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Abstract

Crowd behaviour analysis continues to be a challenging

task in computer vision, mainly due to the high complex-

ity of the interactions between groups and individuals. This

task is crucial given the magnitude of manual monitoring

required for effective crowd management. Specifically, it

has received a lot of attention among the video surveillance

community to detect potentially dangerous situations and to

prevent overcrowding. Within this context, a key challenge

for research is to conceive a highly generic and fine char-

acterisation of crowd behaviours according to their appear-

ance and motion, given any camera perspective and in any

context. Since current datasets answer only partially to this

problem, a new dataset is generated and labelled accord-

ingly to solve it. This dataset defines a total of 11 crowd

motion patterns and it is composed of over 6000 video se-

quences with an average length of 100 frames per sequence.

In order to establish the first baseline of crowd characteri-

sation on the newly created dataset, an extensive evaluation

on shallow and deep methods is performed. This character-

isation is expected to be useful in multiple crowd analysis

situations. We present a new deep architecture for crowd

characterisation and demonstrate its application in the con-

text of anomaly classification.

1. Introduction

Video-surveillance for crowd monitoring is becoming a

problem of real interest for authorities, especially in big

cities. Lately, more and more cameras are deployed in ur-

ban areas or public gathering spots such as train stations,

airports, etc. All these cameras could provide precious in-

formation for crowd monitoring or abnormal event detec-

tion. Unfortunately, the humongous amount of information

is so complex to analyse that it is exploited very sparsely

for either forensic activities or partial live monitoring. Au-

tomatic processing of such data remains a challenging task
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that must be addressed. State of the art approaches for such

problems have shown that one of the key issues lies in a

proper crowd modelling. Early work focused only on par-

tially modelling crowd behaviour, in order to detect specific

movements such as panic escape, wrong way movement,

etc. More recent approaches target a more exhaustive crowd

behaviour modelling.

Different from a single person, a crowd is a significantly

richer and less structured organism and does not express it-

self as a single entity: its behaviour is not merely the sum

of each of its members individual behaviour, nor one col-

lective will, but an inter-reacting mixture of collective be-

haviour coupled with heterogeneous individual goals. As a

consequence, the variability of the crowd behaviour man-

ifold in the video space is tremendously larger than for a

single person. This multi-modal property of crowds ren-

ders the association between a crowd and a unique crowd

behaviour in a video an ill-posed problem. Finally, the defi-

nition of a crowd itself is rather ambiguous. Up until which

distance and motion similarity individuals are considered to

be together, i.e. belonging to a same group? How to quan-

tify the influence of their behaviour on the crowd dynamics?

This notion of group is strongly linked to the density of the

scene and the definition of a crowd and its elements. All

these properties inherent to crowds make the problem of

crowd behaviour characterisation extremely hard to solve.

Despite this fact, finding such a characterisation would lead

to improvements in multiple crowd analysis problems, for

example crowd anomaly classification.

The contribution of this paper is threefold. First, a new

dataset for fine grained crowd behaviour analysis is pro-

posed. This dataset is substantially larger than existing

datasets trying to solve this paradigm. Second, baseline re-

sults of recent methods for crowd characterisation on the

proposed dataset are provided, one shallow and three deep

approaches are compared. Third, to demonstrate the gener-

icness of the fine-grained characterisation, an application of

deeply learned models is employed in the context of super-

vised anomaly classification.
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1.1. Related work

Crowd analysis comprises various sub-problems and ap-

plications. Works tackling these problems provided not

only interesting approaches to improve crowd analysis and

modelling, but also contributed with compelling datasets to

the public domain. Among these applications can be cited:

a) Counting or density estimation. This problem is

mostly considered from a static perspective; approaches like

[25, 26] use Convolutional Neural Networks (CNN) while

the approach from [10] relies on head detections to perform

the density estimation.

b) Crowd segmentation, which aims at defining crowd

boundaries. Likewise, this problem is considered from a

static perspective, using Fully Convolutional Neural Net-

works (FCNN) in [12].

c) Crowd video context description. This application

proposed by [18,19] aims at classifying videos according to

context information that could be used as tags, and is solved

using deep architectures.

d) Crowd behaviour analysis. Early works on the topic

usually focused on a specific behaviour such as panic move-

ment [14], wrong way displacement [13], violence, etc.

