images from right

to left to obtain left-rotated faces. Two examples are shown

in Fig. 3.

Because a semi-frontal face has 68 landmarks and a pro-

file face has only 39 landmarks, we train a separate CSR-

based facial landmark localiser for each of the scenarios.

To prepare the training data for the semi-frontal subset, we

randomly rotate all the training images between [0◦, 360◦].
For the profile subset, we flip each training image from left

to right and randomly rotate it between [−30◦, 30◦]. For

feature extraction, we adopt both HOG and LBP descrip-

tors computed in the neighbourhoods of all the landmarks

of the current shape estimate and concatenate them into a

long vector. In addition, we also extract dense local fea-

tures from the image patch enclosing all the landmarks as

the contextual information, which has also been used in

DAC-CSR [19].

4.4. Facial Landmark Localisation

In the last stage, we perform facial landmark localisation

for the face detected in an input image, using a pre-trained

CSR model. We train separate CSR models for the semi-

frontal and profile subsets, using datasets with limited pose

variations. For the semi-frontal subset, we flip an original

training image and perform random image rotation between

[−30◦, 30◦]. For the profile training faces, we flip all the

right-rotated faces in yaw from right to left to construct a

training set with only left-rotated profile faces. We also per-

form in-the-plane rotation to all the profile faces for data

augmentation. The training and testing phases of these two

CSR models are described in Section 3. To further improve

the robustness of the final localised facial landmarks, we

perform random perturbation to a detected face bounding

box by randomly translating the left-upper and right-bottom

corners inside 5% of the width and height of the bounding

box. We apply a pre-trained CSR to each randomly per-

turbed face bounding box to obtain multiple facial land-

mark localisation results and use the mean as the final re-

sult. In this stage, we cascade 6 weak regressors in a CSR.

For shape-related feature extraction, i.e. f(I, s), we use the

same technique as described in Section 4.3.

It should be noted that, for images that have been rotated

or flipped in the pose estimation stage, the localised facial

landmarks have to be transformed back to their original co-

ordinate systems.

5. Experimental Results

5.1. Implementation Details

To evaluate the performance of our proposed framework,

the 300W and Menpo benchmarks were used [54]2. The

latter one was used in the 2nd facial landmark localisation

competition. For training, the 300W benchmark provides a

number of annotated face datasets including XM2VTS [34],

LFPW [3], HELEN [32] and AFW [59]. For evaluation,

2https://ibug.doc.ic.ac.uk/resources
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(a) 68 points

(b) 51 points

Figure 4. A comparison of our proposed framework with state-

of-the-art methods on the 300W dataset (indoor + outdoor). The

performance was evaluated in terms of the normalised RMS error

over (a) 68 and (b) 51 facial points.

300W provides 300 indoor and 300 outdoor face images.

Each 300W face image has 68 facial landmarks that were

semi-automatically annotated. The Menpo benchmark has

8979 training images (6679 semi-frontal and 2300 profile

faces) and 7281 test images (5335 semi-frontal and 1946

profile faces). For each Menpo semi-frontal/profile face,

68/39 landmarks were annotated.

The 4th face detector and the face bounding box refine-

ment models used in the aggregation stage were trained us-

ing all the training images of the Menpo benchmark. We

used the LFPW, AFW and HELEN datasets and the train-

ing set of the Menpo benchmark for the CSR training in

our pose estimation and facial landmark localisation stages.

To extract HOG and LBP features, the VLFeat toolbox was

used [48].

(a) Semi-frontal

(b) Profile

Figure 5. A comparison between our proposed framework and the

APS method on (a) the semi-frontal, and (b) the profile subsets of

the Menpo benchmark.

5.2. Evaluation on 300W

We first evaluate the accuracy of our proposed frame-

work on the 300W dataset using the protocol of the second

run of the 300W challenge that was completed at the be-

ginning of 2015 [39]. In general, the protocol of a facial

landmark localisation benchmarking dataset provides face

bounding boxes for initialisation. The re-run of the 300W

challenge is the only one that has the same protocol as the

Menpo benchmark, i.e. a participant has to perform face de-

tection and landmark localisation jointly.

We compare our method with all the participants’ ap-

proaches from the second evaluation campaign of the 300W

challenge in terms of accuracy [39]. The evaluation results

are shown in Fig. 4. The proposed framework outperforms

the algorithms of all the participants in the second evalua-

tion campaign of the 300W challenge. Among these algo-

rithms, Deng [12] and Fan [16] are the academia and indus-

try winners of the challenge.

5.3. Evaluation on the Menpo Benchmark

The final facial landmark localisation results on the test

set of the Menpo benchmark are shown in Fig. 5. The fig-

ure compares our proposed framework with the baseline

method, i.e. Viola-Jones face detector and Active Pictorial

Structures (APS) [2].

The proposed framework significantly outperforms the
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(a) Semi-frontal

(b) Profile

Figure 6. Some landmark localisation results of the proposed method on the Menpo benchmark.

baseline method in terms of accuracy. It is clear that the face

detection and bounding box aggregation techniques used in

our approach successfully detected the majority of the test

faces. Moreover, the use of pose estimation and cascaded

shape regression helps to achieve accurate facial landmark

localisation results. Some examples are shown in Fig. 6.

6. Conclusion

We have presented a coarse-to-fine facial landmark lo-

calisation framework for the Menpo benchmark competi-

tion. The proposed framework applied four face detectors

and a bounding box aggregation method for robust and ac-

curate face detection. Then a cascaded shape regression

model trained using a number of training samples with a

wide spectrum of pose variations was used for rough facial

landmark localisation and pose estimation. Last, we rotated

or flipped the test images for accurate facial landmark lo-

calisation using a fine-grained cascaded shape regression

model trained using a face dataset with limited pose vari-

ations.

The experimental results carried out on the 300W and
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Menpo benchmarks demonstrate the superiority of the pro-

posed framework. The key to the success of the proposed

framework is the splitting of the original cascaded shape re-

gression process into a number of coarse-to-fine steps. In

addition, the use of an ensemble of multiple face detectors

greatly improves the accuracy of the face detection step.
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