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Abstract

Traditional point tracking algorithms such as the KLT

use local 2D information aggregation for feature detection

and tracking, due to which their performance degrades at

the object boundaries that separate multiple objects. Re-

cently, CoMaL Features have been proposed that handle

such a case. However, they proposed a simple tracking

framework where the points are re-detected in each frame

and matched. This is inefficient and may also lose many

points that are not re-detected in the next frame. We pro-

pose a novel tracking algorithm to accurately and efficiently

track CoMaL points. For this, the level line segment as-

sociated with the CoMaL points is matched to MSER seg-

ments in the next frame using shape-based matching and

the matches are further filtered using texture-based match-

ing. Experiments show improvements over a simple re-

detect-and-match framework as well as KLT in terms of

speed/accuracy on different real-world applications, espe-

cially at the object boundaries.

1. Introduction

Feature Point Detection, Matching and Tracking is an

important problem that has been studied extensively in

the Computer Vision literature and has numerous appli-

cations such as Mosaicing, Object Tracking [33, 35, 8],

Action Recognition [37, 17, 18, 38] and Structure-from-

Motion [1, 5, 25] among others. The Kanade-Lukas-Tomasi

(KLT) [15, 36, 30] tracker is still the most widely used

tracker in the literature even after 30 years due to its ro-

bustness and speed. In KLT, Harris corners [13] are de-

tected in the first frame and are subsequently tracked us-

ing iterative search of the matching image patch around the

detected point using a gradient descent approach. Several

extensions to the original KLT have been proposed. For in-

stance, [3] proposes several variations of the original KLT

algorithm, while [4] improves its efficiency. GPU-based ex-

tensions [31, 39] of KLT have also been proposed to obtain

significant speed-ups over the traditional implementations.

  Frame 1 Frame 2

CASE 1

CASE 2

Figure 1: Case of KLT point tracking failure at the object

boundary due to a large change in the background portion

of the support region.

While KLT has been the state-of-the art for feature point

tracking, other methods have also been proposed [6, 11] and

can be used for Feature Point Detection and Tracking. How-

ever, almost all these methods including the KLT work well

only in the interior of objects and do not perform very well

at the object boundaries. This is due to the consideration of

a full 2D support region around a point for matching which

can be problematic at the object boundaries where the back-

ground portion of the support region can change. This is

illustrated in Figure 1.

There have been other algorithms to address the issue

of varying backgrounds in the boundary regions of objects.

Mikolajczyk et al. [22] use edge-based features and iden-

tify the dominant edge to separate the two regions at the ob-

ject boundary for the problem of Object Recognition. For

the task of Object Tracking, SegTrack [2], Chen et al. [9]

and Oron et al. [24] iteratively build foreground and back-

ground appearance models for robust object tracking. How-

ever, these methods degrade in performance when the object

boundaries dominate the object appearance (as in the case

of thin objects) and require a good initilization to iteratively
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segment the foreground and the background.

The CoMaL Point Detector [26] has been proposed re-

cently, which addresses many of such issues at the Object

oundaries without the need for a good initialization and an

iterative approach. It is based on the idea of level lines that

often separate the foreground from the background and are

fairly robust to illumination changes happening on one side

of the divide. Furthermore, CoMaL Point Matching allows

for matching only one of the two sides of the level line, thus

making it invariant to a change on one side due to a back-

ground change. It has also been observed in the literature

that Maximally Stable Extremal Regions (MSERs) [16], the

seminal work that originally used such level lines for Point

Detection, are quite robust compared to other corner points

since they are invariant to an affine transformation of image

intensities [16, 21], and were also found to be extremely

stable [16] and highly repeatable in many comparative stud-

ies [19, 21].