Most of the datasets used have been shot especially for the

specific behaviour which is analysed, therefore, are not fully

representative of what a crowd can look like in everyday life

situations. Furthermore, they are relatively small datasets

and the performances of the derived models are not truly

evocative of their generic nature (see section 1.2 for more

details on existing crowd behaviour datasets). More recent

works [7, 20] tackle the problem of characterising the mo-

tion properties of the crowd to distinguish types of crowd

motion (i.e. bottleneck, laminar mainstream, etc).

Additionally, approaches using CNN’s are knowing a

very recent interest. However, the number of architectures

tackling crowd behaviour analysis is not yet abundant. Two

approaches on crowd attributes can be mentioned: Shao et

al. [18] use a derived version of [21] with custom motion

features deduced from their previous work [20], and [19]

approximate 2D+t analysis with successive 2D CNN’s on

xy, xt and yt slices extracted from a given video. Another

interesting approach that exploits Coherent Recurrent Neu-

ral Networks (CRNN) is introduced in [22], which uses as

input trajectory descriptors.

1.2. Existing datasets and their limitations

Describing precisely the way a crowd behaves is chal-

lenging because, as mentioned before, the variability in

video space is extremely vast. Several datasets have been

proposed to answer this problem.

UMN [2] focuses on a single behaviour, panic move-

ment. It contains only three scenes, each containing few

videos, which is far too restrictive. It also tends to exagger-

ate the behaviour which is to be recognised (i.e. abnormal-

(a) Normal (b) Abnormal

Figure 1: Specific and exaggerated abnormal/normal be-

haviour present in UMN (top) and Violent-Flows (bot-

tom). Similar behaviours are found in the Hockey Fight

and Movies dataset.

Figure 2: Behaviour lacking appearance diversity in MED

(top) or lacking realism in Agoraset (bottom).

(a) Intervened escalator traffic (b) Crowd merge

Figure 3: Image (a.1) is attributed the same class as (a.2)

due to the presence of escalators, albeit being closer to (b)

in terms of behaviour. In CUHK.

ity defined only as an acute singularity: non-smooth change

of the velocity field) (Fig. 1). In spite of presenting a wider

range of crowd behaviours (bottleneck, dispersion, cross-

ing flows, etc), PETS [1] and MED [16] (Fig 2) datasets

also lack of diversity in appearance (with only one or two

scenes) and Agoraset [4] suffers from lack of realism due to

its basic computer-generated textures (Fig 2).

In Violent-Flows [8] and Hockey Fight and Movies [15]
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Figure 4: Samples of a same video, thus of same behaviour

labels, found in the WWW dataset.

datasets, most of the footages come from realistic environ-

ments, videos seem to be issued from mobile phones: the

camera motion is very characteristic, the resolution is lim-

ited and the action variability is restricted. Indeed, it either

consists of few individuals fighting or of far-viewed stadium

crowds (Fig. 1). However, they present events that are par-

ticularly interesting for crowd management system, that is

to know, fighting situations.

CUHK [20] is a compelling dataset and contains many

definitions of how a crowd can evolve. Yet, it suffers from

two main drawbacks. The first one is a small amount of

videos for some classes. For example, the class crowd

merge is formed by only 9 videos of 30 frames, to be dis-

tributed in training and testing sets. This could lead to

a poor modelling of the unbalanced classes. The second

drawback is its class definition itself that is sometimes am-

biguous. As shown in Fig. 3, CUHK tends to preponderate

the spatial context in which the crowd is evolving (e.g. es-

calators) over the actual crowd behaviour. In addition, the

class definition presents many inaccuracies that can be very

detrimental to any learning algorithm requiring precise in-

dexing.

From all existing crowd behaviour datasets, one can con-

clude that: (a) despite their alluring characteristics, datasets

tend to be either unrealistic or (b) rather small in terms

of observed behaviours and quantity of video sequences.

Thus, there is the need to create a larger database from

which complex learning approaches requiring considerably

large amounts of data such as Deep Learning (DL) would

benefit.

