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Abstract

In this paper, we present a new benchmark (Menpo

benchmark) for facial landmark localisation and sum-

marise the results of the recent competition, so-called

Menpo Challenge, run in conjunction to CVPR 2017. The

Menpo benchmark, contrary to the previous benchmarks

such as 300-W and 300-VW, contains facial images both in

(nearly) frontal, as well as in profile pose (annotated with

a different markup of facial landmarks). Furthermore, we

increase considerably the number of annotated images so

that deep learning algorithms can be robustly applied to the

problem. The results of the Menpo challenge demonstrate

that recent deep learning architectures when trained with

the abundance of data lead to excellent results. Finally, we

discuss directions for future benchmarks in the topic.

1. Introduction

Facial landmark localisation and tracking on im-

ages/videos captured in unconstrained recording conditions

is a problem that has received a lot of attention the past

few years. This is attributed to its numerous applications

in face recognition [41], facial behaviour analysis [19, 18],

lip reading [14, 13], 3D face reconstruction [49, 7, 8] and

face editing [38], just to name a few.

Currently, methodologies that achieve good performance

have been presented in recent top-tier computer vision

conferences (e.g., ICCV, CVPR, ECCV, BMVC, ACCV

etc.). This progress would not be feasible without the ef-

forts made by the scientific community to design and de-

velop both benchmarks with high-quality landmark anno-

tations [34, 33, 6, 28, 52, 26], as well as rigorous proto-

cols for performance assessment. The current benchmarks
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for facial landmark localisation and tracking were presented

in satellite workshop-challenges of ICCV 2013 [34] and

ICCV 2015 [37] (so-called 300-W and 300-VW bench-

marks). The annotated data of 300-W and 300-VW bench-

marks are now used by the majority of scientific and in-

dustrial community [42, 7, 4, 40, 1] for training and testing

facial landmark localisation/tracking algorithms.

Even though the data we provided in 300-W and 300-

VW had large impact in the computer vision community,

there are still several limitations including

• the data have been annotated using only frontal sparse

facial shape,

• annotated test set of 300-W competition is comprised

of 600 facial images only.

Motivated by the above we made a significant step fur-

ther and propose a new comprehensive large-scale bench-

mark, which contains both semi-frontal and profile faces,

annotated with their corresponding facial shape model. Fur-

thermore, we outline the results achieved by the participants

of the challenge. The results demonstrate that for frontal

faces the performance of the methodologies are starting to

converge to an excellent performance. On the other hand for

profile faces there is a considerable space for improvement.

Finally, we provide some suggestions regarding future chal-

lenges on the topic.

2. Menpo Challenge Benchmark

Before presenting the Menpo challenge data we outline

the data provided by the previous challenges, i.e. 300-

W [34, 33] and 300-VW [37]. Then, we discuss about the

aims of the new benchmark and its added value.

The 300-W challenge provides publicly available anno-

tations for over 16,000 images. The “in-the-wild” datasets

that have been annotated were
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Figure 1: Example facial images (left) annotated with a 68 landmark semi-frontal-face markup and (right) annotated with a

39 landmark profile-face markup.

• Labeled Face Parts in the Wild (LFPW) database [6].

Because LFPW provides only the source links to

download the images and not the actual images, only

1035 image were available (out of 1287).

• Helen database [28] which consists of 2330 images

downloaded from the flickr.com web service.

• The Annotated Faces in-the-wild (AFW) [52] database

which consists of 250 images with 468 faces.

• Two new datasets. That is, iBug, which consists of 135

images and the test set of 300-W, which consists of

300 images captured indoors and 300 images captured

outdoors. The 300-W test set was publicly released

with the second version of the competition [33].

In total the 300-W competition provided 4350 “in-the-wild”

images of around 5,000 faces. The faces have been anno-

tated using a 68 landmark frontal face markup scheme that

was also used in Multi-PIE (please see Fig. 1 for an example

of the 68 landmark mark-up used).

The next competition on the topic was held in conjunc-

tion with ICCV 2015 and revolved around facial landmark

tracking “in-the-wild”. The challenge introduced the 300-

VW benchmark [37]. The 300-VW benchmark consists of

114 videos and 218,595 frames. For a recent comparison

of the state-of-the-art in 300-VW the interested reader may

refer to [12]. The 68 frontal face markup scheme was also

used for annotating the faces of this 300-VW benchmark.