Although the CoMaL features are very good for

the case of stable Feature Point Detection and Re-

detection/Matching at the Object boundaries, the problem

of tracking in continuous videos remained unaddressed, al-

though this can be done naively by re-detecting all points

in the next frame and matching. However, such an ap-

proach will fail if the corresponding feature point does not

get detected in the next frame. Furthermore, feature point

detection for each frame is an expensive step and reduces

the efficiency of tracking. We propose an alternate algo-

rithm for tracking CoMaL points with several contributions.

First, instead of re-detecting the points again for each frame

which is an expensive step, we search for the corners present

in the previous frame in some given neighborhood. This

makes it not only efficient but also alleviates the problem of

missed corner point detections. Second, in order to do such

a search, we first do a shape-based matching of the level line

segment associated with a given corner point in the neigh-

borhood. Such a matching is done on the MSER boundaries

found in the next image and not on the edge map, which

makes the method quite robust. Third, as in the original

CoMaL work [26], we further filter such matches by doing

an SSD matching on one side of the CoMaL level line. All

these steps are robust to changes on one side of the level line

and yield a method for tracking CoMaL points that works

reliably and efficiently at object boundaries.

We first give a review of the CoMaL Point Detector [26],

which are used as a base for our tracker.

2. The CoMaL Corners

The CoMaL Feature Point Detector [26] identifies cor-

ners on iso-intensity curves or level lines. Such level lines

have been found to be fairly stable under many image trans-

formations and have been used as a base for several Fea-

ture Point detectors such as MSER [16] and CoMaL. They

(a) CoMaL Corner
(b) Support region 
         divided

Figure 2: (a) Example of CoMaL Corner Point(red) and as-

sociated level line(yellow). (b) The support region of the

corner (green box) divided into the regions belonging to the

two objects (foreground and background segments) by it’s

level line segment.

can also be reliably detected at the object boundaries, which

they often trace. The CoMaL Corners are identified as the

points of high curvature on stable portions of long level

lines, i.e., a corner point must satisfy two conditions: (a)

It must lie on a stable level line segment and (b) have a high

“cornerness” value at a given scale. The stability of a level

line segment is inversely proportional to the area between

it’s two neighbouring level line segments and signifies the

motion of the level line upon a certain change in the inten-

sity. The cornerness measure is defined based on the eigen

values of the point distribution centered around the corner

at a particular scale on the level line and large eigen values

in both directions signify a “turn” of the level line at that

point and hence a corner point.

CoMaL points were shown to be more reliable and sta-

ble on the object boundaries compared to other feature point

detectors such as FAST [27], Harris [13], Hessian [20] and

MSER [16], and comparable to them in the interior of ob-

jects in the original CoMaL paper [26]. Also, the paper de-

veloped a reliable approach for matching corners at object

boundaries by dividing the support region of the corner by

the CoMaL level line into two regions, as shown in Figure 2.

By independently matching the two regions, it allows us to

compute a part SSD score by matching only one part of the

support regions of the two corner points. Thus, if there is

a change due to a background change in one of the parts,

it can be neglected. As a result, it allows robust matching

of feature points across images even where the background

may not be fixed. Due to these characteristics of the Co-

MaL Feature Point Detector, such points are quite suitable

for being tracked reliably at the object boundaries. How we

do so is described in the next section.

3. The Tracking Algorithm

The original CoMaL Point Detector paper [26] presents a

method for matching points across frames. This method can
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Frame 1 Frame 2

(a)

(b)

(c)

Figure 3: Three failure cases of CoMaL re-detect-and-

match framework. Corner (red) to be tracked shown in

first frame with associated level line (yellow). Detected cor-

ners (red) shown in second frame with associated level lines

(blue). No matches are found in frame 2 for the corner in

frame 1.