To clearly analyse the behaviour of the crowd in any

situation, an exhaustive characterisation of its dynamics is

needed. To that end, we propose a substantial dataset, which

similarly to [20] aims to solve the crowd characterisation

but in a finer manner. This is accomplished by defining a

wide set of classes describing the ways a crowd can evolve

across time, without having any a priori over the people

present in the video nor the area where the action takes place

(context independence).

Label Class names # videos (NVi
)

0 Gas Free 529

1 Gas Jammed 520

2 Laminar Flow 1304

3 Turbulent Flow 892

4 Crossing Flows 763

5 Merging Flow 295

6 Diverging Flow 184

7 Static Calm 737

8 Static Agitated 410

9 Interacting Crowd 248

10 No Crowd 390

Table 2: List of crowd video classes.

Note that while other crowd datasets are large enough

for DL, they are dedicated to solve other problems: density

estimation and counting (Worldexpo’10 Crowd Counting

Dataset [25], UCSD [5], UCF CC 50 [10] which usually

consist of images rather than video sequences and provide

mainly head location), and crowd attributes (WWW [18])

which answers the question Who does What and Where?.

The latter being the largest public crowd dataset, we must

stress that such a classification focuses mainly on provid-

ing context information rather than the actual behaviour.

Even the action attribute corresponding to the What ques-

tion is centred on the main goal of the crowd, which is

deduce solely by the context, rather than on the way the

crowd evolves (moves). For example in Fig. 4, although

very different crowd behaviours are comprised in the video,

they are all associated to the same labels (outdoor, street,

newly-wed, couple, walk). Such an annotation is relevant

for global crowd understanding but not for genuine and pre-

cise crowd behaviour understanding.

2. Proposed Dataset

The proposed dataset intends to define characteristic

crowd motion patterns that are representative of everyday

life behaviour. Because many breakthroughs in computer

vision have recently been achieved thanks to Deep Learn-

ing, a specific motivation while creating this dataset was to

provide a dataset large enough for learning CNN’s, which

are known to be data driven approaches. Hereafter, the pro-

posed dataset will be named Crowd-11 in view of the num-

ber of its classes. A comparison with other datasets in terms

of size and properties is provided on table 1. The major-

ity of the videos in Crowd-11 have been manually selected

and extracted from the web using keywords such as com-

muters, transit crowd, rush time, subway, airport, etc. Some

of the existing datasets have also been partly used (WWW

[18], CUHK [20], Violent-Flows [8], Worldexpo’10 Crowd

Counting Dataset [25], Agoraset [4], PETS [1], UMN [2],

Hockey Fight and Movies [15]).

Several approaches modelling crowd movements use

fluid dynamics descriptions [9]. While this analogy makes
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dataset CUHK Violent-Flows UMN Worldexpo’10 WWW MED Crowd-11

goal behaviour violence behaviour counting attributes behaviour behaviour

# videos 474 246 11 1,132 10,000 31 6,272

# scenes 215 246 3 108 8,257 3 3,005

# frames 60,384 22,074 7,739 3,980 > 8 million 45,000 621,196

resolution multiple 320× 240 320× 240 720× 576 640× 360 640× 480 multiple

Table 1: Comparison between the proposed and the existing datasets for crowd analysis.

sense for high crowd densities as the motion equations of-

ten resemble the two-dimensional Navier-Stokes equations,

crowds with lower densities do not strictly obey viscous

fluid or gas dynamics and a more thorough analysis of

crowd phenomenology is needed. From this partial con-

nection with fluid dynamics and recent representations of

crowd behaviour [20], we construct 11 classes named in ta-

ble 2. We distinguish two types of crowds:

a) Crowds that are dynamic, dense and structured enough

to follow flows, i.e. groups that can be segmented. Note

that unless they cause interference amongst themselves or

are of different behaviour, the number of flows in the scene

is irrelevant to the way the global motion is described.

b) Crowds with no perceivable streams. These crowds

do not form collective groups, individuals act indepen-

dently of the global crowd motion.