The two limitations of the previous challenges 1 were

that they

1Last year another competition was held in conjunction with ECCV

2016 revolving around sparse 3D landmark localisation [25]. Nevertheless,

• contained few faces in extreme poses (e.g. full profile

images); the few images in extreme pose have been

annotated with the mark-up of frontal faces;

• the test was consisting of very few images (around

600).

To alleviate the above limitations we decided to introduce

the Menpo benchmark and, using this benchmark, to intro-

duce a new challenge in conjunction to CVPR 2017.

The Menpo challenge consists of

• Training set: 5658 semi-frontal and 1906 profile facial

images.

• Test set: 5335 frontal and 1946 profile facial images.

The profile facial images have been annotated with a 39 pro-

file landmark scheme (an example is shown in Fig [?]). All

images have been taken from LFW and FDDB databases

and the annotation process was as follows. For semi-frontal

images a semi-automatic process was applied similar to [34]

but now instead of an Active Appearance Model (AAM)

the method we used was the Mnemonic Descent Method

(MDM) [42]. That is, an MDM trained on the 300-W data

was first applied on the data. The output facial landmarks

were inspected and corrected manually and another MDM

was trained with the new annotated data etc. Since, at the

time the data have been annotated no publicly available

datasets of profile faces were available, we had to manually

annotate many images from scratch (around 1,200). Using

it mainly revolved around images that have been either captured in highly

controlled conditions or generated artificially.
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these images a semi-automatic procedure, as above, was ap-

plied for annotating the remaining 2,500 profile images. Fi-

nally, using the landmarks, the faces from each image were

cropped and the cropped facial images were provided for

training and testing.

Another aim of ours was to provide an adequate large

number of facial images so that recent deep learning archi-

tectures such as ResNets [23], VGG series of networks [39]

and Stacked Hourglasses [31] can be robustly trained.

Hence, the participants have access to over 11,000 anno-

tated training semi-frontal faces (300-W and Menpo chal-

lenge training data) and 1,906 annotated profile faces.

3. Summary of Participants

We decided to allow entries in either semi-frontal or pro-

file challenge. In total we had 9 participants to the challenge

of semi-frontal faces and 8 participants to that of profile

faces. In the following, we will briefly describe each par-

ticipating method (we provide an abbreviation based on the

name of the first author of the paper):

• X. Chen: The method in [11] proposed a 4-stage

coarse-to-fine framework to tackle the facial landmark

localisation problem in-the-wild. In the first state

a Convolutional Neural Network (CNN) first trans-

formed the faces into a canonical orientation and then

the first estimate of the landmarks was predicted.

Then, fine-scale refinement was performed using lin-

ear regressors from patches around the landmarks.

• X.-H. Shao: The method in [36] used a CNN to predict

a small set of initial landmarks, but at a latter stage, the

coarse canonical face and the pose were generated by

a Pose Splitting Layer based on the visible basic land-

marks. According to its pose, each canonical state was

distributed to the corresponding branch of the shape re-

gression sub-networks for the detection of all 68 facial

landmarks.

• Z. He: The method in [24] used an ensemble of

networks where each network is a cascade of sub-

networks similar to an MDM [42] to predict the final

shape.

• Z. Feng: The method in [21] used an ensemble of ridge

regressors to predict the final result, separate for the

semi-frontal and profile views.

• J. Yang: The method in [47] used a CNN to remove

similarity transformations from the detected face and

then used a Stacked Hourglass Network [] to regress

directly to the final result.

• M. Kowalski: The method in [27] used a VGG-based

alignment network to correct similarity transforms and

then a fully-convolutional network that regressed to the

final shape.

• A. Zadeh: The method in [48] used a fully-

convolutional model with a CLM-based loss function.

• S. Xiao: The method in [44] used an MDM [42] like

recurrent model with a final refinement linear layer for

each the semi-frontal and profile views.

• W. Wu: The method in [43] used a VGG-16 based

network to regress to a parametric form of the shape of

multiple datasets.

In the first [34] and second [33] runs of 300-W compe-

tition there were very few competing methods that applied

deep learning methods to the problem [20]. The state-of-

the-art at that time was revolving around Constrained Lo-

cal Models (CLMs) [15, 35], feature-based Active Shape

Models (ASMs) [29] and AAMs [3, 2], as well as cascade

regression architectures (e.g., Supervised Descent Meth-

ods, Explicit Shape Regression etc. [45, 5, 16, 10]).