be used for tracking as well by simply re-detecting points in

the next frame and matching to the points in the previous

frame. However, apart from being slow, the re-detect-and-

match method can fail if the corner in the next frame is not

detected at the same position. This can happen if the cor-

responding point in the next frame falls below the corner-

ness threshold due to minor object deformations, illumina-

tion changes or if the corresponding level line segment was

not stable in the next frame. Examples are shown in Fig-

ure 3. As we can see, the CoMaL Detector does not detect

the corresponding corner in the second frame in the three

cases shown. If we look at the cases more closely, corner

detection could have failed if the corresponding level line

segment was not maximally stable or if the corresponding

point was not identified as a corner on the stable level line

segment. Due to such missed points, the given point will

not be tracked correctly in the next frame. Furthermore, this

method is slow due to the high computational cost of point

re-detection. In this section, we describe a more efficient

algorithm for tracking points across frames.

We first try to track the level lines associated with the Co-

MaL corners. The full corner patch cannot be tracked as a

portion of the patch may have changed due to a background

change. Contour matching techniques can be used to track

the level lines segments by matching them with edges in the

search region. However, the problem with this approach is

that they can be over-segmented and broken due to loss of

gradients along some portion of the level line as shown in

Figure 5. Furthermore, the level line segment can match to

edges belonging to multiple level lines in the current image,

which can lead to an erroneous match. To address this is-

sue, we only match the given level line segment with the

individual stable level lines in the current frame, which can

be obtained easily using MSER boundary segments (Fig-

ure 5). Since we know that CoMaL corners lie on stable

level lines, matching the corner’s level line segment with lo-

cally stable level line segments in the next frame is a more

compatible way to match than matching them with edges in

the next frame since we would be searching for only stable

level lines in the current frame that are similar in shape to

the CoMaL level line. In order to account for possible loss

of strength of the level line stability, the stable level lines are

extracted with a lower threshold than is done in the CoMaL

point detector (The detector needs to have a higher thresh-

old so as to not detect weak corners, but we can afford it

since we are only searching for the corner that was already

detected in a previous frame.).

Once the matching stable level lines are shortlisted by

shape matching, the matching points are further verified by

part SSD patch matching (matching only one side of the

level line) as in the CoMaL matcher to screen out any false

matches in the first stage. Our tracking algorithm can thus

be divided into two phases (Figure 4):
1. Shortlisting candidate matches using shape-based

matching of stable level-line matches

2. Verification of filtered candidates using part SSD

Matching

3.1. Shortlisting Candidates using Shape Matching

In order to shortlist candidate matches in the search re-

gion, we first perform an MSER [16] detection in a lo-

cal image patch and find stable local level line segments.

These, individually, form an initial set of target matching

contour segments for the given CoMaL level line. MSERs

are detected in the search window and their boundary seg-

ments are obtained (Figure 6 (c)). (In practice, this step is

speeded up by pre-computing MSERs in local image win-

dows. Then, for each point, we simply select the window

closest to the search window and truncate it to the size

needed.). As explained before, selecting MSER bound-

ary segments as candidates for tracking is more compati-

ble with the CoMaL corner detector compared to directly

using edges because the CoMaL corners lie on level line

segments. Next, we filter out the poorly matching candi-

dates by computing a shape-based matching score between
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(a) Frame 1
Detection

(b) Frame 2
Search window

(c) Initial candidates

MSER 
detection

(d) Matching of individual 
candidates with target shape

Target shape

(e) Filtered
 candidates

(f) Locations 
of matches

Frame 1 support 
region

(h) Part SSD 
matching

(i) Verified 
candidate 

match

(g) Translate the 
target shape to 

matched 
locations

Figure 4: Summary of Tracking Pipeline: We track the corner by tracking the associated level line. (a)-(e) Candidate

shortlisting using shape matching (Section 3.1 ). (f)-(i) Candidate verification using Part SSD Matching (Section 3.2) .