For the sake of clarification, we explicit the criteria of

each class, illustrated in Fig. 5. Like in fluid dynamics, a

laminar flow occurs when the individuals of a crowd follow

a smooth stream. The notion of laminarity being inherently

related to the viscosity of the fluid, it can only be applied

to dense crowds, i.e groups in which the individuals have

a very small leeway before disrupting their neighbours and

causing the stream to not flow well. Hence the necessity to

keep a structure and stable velocity field (in magnitude and

direction) over time. Scattered individuals rarely meeting

this criterion as they move independently from each others,

we say nevertheless that they follow a laminar flow when

they follow an easily distinguishable stream which flows

well (i.e. the individuals are not disrupted from their tra-

jectories). On the contrary, a flow that undergoes a distur-

bance is said to be turbulent. A dissimilarity of the velocity

field does not necessarily implies a disturbance (e.g. in an

almost empty corridor, some individuals going faster than

others do not cause a disturbance). Crossing flows are in-

tertwined streams in opposite directions. The streams, too

thin to be individually segmented, form a global stream of

a same orientation but different direction. Merging (diverg-

ing) flows are characterised by a compression (expansion),

e.g. in a bottleneck situation. Such classes can be seen as a

transitive phase between laminar and static (see paragraph

below).

In the following classes, the individuals act too inde-

pendently to form perceivable streams. Gas free refers

Figure 5: Illustration of the proposed classification. The

flows of the first 5 classes are illustrated by a same color.

In gray are represented the individuals that do not belong to

any group. Best viewed in colour.

to very scattered individuals whose rectilinear trajectories

are not disturbed despite the dissimilarity of their veloc-

ity/direction. In gas jammed, the scene is so crowded that

the trajectories of the individuals disturb one another. Two

classes cover the behaviour of static crowds (i.e. no spatial

progression over time in the scene), one with no movement

(crowd waiting or watching) and one with moving individ-

uals (applauding, dancing, etc.). An interacting crowd con-

tains individuals who move towards each others in a vio-

lent and erratic way. An 11th class is added as background,

i.e. void of crowd (can contain nonetheless other dynamic

entities such as cars). As videos sometimes exhibit sev-

eral behaviours in time and space, they were cropped and

trimmed to fit a unique well-defined behaviour for training

purposes. Hence a wide variability of resolutions, ranging

from 220 × 400 to 700 × 1250. To ensure a dataset de-

sign without any assumption on the field of view or on the

context of the scene, several clips of unique behaviour were

often extracted from a same scene.

Sources URLs from which this dataset has been drawn,

as well as annotation over original videos to get the

proposed dataset can be asked by e-mail at crowd11-

dataset@cea.fr.
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3. Learning crowd characterisation

In order to provide the baseline in the proposed dataset,

several state of the art methods have been chosen to be

meticulously evaluated and compared on the Crowd-11

dataset: an ad hoc approach and several variants of three

deep network architectures.

3.1. Chosen approaches

Shao et al. [20] published one of the most recent ad hoc

works on crowd behaviour analysis. However, this method

cannot process static video streams. Indeed, this approach

relies on point trajectories over the crowd and only models

moving groups. This is why their model is not adapted for

the analysis of loitering people, whether they are agitated

or not: trajectories can be extracted but are confused with

noise, and their implementation filters them. As a conse-

quence, “static crowd”, “agitated crowd” and most of the

“no crowd” class cannot be processed with this method.

As mentioned in 1.1 more recent approaches for crowd

characterisation use deep learning techniques to address this

issue. The work of [18] aims to find attributes of crowds that

can be used to infer the main crowd activity in a contextual

manner. The fact that this approach strongly relies on con-

text makes it not directly correlated with our objective, thus,

cannot be compared.

Similar to [20], Su et al. [22] use trajectory descriptors

as input of their CRNN, in contrast to an end-to-end raw

pixels training. Moreover, the model of this architecture is

not freely available yet, thus, this approach has not been

tested on the proposed dataset.

On the other hand, deeply-learned human action recog-

nition is meeting significant progress in recent years, thus,

we chose to investigate how two recent approaches [21, 23]

perform on the proposed dataset. Additionally we propose

a third network architecture. These architectures were de-

signed to process spatio-temporal information, as a conse-

quence, they can also be applied to crowd video analysis.