In the 300-VW competition there was no deep learn-

ing entry. The competing methods of 300-VW revolved

around CLMs, cascade regression and Deformable Part-

based Models (DPMs) [52]. Furthermore, the recent state-

of-the-art in 300=W and 300-VW was a neural network

architecture that combined a shallow CNN and a recur-

rent neural network (RNN) (so called Mnemonic Descent

Method [42]) and most recently a combination of a dense

shape regression method plus MDM [22].

The Menpo challenge demonstrates that the landscape

has significantly changed. That is, as can be verified from

the above brief analysis of the techniques, all competing

methods are applying deep learning methodologies to the

problem. This is attributed to the success of the recent deep

architectures such as ResNets [23] and stacked Hourglasses

models [31], as well as to the availability of a large amount

of training data.

4. Competition Results

We allowed participants to compete in either semi-

frontal or profile challenges (i.e., they do not need to sub-

mit in both challenges to be considered eligible). We pro-

vided the training data accompanied by the corresponding

landmark annotations around 30th of January 2017. The

test data were released around 22nd of March 2017 and in-

cluded only the facial images and not the corresponding an-

notations. Furthermore, we provided information regard-

ing which images were considered semi-frontal and profile.

The participants were allowed to submit results (i.e., the fa-

cial landmarks) up until the 31st of March after which the

challenge was considered finished.
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Figure 2: Quantitative results (CED curves) on the test set of the Menpo Benchmark competition for both semi-frontal (left)

and profile (right) results.

Figure 3: Quantitative results (CED curves) on the interior landmarks of the test set of the Menpo Benchmark competition

for both semi-frontal (49-points) (left) and profile (28-points) (right) results.

Evaluation metrics. The standard evaluation metric for

landmark-wise face alignment is the normalised root-mean

square error

ǫ(ŝ, s∗) =
‖ŝ− s

∗‖2
dscale

(1)

where ŝ and s
∗ are the estimated and ground truth shape re-

spectively, ‖.‖2 is the ℓ2 norm and dscale is a normalisation

factor to make the error scale invariant. For the last two face

alignment competitions [34, 33] and most recent works [42]

the inter-ocular distance was used as the normalisation fac-

tor. Unfortunately the inter-ocular distance fails to give a

meaningful localisation metric in the case of profile views

as it becomes a very small value. Instead, we used the face

diagonal as the normalisation factor which is more robust to

changes of the face pose.

Many works on the topic [32] report just the average

of the error in (1). We believe that mean errors, particu-

larly without accompanying standard deviations, are not a

very informative error metric as they can be highly biased

by a low number of very poor fits. Therefore, we provide

our evaluation in the form of CED curves. We have calcu-

lated some further statistics from the CED curves such as

the area-under-the-curve (AUC) (up to error of 0.05), the

failure rate of each method (we consider any fitting with a

point-to-point error greater than 0.05 as a failure), the maxi-

mum error, the median, Median Absolute Deviation (MAD)

and standard deviation (Std). We believe that these are more

representative error metrics for the problem of face align-

ment.

The CED curves for all 68 landmarks for semi-frontal

faces and for all 39 landmarks for profile faces is shown

in Fig. 2. The key statistics of the CED curve for the semi-
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Mean Std Median MAD Max Error AUC0.05 Failure Rate

J. Yang et al. [47] 0.0120 0.0060 0.0107 0.0022 0.1453 0.7624 0.0024

Z. He et al. [24] 0.0139 0.0260 0.0111 0.0023 0.9624 0.7478 0.0096

M. Kowalski et al. [27] 0.0138 0.0157 0.0120 0.0023 0.6312 0.7337 0.0049

Wenyan Wu [43] 0.0135 0.0095 0.0120 0.0024 0.5098 0.7337 0.0036

Xi chen et al. [11] 0.0200 0.0756 0.0120 0.0026 1.2799 0.7290 0.0111

S. Xiao [44] et al. 0.0159 0.0201 0.0133 0.0027 0.6717 0.6986 0.0081

X.-H. Shao et al. [36] 0.0165 0.0235 0.0138 0.0027 0.9612 0.6913 0.0101

Z. Feng et al. [21] 0.0182 0.0179 0.0149 0.0033 0.4661 0.6586 0.0186

A. Zadeh et al. [48] 0.0205 0.0340 0.0143 0.0035 0.9467 0.6479 0.0409

Table 1: Key statistics of the performance of the participants in semi-frontal faces (68-points markup).