MSER 
detection

Edge detection 

(d) Initial candidates for matching

(a) Search window

(b) Candidate edge map  

(c) Detected MSER boundaries

(vs)

Figure 5: Advantage of matching stable level lines over

matching edges directly: (a) A sample search window. (b)

The corresponding edge map. (c) The detected local MSER

boundaries (each in a different color), (d) Each MSER

boundary is matched individually to a CoMaL level line.

the level line segment of the corner and each candidate, and

reject the candidates which have low matching scores. Note

that this is done individually for each MSER segment sepa-

rately. Note also that the shape of the level line does not typ-

ically change even in the presence of a background change

on one side of the level line, even as the level line might

stride the object boundary. Thus, this step can be done ac-

curately even when the CoMaL point is at an object bound-

ary.

We perform shape-based matching as shown in Fig-

ure 6 (d). We have used Hierarchical Chamfer match-

ing(HCMA) [7] to obtain a matching score between the

candidates and the level line segment of the corner. Other

matching methods could be potentially used in place of

HCMA, depending on the requirements of the tracker, how-

ever, we use HCMA in our implementation because it is ex-

tremely fast and sufficient to obtain reliable matches across

adjacent frames. In HCMA, matching begins at a low res-

olution and only the regions which were not rejected at

lower resolutions are explored at higher resolutions. The

matching score is computed at the highest resolution using

a Chamfer Matching criteria (average distance to the nearest

edge point in the target image).

Most of the incorrect matches are filtered in this step, but

a few matches are often left as shape is not fully discrimi-

native. Also, taking the best match by using only the shape

criteria is sometimes not correct as the shape of the level

line changes sometimes. In order to select the best match,

we next perform a texture-based verification step, the score

of which is taken as the final score for selecting the best

match.

3.2. Match Verification using Part SSD Matching

Given the restricted set of candidates in the search win-

dow, we want to find the candidate that best matches with

the CoMaL corner in the current frame. We perform

texture-based verification to select the best matching can-

didate among the filtered candidates. In our algorithm, we

use part SSD matching [26] to obtain the matching scores

between the candidate MSER boundary segments and the

level line segment of the original CoMaL corner. Part SSD

matching independently matches the two parts of the sup-

port region divided by the level line, leading to four pos-

sible matching combinations for a given pair of candidate

and corner level line segment. The best matching combina-

tion is selected and the corresponding score is reported as

the matching score between the pair. This is vital for track-

ing points on the object boundaries because the background

keeps changing, so only the object portion of the support

region can be reliably matched. As a result, this technique

is better than a straight-forward full patch based SSD at the

object boundaries. Other sophisticated techniques such as

HOG [10], normalized cross-correlation, SIFT [20], etc.

could potentially be used for more generalized matching

scenarios, although they would have to be modified for part

matching, which may not be easy. Also, gradient-based

matching may not be suitable for partial patch matching as
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(a) Frame 1
Detection

(b) Frame 2
Search window (c) Initial candidates

MSER 
detection

(d) Matching of individual 
candidates with target shape

Target shape

(e) Filtered
 candidates

(f) Location 
of matches

Figure 6: Candidates are shortlisted using shape matching.

(a) The corner to be tracked in the first frame. (b) The

search region in the second frame. (c) Initial candidates

obtained using MSER detection. (d) Candidates are indi-

vidually matched using Hierarchical Chamfer Matching to

the target shape to obtain filtered candidates as shown in

(e). (f) The location of the matches in the search window

are indicated in red.

only one side of the level line is used which may be ho-

mogenous. Furthermore, these methods introduce invari-

ances to certain transformations which may not be present

in tracking applications, where there is limited variation

across nearby frames. This can unnecessarily introduce

some false matches. Thus, exact patch matching using SSD

performs better in this scenario and is the basis for the KLT

tracker as well. The score obtained from such part SSD

matching is used to select the best match as shown in Fig-

ure 7. This two-stage selection process enables us to use

both the shape and the texture information of the corner and

its support region for matching and is thus fairly robust.