Multiple declinations of the three architectures have been

learned either by domain adaptation, or by a complete learn-

ing based entirely on the Crowd-11 dataset, results and de-

tailed descriptions are presented in section 3.3. The selected

approaches are:

a) Two-stream architecture [21] which uses a motion fea-

ture, composed of the stack of 10 successive optical flow

images, coupled with a color image to capture the appear-

ance of the scene. Each stream of the network is based on

the VGG architecture. In a late stage the two streams are

fused together by either averaging their scores or concate-

nating them before a final fully connected layer.

b) C3D [23] which consists of a succession of 3D convo-

lutions where the input’s third dimension corresponds to a

temporal stack of images that form a clip. A clip is defined

as a pack of 16 consecutive RGB frames. The network fol-

lows a configuration of five 3D convolution + 3D Pooling

layers, followed by three Fully Connected (FC) layers.

c) V3G is a network specifically proposed to tackle the

crowd behaviour analysis problem. This approach com-

bines the key ideas of C3D [23] and VGG [21] networks

with Batch Normalisation (BN) [17]. The network follows

the VGG network structure with the main differences of us-

ing 3D convolutional layers and the addition of BN layers

after each 3D pooling layer, similarly the three FC layers

are transformed in convolution layers with a size of 1 ∗ 1
and a high dropout ratio (0.8) to avoid over-fitting.

3.2. Technical details

The publicly available code from [20] was used to eval-

uate the performance of their approach in the Crowd-11

dataset. In order make a fair comparison this ad hoc ap-

proach was tested on the subset of valid data remaining after

removing the static classes.

The networks [21,23] were trained using respectively the

publicly available toolbox CAFFE [11] and a modified ver-

sion supporting 3D convolutions [23]. Pre-trained models

on UCF-101 provided by Wang [24] for two-stream model

and on Sports-1M provided by Tran [23] for C3D were

used. V3G network was trained using [3]. Data augmen-

tation was applied (random crops, vertical mirrors and tem-

poral overlaps). Optical flow for [21] is computed using the

Dense Optical Flow algorithm [6] from the OpenCV tool-

box. All networks are optimised using Stochastic Gradient

Descent (SGD).

The Crowd-11 dataset being large enough for holding

out a reasonable portion of it for reliable testing, it is split

into three subsets so as to train the model, perform a cross

validation and a test evaluation. For each class Ci, the test,

train and validation splits consist respectively of m, 0.9 ×

(NCi
−m) and 0.1×(NCi

−m) videos, where m is the fixed

test size for all classes and NCi
is the number of videos

of this class. In this way we prevent an imbalanced class

evaluation. Same-class scenes do not overlap on the three

sets to ensure the effectiveness of the model’s generalisation

capacity. A scene is defined as a specific area viewed with

a specific viewpoint.

3.3. Results and interpretation

Several variants of the two stream architecture have been

tested on Crowd-11, both appearance and motion models

are finetuned from the original model of [21]. Appearance-

based descriptors surpass motion-based ones when learned

independently. Motion entries contain far more informa-

tion (30 channels vs. 3 channels) and are more complex to

treat, generating an increased number of parameters in the

model, thus, being prone to overfitting. Merging the spatial

and temporal information yields to better results, especially
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Variant Per clip accuracy Per video accuracy

Concatenation of RGB and OF 54.8% 56.8%

Average of RBG and OF scores 49.8% 50.7%

RGB 47.5% 49.8%

Optical Flow 27.5% 28.2%

Table 3: Results obtained from the multiple variants of

Two-Stream network on the Crowd-11 database, best per-

formance is presented in bold.

Network Per clip accuracy Per video accuracy

C3D Sports 1M + Finetuning 61.6% 63.7%

V3G UCF-101 + Finetuning 58.0% 59.6%

V3G Crowd-11 57.8% 59.4%

C3D UCF-101 + Finetuning 49.2% 51.3%

C3D Crowd-11 46.9% 47.4%

Table 4: Results obtained with the C3D and V3G Networks

on the Crowd-11 database. Accuracy of the Top-1 predic-

tion.

when the two stream are concatenated on late stages and

then classified using a final fully connected layer, instead

of averaging the scores of both streams individually [21].