Mean Std Median MAD Max Error AUC0.05 Failure Rate

J. Yang et al. [47] 0.0172 0.0105 0.0150 0.0035 0.2490 0.6613 0.0077

Z. He et al. [24] 0.0247 0.0422 0.0179 0.0048 0.6280 0.5932 0.0355

Wenyan Wu [43] 0.0217 0.0131 0.0193 0.0044 0.2623 0.5802 0.0221

Z. Feng et al. [21] 0.0285 0.0367 0.0208 0.0057 0.4725 0.5268 0.0617

S. Xiao [44] et al. 0.0290 0.0417 0.0209 0.0055 0.6327 0.5237 0.0612

A. Zadeh et al. [48] 0.0375 0.0630 0.0241 0.0071 0.7594 0.4604 0.0951

Xi chen et al. [11] 0.0448 0.1162 0.0265 0.0058 1.3698 0.4259 0.0642

X.-H. Shao et al. [36] 0.0451 0.0636 0.0282 0.0088 0.7534 0.3891 0.1608

Table 2: Key statistics of the performance of the participants in profile faces (39-points markup).

frontal faces are summarised in Table 1, while the key statis-

tics for the profile faces are summarised in Table 2. From

the statistics and the curves it is evident that in the category

of semi-frontal faces the first three entries were quite close.

Nevertheless, in the category of the profile faces there was a

clear winner. In both cases the best performing method was

that of [47], which is also the winner of the competition.

As it is customary in landmark evaluation papers we also

provide performance graphs excluding the boundary land-

marks for both the semi-frontal, as well as the profile faces.

The CED curves for the 49 landmarks for semi-frontal faces

and for 28 landmarks for profile faces is shown in Fig. 3.

The key statistics are summarised in Table 3 and Table 4.

5. Comparison with previous Competitions

and State-of-the-art

In this section we will discuss the improvement that can

be potentially achieved by using architectures similar to that

of the winning entry. Since we organised the competition

we could not submit an entry. Nevertheless, we have been

experimenting with hourglass architectures [17]. In partic-

ular, our work in [17] proposes a CNN that is trained for

both the tasks of face detection and landmark localisation.

The first network is trained to produce face proposals, as

well as to estimate a small set of landmarks which are then

used in order to remove the similarity transformation. Fi-

nally, a multi-view Hourglass Model is trained to predict

the response map for all landmarks (both 68 of semi-frontal

mark-up, as well as 39 of the profile mark-up).

A method bearing similarities to ours, independently

proposed in [47], won the challenge. Fig. 4 plots the per-

formance of the best three entries of the competition and

the performance of our methodology in [17] (abbreviated

as Deng et. al. in the Figs. below) in both semi-frontal and

profile faces. The method has similar performance to the

best performing methods in semi-frontal faces. Neverthe-

less, it outperforms the best performing method in profile

faces.

In order to demonstrate the improvement over the previ-

ous state-of-the-art (as submitted in the previous competi-

tions) we run the method in the test sets of 300-W and 300-

VW 2. Fig. 5 plots the competing methods of the second

conduct of 300-W competition and the current state-of-the-

art method published in CVPR 2017 [22]. Our hourglass

network [17] offers large improvement over the state-of-the-

art.

Fig. 6 plots the performance of the first two best per-

forming methods of the 300-VW challenge [37], as well as

2It worth noting that in order to be directly comparable with the results

of 300-W the error has been normalised with the interocular distance and

not with the main face diagonal.
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Mean Std Median MAD Max Error AUC0.05 Failure Rate

J. Yang et al. [47] 0.0097 0.0053 0.0087 0.0017 0.1719 0.8084 0.0022

Z. He et al. [24] 0.0117 0.0253 0.0093 0.0019 0.9520 0.7886 0.0079

Wenyan Wu [43] 0.0113 0.0085 0.0101 0.0019 0.4752 0.7778 0.0024

M. Kowalski et al. [27] 0.0116 0.0147 0.0102 0.0018 0.6720 0.7765 0.0036

Xi chen et al. [11] 0.0174 0.0724 0.0099 0.0021 1.2699 0.7746 0.0096

S. Xiao [44] et al. 0.0132 0.0188 0.0110 0.0022 0.6411 0.7513 0.0066

X.-H. Shao et al. [36] 0.0139 0.0220 0.0115 0.0022 0.9590 0.7420 0.0084

A. Zadeh et al. [48] 0.0162 0.0319 0.0111 0.0026 0.9377 0.7200 0.0204

Z. Feng et al. [21] 0.0159 0.0164 0.0129 0.0029 0.3686 0.7007 0.0161

Table 3: Key statistics of the performance of the participants in semi-frontal faces (49-points markup).