Our tracking algorithm is also more efficient than the re-

detect-and-match framework. This is because we do not

perform the expensive step of corner detection in every

frame. Also, the part SSD matching algorithm used is more

expensive because 4 independent matches have to be com-

puted for each pair of corners as opposed to only one match

for us (since the side that matches can be kept track of).

Also, we do not do an iterative optimization step for corner

point optimization as in CoMaL point detection (this is not

required as we are only tracking and not finding the corner

afresh), and only do MSER detection once in local image

overlapping patch segments. All this is far less expensive

than full-blown CoMaL corner detection.

(a) Matched 
candidate 
locations

Frame 1 support 
region

(c) Part SSD 
matching

(d) Verified 
candidate 

match

(b) Translate the 
target shape to 

matched locations

Figure 7: Candidate verification using texture based match-

ing. (a) Location of matches of shortlisted candidates

from 3.1. (b) Target shape is translated to the matched loca-

tions and superimposed to obtain the final set of candidates.

(c) The support region from frame 1 and the final candidates

are matched using part SSD matching [26]. (d) The verified

candidate match.

4. Experimental setup and Results

4.1. Baselines

We consider two baseline algorithms for comparisons.

4.1.1 The KLT Tracker

The first baseline we use is the KLT tracker [15], which

has been consistently used in applications such as Action

Recognition [37, 17, 18, 38], Vehicle Tracking [33, 35, 8],

3D Reconstruction [1, 5, 25] in recent literature and is still

the state-of-the-art even though it was proposed in 1981,

suggesting it’s effectiveness on a variety of applications.

As explained in Section 1, KLT may fail to track points on

the object boundaries effectively as it uses the whole patch,

which may not remain stable at the object boundaries. We

used the inverse compositional algorithm implementation of

KLT in our experiments as this was shown to give the best

results in the literature [4].

4.1.2 CoMaL Point Re-detect-and-Match Approach

The second baseline we use is the original CoMaL paper’s

re-detect-and-match approach [26], which was shown to

perform better than other combinations of detectors and de-

scriptors for detection and matching of feature points at the

object boundaries. While such re-detection and matching of

features is essential after every N frames due to lost points

and will be essential in a complete system along with the

tracking approach presented in this paper, this comparison

serves to demonstrate the advantage of our algorithm over

this simple re-detect-and-match strategy using the same de-

tector and matcher. We do not compare our results with

other combinations of feature point detectors and descrip-

tors since the CoMaL points were already shown to be much
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superior to the others for this task. Also, such an approach

does not do as well in general as a tracking approach used

by trackers such as the KLT, which do not rely on a re-

detection step which can miss some points, leading to a

higher error while tracking. Hence, comparisons with these

other re-detect-and-match feature detectors and descriptors

is not provided in this paper and the reader is referred to the

original CoMaL paper [26] for such comparisons.

4.2. The Evaluation Framework

Since our datasets contain only object bounding box in-

formation and not exact point matching data, we generate

the ground truth for point matching similar to [26]. We as-

sume that the relative location of a point w.r.t. the annotated

bounding box remains the same across frames. In order

to account for non-rigidity of the objects and errors in the

bounding box annotations, we allow small amounts of error

between the ground truth location and the predicted match.

The allowance given was 15 pixels in all the datasets. A

common scale value of 8.4 was selected for both the Har-

ris and CoMaL detectors to allow for a fair comparison. A

support region of dimensions 41 × 41 is used. Since the

precision-recall depends on the number of points generated

by a detector using a threshold, we equalize the number

of points generated by the point detectors on the different

datasets. The corner function from MATLAB was used to

obtain the Harris corner points and the quality and sensi-

tivity parameters were varied in order to obtain a varying

number of Harris corner points. Similarly, cornerness and

stability threshold were varied for the CoMaL points as in

the original paper.

Following the evaluation protocol of [26], the matching

accuracy or precision is defined as the ratio of the number

of correct matches to the total number of obtained matches.