This result can be explained, since appearance and motion

are, to a certain extent, correlated information, and simply

averaging scores does not reveal such correlation, whereas

concatenating descriptors and using a last fully connected

layer enable the modelling of such a correlation. Results

are presented in table 3.

For the C3D convolution method two different strate-

gies are employed: first a whole training in the Crowd-11

database and second a finetuning using as weight initialisa-

tion pre-trained models on the Sports-1M [23] or the UCF-

101 datasets. The model learned using only the Crowd-11

data reaches a 46.9% accuracy score, UCF-101 finetuned

model obtains 49.2%, and the Sports-1M finetuned model

rises up to 61.6% in the per clip evaluation. Accuracy

scores are also computed in a per video fashion averaging

overlapped clip scores from the entire video, the results are

47.4%, 51.3% and 63.7% respectively. The confusion ma-

trix of the best C3D architecture is shown in (Fig. 6). Notice

that the network is able to handle both dynamic and static

behaviour.

In the case of the V3G model, since it is first proposed

in this work, we proceeded to first train it on the UCF-101

dataset, then finetune it on Crowd-11 obtaining 58.0% per

clip accuracy and 59.6% per video accuracy. Finally, a ver-

sion entirely trained on the Crowd-11 database reaches a per

clip accuracy of 57.8% and a 59.4% per video accuracy, see

table 4.

Best results are obtained with the C3D Sports-1M fine-

tuned model, however, the deeper network V3G shows sim-

ilar characteristics. Importantly, when trained on the split

1 of the UCF-101 dataset for action recognition, the V3G

network outperforms C3D with 49.9% vs 47.3% accuracy

on the test split of UCF-101. In addition, the V3G model is

faster to train due to the batch normalisation and the reduc-

tion of parameters.

Figure 6: Confusion matrix on the Crowd-11 test set, using

the C3D Sports-1M finetuned model.

When compared to the best C3D finetuned model, two-

stream provides lower results. The intuition behind this re-

sult is a better modelling of action time variation thanks

to the temporal-wise convolution done in the 3D space, a

larger temporal window and an early fusion of appearance

and temporal information that can be efficiently modelled

by the network. Qualitative results of the finetuned C3D

network are shown on Fig. 7.

Figure 7: Results obtained with the finetuned C3D architec-

ture, with top and second class probabilities. Best viewed

electronically.

All of the tested CNN models have no problem recog-

nising other entities, such as cars from persons because the

“no crowd” class contains mainly scenes with moving ve-

hicles and background. This property can be a great asset

as vehicles can have types of motion which can be wrongly

interpreted by trajectory based methods. The weakness of

the 3D networks lies in the classification of transitional be-
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haviour. Indeed, merging dense flows can be easily con-

fused with other dense and/or static crowds as the move-

ment can be extremely slow. The confusion between di-

verging flows and more common flows can be explained by

the fact that those flows do not always present a constant

growth of the velocity field magnitude but rather incremen-

tal changes which are hard to capture over the temporal win-

dows size (10 frames for two-stream and 16 for C3D and

V3G).

Finally, as stated earlier, ad hoc features of [20] have

been evaluated on the Crowd-11 dataset without motionless

classes. In the 8 remaining classes, due to implementation

details, the features could only be generated on 72% of the

test set. This is because of the lack of valid trajectories in

some videos: due to either very far or close viewpoints of

the videos. As a result, only 52% of the full test set was

employed for evaluation of the group descriptors. We com-

pare them with the best C3D model, for a fair comparison,

we present the performances obtained on the same reduced

testing set. Results are shown on Fig. 8 using confusion

matrices.

Figure 8: Confusion matrices of the crowd video classifi-

cation on only dynamic classes. Left: using group descrip-

tors [20], average per video accuracy is 50,0%. Right: using

finetuned C3D model, average per video accuracy is 56,7%.

Apart from the global accuracy which is significantly

higher on the finetuned C3D model, one can notice that

group descriptors fail to classify videos consisting of disor-

ganised trajectories which cannot be clustered (Gas Free),

but are better at distinguishing laminar and turbulent flows

thanks to the group segmentation and modelling of its dy-

namic steps. Table 5 presents a summary of the experi-

ments.