mean std median mad max auc fr

J. Yang et al. [47] 0.0136 0.0093 0.0110 0.0026 0.2162 0.7319 0.0036

Z. He et al. [24] 0.0201 0.0414 0.0132 0.0035 0.6380 0.6778 0.0257

Wenyan Wu [43] 0.0168 0.0109 0.0142 0.0034 0.2252 0.6709 0.0128

S. Xiao [44] et al. 0.0233 0.0416 0.0154 0.0042 0.7073 0.6231 0.0509

Z. Feng et al. [21] 0.0236 0.0361 0.0161 0.0046 0.5141 0.6124 0.0483

A. Zadeh et al. [48] 0.0293 0.0632 0.0157 0.0046 0.8780 0.5990 0.0617

Xi chen et al. [11] 0.0409 0.1181 0.0223 0.0051 1.3809 0.4954 0.0493

X.-H. Shao et al. [36] 0.0388 0.0636 0.0228 0.0079 0.7769 0.4756 0.1223

Table 4: Key statistics of the performance of the participants in semi-frontal faces (28-points markup).

the best performing methods of the recent comparison [12]
3. Again it can be observed that deep learning architectures

based on hourglass greatly improve the state-of-the-art 4.

6. Discussion and conclusions

We have presented a new benchmark for training and

assessing the performance of landmark localisation algo-

rithms in a wide range of poses. The new benchmark offers

a large number of annotated training and test images of both

semi-frontal and profile faces (using different mark-ups).

The state-of-the-art in face landmark localisation five-

six years ago revolved around variations of CLMs, ASMs

, DPMs, and AAMs. Then, with the availability of large

amount of data and descriptive features, such as HoGs, the

state-of-the-art moved towards discriminative methods such

as cascade regression. Cascade regression methodologies

dominated the field for around 3 years. The main bulk of

recent work on cascade regression revolved around how to

partition the search space so that to find good updates for

3The best performing method in [12] was a pipeline combining of a

deep neural network for bounding box tracking (MDNET [30]) or a deep

learning method for face detection (MTCNN [50]), a generic method for

facial landmark localisation [51] and a Kalman filter for smoothing the

output.
4A deep learning architecture that uses a hourglass network also won

the 3D face alignment competition organised in ECCV 2016 [9].

various initialisations [46, 51]. This competition shows that

the landscape of landmark localisation and face alignment

has changed drastically the couple of years. That is, the

current trend in landmark localisation, as in many computer

vision tasks currently, involves the application of elaborate

deep learning architectures to the problem. This was made

feasible due to large availability of training data, as well as

due to recent breakthroughs in deep learning (e.g., residual

learning).

This competition showed that elaborate deep learning

approaches, such as hourglass networks, achieve striking

performance in facial landmark localisation. Furthermore,

such fully convolutional architectures are very robust to ini-

tialisation/cropping of the face (actually they can be used to

perform face detection, as well).

A crucial question that remains to be answered is how far

away are we from solving the problem. From the results it

is evident that large improvement has been achieved during

the past few years. Nevertheless, for 10 to 15% of the im-

ages the performance is still not satisfactory. An interesting

further research on the topic is to perform analysis of the

errors (e.g., are the errors due to occlusion? due to blurring

or poor image quality?).

Arguably, the most interesting question that should be

answered is the following “is the current achieved perfor-

mance good enough?”. Since, face alignment is a means
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Figure 4: Quantitative results for the top-3 performs on the test set of the Menpo Benchmark competition for both semi-frontal

(left) and profile (right) results.

Figure 5: CED curves of the recent state-of-the-art on the test sets, indoor (left) and outdoor (right) of the 300-W benchmark.

to an end the question could have various answers depend-

ing on the application. That is, the current performance

could be satisfactory to conduct image normalisation for

face recognition, but not for the recognition of complex

emotional states or high quality facial motion capture. In

order to answer these questions the community need to de-

velop benchmarks that contain images/videos that can also

be used for other facial analysis tasks.
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