Since the number of correct matches varies with the preci-

sion, as in [26], we report the number of correct matches

obtained at a given precision, averaged over all the frames,

to compare our algorithm with the baselines. Our scores

are reported as #matches/precision and a higher number

of matches that are successfully tracked at the same preci-

sion indicate a better tracker. If the total number of original

points detected by the different detectors is the same (which

is not always possible to achieve in practice), this also indi-

cates a higher recall at the same precision. We have chosen

a typical operating precision value of around 0.8 for com-

parisons, although we had to decrease or increase this a bit

to 0.7 or 0.9 for some sequences if the number of points was

too little or too many at 0.8 precision.

4.3. Results

In our experiments, we show results on three different

domains. In the first domain, we test our algorithm on

a dataset for Object Tracking in a controlled setting that

allows us to evaluate in detail the tracking performance

on boundary & non-boundary regions for the different ap-

proaches. Next, we present results on Vehicle Tracking,

which is a more realistic and critical application, but does

not have much object rotation as in the first dataset. We

compare our results with KLT and CoMaL re-detect-and-

match, and show superior performance on the boundaries

of objects when compared to KLT and an overall improve-

ment when compared with CoMaL re-detect-and-match in

almost all cases. This can potentially improve the per-

formance of existing vehicle tracking systems which use

KLT [33, 35, 32]. Finally, we evaluate our algorithm on

the domain of Human Tracking. Using point trajectories

has been a common theme in several Action Recognition

algorithms. We show that the overall performance of our

algorithm is better than KLT on the human tracking dataset.

Thus, our algorithm can potentially improve the perfor-

mance of several Action Recognition algorithms that rely

on the KLT [38, 18, 17, 37, 34].

4.3.1 Object Tracking on the CoMaL Dataset

This is a controlled setting where we evaluate CoMaL

redetect-and-match, KLT and our tracking algorithms on

the dataset provided by the authors of the CoMaL Detec-

tor [26]. Tracking of feature points at the boundaries is dif-

ficult in this dataset due to a large texture in the background

of the objects, leading to a large variation in the support re-

gion of the boundary points. The dataset provides images

for the background in order to perform background subtrac-

tion and obtain the foreground pixels. Thus we can compute

the boundary regions which enables the evaluation the dif-

ferent methods on the boundary and non-boundary regions

separately. Some qualitative results are shown in Figure 8

while Table 1 shows some quantitative results. Our track-

ing algorithm clearly outperforms KLT on the boundary re-

gions as expected. The background portion of the support

region changes very frequently in the CoMaL dataset, due

to which KLT cannot track effectively. However, the tracker

slightly underperforms compared to CoMaL re-detect-and-

match on the boundary regions. We improve over the re-

detect-and-match in the interior regions as expected. We

also observe a slight improvement over KLT in the interior

regions possibly because of the more stable nature of the

level line approach compared to a patch matching approach.

4.3.2 Vehicle Tracking

Next, we evaluate our algorithm on the vehicle tracking

problem. Point tracking has been applied extensively for

this application [14, 23, 25, 29, 33, 35], where KLT [15] is

the most common choice [33, 35, 32, 23, 25]. Vehicle track-

ing has become increasingly important with the impending

advent of autonomous vehicles, traffic surveillance systems,
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CoMaL – Doll sequence CoMaL – House sequence
KLT Tracker

CoMaL –Pens sequence
KLT Tracker

KLT TrackerCoMaL re-detect-and-match

KLT TrackerOur method

Figure 8: Qualitative results on the boundaries for 3 CoMaL

sequences.