4. Crowd characterisation for anomaly classi-

fication

The main objective of obtaining a fine-grained crowd

characterisation is to be able to analyse how a crowd evolves

across time. Here we show how the models learned on the

Method Per clip accuracy Per video accuracy

Group Profiling Descriptors * - 50.0%

Two-stream OF + RGB concatenation 54.8% 56.8%

V3G UCF-101 + Finetune 58.0% 59.6%

C3D Sports-1M + Finetune 61.6% 63.7%

Table 5: Accuracy of state-of-the-art ad hoc and neural net-

work methods on the test set of the Crowd-11 database.

Note: group descriptors were only evaluated on 52% of the

test set, see technical details in section 3.2.

Crowd-11 dataset using deep architectures can be easily re-

purposed for specific applications. In this case we employ

two models to perform anomaly classification. As men-

tioned in 1.2, the MED dataset is not well suited for learn-

ing a crowd characterisation, moreover, it was designed to

be a common ground for benchmarking anomaly classifica-

tion [16]. This dataset consists of five behaviours: panic,

fight, congestion, obstacle (abnormal object) and neutral.

The V3G trained on Crowd-11 and the finetuned C3D

Sports-1M models are used to generate features issued from

the FC7 and FC8 layers on the MED dataset. Then, fol-

lowing the experimental set-up of [16] the leave-one-out

strategy is carried out to learn k-folds linear Support Vec-

tor Machines (SVM). However, the dictionary creation and

the quantification steps are omitted since the features issued

by the CNN’s are of a fixed size and of a higher hierarchi-

cal level than the features used in [16]. Table 6 presents the

evaluation results.

Panic Fight Congestion Obstacle Neutral MeanAcc

V3G-FC7 80.72% 37.41% 31.18% 47.25% 71.35% 53.58%

C3D-FC7 84.72% 32.93% 16.16% 29.61% 92.69% 51.22%

MED 74.82% 30.47% 23.48% 27.94% 36.88% 38.71%

V3G-FC8 53.23% 29.89% 27.32% 42.35% 32.16% 36.99%

C3D-FC8 57.32% 25.89% 17.22% 25.51% 46.64% 34.50%

Table 6: Results of the anomaly classification on the MED

database, best results are presented in bold

For both of the CNN’s can be observed that features is-

sued from the FC8 layer generate slightly lower results than

the approach from [16], while the best FC7 features produce

better results. The performance discrepancy between the

FC7 and FC8 features can be attributed to their complexity:

while the FC8 feature is a compact signature of dimension

11, the feature FC7 resides in a larger feature space of di-

mension 4096, and therefore, is expected to preserve more

detailed information. Best accuracy is obtained using the

V3G FC7 features, performing consistently across the five

behaviours and outperforming the method proposed in [16],

we assume this behaviour is strongly linked to the training

of the characterisation model being done purely on crowd

videos.

When compared with the original method proposed in

[16] the V3G features are not only largely better at de-
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tecting normal behaviour, but also at identifying better the

abnormal situations. Moreover, the method performs sub-

optimally in two out of five classes: fight and congestion.

This detriment on the classification can be explained from

the high overlap in terms of both appearance and motion

between the two classes. Genericness of the models learned

from Crowd-11 can be observed in this application where

features are directly employed to perform the classification

of anomalies.

5. Conclusion

Fine grained crowd behaviour analysis is a challeng-

ing task. Deep supervised machine learning approaches

not only need immense quantities of videos, but also ac-

curate class definition. For this reason, we built a new

dataset defining 11 classes that depict how a crowd can

evolve across time within a video scene. Furthermore,

we show that this problem can be encouragingly tackled

with Spatio-temporal Convolutional Neural Networks. Spe-

cially, architectures that deal straightly with temporal stacks

of raw pixels as inputs such as C3D deliver the best perfor-

mance. A new spatio-temporal CNN, has been presented:

the V3G model which shows potentially good results at

crowd characterisation. Lastly, we have shown how this

fine-grained characterisation can be employed to classify

anomalies yielding to interesting results. Further improve-

ments will be done to improve the crowd characterisation,

i.e. coupling the existent solution to RNN to cover a longer

and variable temporal observation window.
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