Sequence Doll Hero House Toy Pens Race-car

Method Boundary Region

CoMaL TD 80.6/1.0 76.8/1.0 53.0/1.0 55.5/1.0 54.1/1.0 85.7/1.0

KLT 43.2/1.0 40.5/1.0 32.6/1.0 28.5/1.0 22.4/1.0 40.1/1.0

Ours 68.5/1.0 72.2/1.0 40.0/1.0 34.1/1.0 48.7/1.0 73.1/1.0

Method Non-Boundary Region

CoMaL TD 143.0/1.0 201.8/1.0 91.7/0.9 108.8/1.0 70.3/1.0 138.3/1.0

KLT 138.6/1.0 156.2/1.0 178.5/0.9 95.3/1.0 71.9/1.0 136.0/1.0

Ours 203.6/1.0 254.3/1.0 138.2/0.9 142.5/1.0 104.9/1.0 205.2/1.0

Table 1: Results on CoMaL dataset on the boundary and

non-boundary regions.

KLT Tracker

CoMaL re-detect-and-match

Our method

Figure 9: Qualitative results on the boundaries for CarC se-

quence of KITTI dataset.

etc. Since it is possible for vehicles to have uniform surfaces

hindering the use of corners, edges, etc. in the interior of the

vehicle, it is important to fully utilize the boundary infor-

mation of the vehicle for optimum tracking and hence, the

performance of the point trackers at the boundaries is im-

portant (A recent crash of a Tesla car due to a homogeneous

tractor trailer is a relevant case). Also, while learning-based

vehicle tracking algorithms have been fairly successful at

the task of object tracking recently, these algorithms might

fail when the object is not fully visible in the image or if

an object or variations in pose of objects which were un-

seen in the training data are observed in the scene. This ne-

cessitates augmentation of such learning-based approaches

Sequence CarA CarC CarF CarG

Method Boundary Region

KLT 48.4/0.7 52.9/0.8 26.2/0.9 51.7/0.7

CoMaL TBD 76.0/0.8 86.2/0.8 33.9/0.9 64.2/0.7

Ours 75.9/0.7 91.0/0.8 51.8/0.9 71.7/0.7

Method Non-Boundary Region

KLT 174.0/0.7 263.8/0.8 97.9/0.9 168.0/0.7

CoMaL TBD 127.2/0.7 204.0/0.8 33.9/0.9 148.3/0.7

Ours 193.7/0.7 326.7/0.8 141.2/0.9 225.9/0.7

Method Overall

KLT 222.4/0.7 316.8/0.8 124.2/0.9 219.7/0.7

CoMaL TBD 203.2/0.7 290.1/0.8 64.9/0.9 212.6/0.7

Ours 270.4/0.7 417.6/0.8 193.0/0.9 297.6/0.7

Table 2: Boundary, Non-Boundary regions and Overall re-

sults on four sequences of the KITTI dataset.

with conventional feature point-based approaches in order

to make the systems more robust. To test the efficacy of

our tracker, we evaluate the performance on 4 sequences

of the KITTI dataset [12]. The remaining sequences had

relatively low frame-rates which hinder the performance of

any point based tracking algorithm, so we do not report re-

sults on them. In the KITTI dataset, video sequences are

taken from moving vehicles and present realistic scenarios

for autonomous driving. The results obtained are shown in

Table 2. In order to provide a comparison on the bound-

ary and interior regions, we segmented the vehicles in the

4 sequences by manually providing interactive inputs to the

GrabCut [28] algorithm. We obtained a segmentation for

all the frames of the CarA sequence, and only 100 consecu-

tive frames in CarC, CarF and CarG sequences, as this was

a manual effort and hence time-consuming. Our tracking

method outperforms KLT by a significant margin on the

boundaries in all the four sequences. It also slightly im-

proves over CoMaL re-detect-and-match on the boundaries

as well as the interior. Thus, our algorithm works as ex-

pected in the realistic scenario of autonomous driving as

presented by the KITTI dataset. Some qualitative results

are provided in Figure 9.

4.3.3 Human Tracking

Point Tracking has been used extensively in the Action

Recognition community where KLT is again the most popu-

lar choice for obtaining point trajectory-based features [38,

18, 17, 37, 34]. We show the efficacy of our tracker for

the domain of Human Tracking. Results are shown on the

MOT 2016 challenge training video sequences. The dataset

provides ground truth trajectories for the bounding boxes of

humans in the scene in the training set, which we use to gen-

erate the ground truth for point tracking. The sequences are

challenging because the cameras are moving and include

crowded scenes such as shopping malls, busy streets, etc.

Since the frame-rate of the provided sequences was high,

we show variations in the performance of our tracking algo-
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Sequence Frame rate MOT-02 MOT-04 MOT-05 MOT-09 MOT-10 MOT-11 MOT-13

KLT

Original 91.6/0.6 102.0/0.8 715.9/0.7 64.5/0.8 48.8/0.7 531.0/0.8 226.7/0.6
Original

2
97.1/0.6 101.8/0.8 311.0/0.7 45.9/0.8 22.4/0.7 433.5/0.8 184.3/0.6

Original
4

81.9/0.6 92.1/0.8 363.4/0.6 15.8/0.8 7.1/0.7 185.8/0.8 132.4/0.6

Ours

Original 94.8/0.6 191.0/0.8 656.6/0.7 136.0/0.8 83.5/0.8 621.5/0.8 254.2/0.6
Original

2
83.2/0.6 188.7/0.8 443.0/0.7 97.4/0.8 65.7/0.8 495.7/0.8 207.8/0.6

Original
4

67.0/0.6 175.6/0.8 396.3/0.6 55.3/0.8 44.7/0.8 361.5/0.8 153.7/0.6

Table 3: Results on the different sequences of the MOT 2016 training dataset at different frame-rates. Original refers to the

original frame-rate. Original
n

refers to the video sequence sampled at every nth frame.

rithm as the frame rate reduces. For KLT, this can be more

of a challenge as it uses a gradient-descent approach. For

us, this can also reduce the performance since one will have

to search in a larger window, which can increase the running

time, apart from increasing the chances of a wrong match.

As outlined in Section 4.2, we generate the ground truth by

assuming that the relative location of the points w.r.t. the an-

notated bounding box remains the same. Some qualitative

results are shown in Figure 10 while the quantitative results

are shown in Table 3. While we show KLT’s variation in

performance with the frame rates, it may not be a fair com-

parison as the KLT tracker was not designed to work for low

frame rates. Our algorithm outperforms KLT at the original

frame rate on six out of the seven sequences. We can also

observe that our performance does not drop significantly as

the frame rate decreases, which is expected because of our

robust two-stage tracking, although we had to increase the

search window in the case of lower frame rates due to a

higher object motion. Due to unavailability of segmenta-

tion information and infeasibility of annotating the dataset,

we report only the overall results and do not have the bound-

ary and non-boundary classification of the points.

5. Conclusions and Future Work

We have proposed an accurate tracking algorithm for

tracking Feature points on the Object Boundaries. We track

the CoMaL Feature points which are shown to be superior

for detection and matching on object boundaries. This is

achieved by first tracking the level line segment associated

with the corner by matching it with level lines obtained in

the next frame using MSER detection. The level lines are

initially matched using the Hierarchical Chamfer Match-

ing Algorithm to filter out poor matches, and the shortlisted

matches are then verified using Part SSD matching to obtain

the best match. Tracking results on three different scenarios

of Object Tracking, Vehicle Tracking and Human Tracking

show significant improvement in performance at the object

boundaries when compared to the current state-of-the-art

in tracking, i.e. KLT, and also an overall improvement in

performance compared to the CoMaL re-detect-and-match

framework proposed earlier. It is also more efficient than

the CoMaL re-detect-and-match framework.

Our Tracking algorithm

KLT Tracker

Figure 10: Overall tracking results for image patches from

two consecutive frames in the MOT-10 sequence.

Future work includes development of a real-time im-
plementation of the tracker, possibly by utilization of
GPUs.
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