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Abstract

Surgical workflow in minimally invasive interventions

like laparoscopy can be modeled with the aid of tool us-

age information. The video stream available during surgery

primarily for viewing the surgical site using an endoscope

can be leveraged for this purpose without the need for addi-

tional sensors or instruments. We propose a method which

learns to detect the tool presence in laparoscopy videos by

leveraging the temporal connectionist information in a sys-

tematically executed surgical procedures by learning the

long and short order relationships between higher abstrac-

tions of the spatial visual features extracted from the surgi-

cal video. We propose a framework consisting of using Con-

volutional Neural Networks for extracting the visual fea-

tures and Long Short-Term Memory network to encode the

temporal information. The proposed framework has been

experimentally verified using a publicly available dataset

consisting of 10 training and 5 testing annotated videos to

obtain an average accuracy of 88.75% in detecting the tools

present.

1. Introduction

Laparoscopy or key hole surgical procedures are prac-

ticed widely in the clinics owing to lower patient discomfort

and a faster post-surgical recovery time. Lack of direct ac-

cess to the surgical site, indirect mode of visualizing the site

using an endoscope, restricted freedom of movement of the

tools and the very nature of the tools used, makes the pro-

cedure challenging. Developing context-aware smart sys-

tems to aid the surgeon requires information regarding the

tool usage along with other pathological and anatomical in-

formation. This paper presents a framework for automatic

detection of tools being used at each instance of a surgery

using the video stream recorded during the surgery. The

proposed framework does not require markers or sensors for

detection of tool usage. Tool usage information can be fur-

Figure 1. Overview of the proposed method.

ther used for modeling the surgical workflow and evaluation

of surgical skill. The overview of the proposed framework

is presented in Fig. 1

Challenges: In laparoscopy video, the tools often ap-

pear occluded which renders the task of identifying them

challenging. Another major challenge is the mobile nature

of the imaging device which contributes to motion artifacts.

Additionally, the dynamically changing nature of illumina-

tion used during surgery and the lack of background texture

due to smooth tissue surfaces also causes specular reflec-

tions which are comparable to the appearance of the metal-
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(a) Grasper (b) Bipolar (c) Hook (d) Clipper (e) Scissors (f) Irrigator (g) Specimen Bag

Figure 2. The seven types of tools used for performing various surgical tasks in the video viz., (a) Grasper, (b) Bipolar, (c) Hook, (d)

Clipper, (e) Scissors, (f) Irrigator and (g) Specimen bag.

lic surface of the tools used.

Approch: The appearance of surgical tools are quite

different from the visual appearance of internal structures

of the human body. Visual features which captures these

differences can be leveraged for the detection of tools. In

the proposed framework, a Convolutional Neural Network

(CNN) [9] which is capable of learning the high level visual

representation in images is used to extract visual features

from the frames of the surgical video. Since the spatial fea-

tures extracted using the CNN do not incorporate the tem-

poral information, they fail to learn connectionism across

neighboring frames. The various procedures in a surgery

are almost always executed methodically and use an or-

der of tools depending on the expertise of the surgeon and

the complications that may arise during the surgery. Thus,

the temporal information being vital for accurate detection

of tool presence, we also train a long short-term memory

(LSTM) [5] on the extracted spatial features of the video se-

quence to capture the temporal connectionism across deep

residual visual features and thereby increase the accuracy in

prediction.

This paper is organized as follows. The existing tech-

niques for detection of surgical tool usage is briefly de-

scribed in Sec. 2. The challenge at hand is formally defined

in Sec. 3 . The methodology is explained in Sec. 4 . The

experiments are detailed with the results in Sec. 5. Sec. 6

discusses the results obtained. The conclusion is presented

in Sec. 7

2. Prior Art

Some of the initial efforts on detection and tracking of

tools in minimally invasive surgery focused on physically

tagging the tools with additional sensors to track their us-

age. Typically, pattern tags [2], color tags [16, 13], LED

[8] and RFID tags [10] are used as markers. These meth-

ods require physical modification of the existing operating

instrument and set up, which involves integration of mark-

ers to the tools thereby making them bulkier. Also instal-

lation of additional sensors to detect these markers tends to

hamper degree of flexibility required by the surgeon. Im-

age processing based techniques for tool detection which

operate on the video recorded using the endoscope during

the surgery eliminates the need for additional markers or

sensors. Sznitman et al. [15] had proposed an instrument-

part detector based on gradient boosted regression trees

for detecting tools in minimally invasive surgery. Tem-

plate matching based localization and estimation of pose

of surgical tools was proposed by Reiter et al. [11]. Im-

age processing techniques like k-means clustering [12] and

Kalman filtering have also been used for localization and

tracking of tools in surgical video. Twinanda et al. [17]

have used convolutional neural network and hidden markov

model (HMM) for detecting tools in laparoscopy videos.

These methods either either require integration of addi-

tional hardware to the existing operating room set up which

reduces the degree of flexibility, or requires initialization of

the tool tracker in the initial frame of the video. Also, these

methods does not use temporal similarity across frames on

a local scale for detection of tool presence.

3. Problem Statement

The surgical procedures involved in a laparoscopy

surgery are performed using multiple tools. Under a typ-

ical scenario, they consist of grasper, bipolar, hook, clip-

per, scissors, irrigator and specimen bag which are shown

in Fig. 2. Thus, each frame in the video recording of such

surgeries may contain multiple tools up to three such as

shown in Fig. 3, whose presence is to be detected. The

problem of multiple tool presence detection in the video of

certain laparoscopy surgery performed using a set of tools

T = {t1, t2, . . . , tn} can be therefore formally defined as

a multi-label multi-class classification task where in each

frame f in the video we have to detect the set of tools Tf

which are present in the frame out of the total set of tools T

being used in the procedure.

(a) Two tools (Grasper and bipolar) (b) Three tools (Two graspers and

scissors)

Figure 3. Sample frames from the dataset showing simultaneous

presence of (a) two tools and (b) three tools.
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4. Exposition to the Solution

We propose a solution using CNN and LSTM which

utilizes both spatial visual abstractions and their temporal

connectionism in surgical videos. CNNs have been suc-

cessfully used in image recognition tasks and are used here

for extracting spatial visual features to aid the multi-label

multi-class tool presence detection task by means of trans-

fer learning. The features extracted by the CNN are then

used to train an LSTM to accurately detect the tool presence

by incorporating the temporal dimension of information.

4.1. CNN for multiple tool detection

Training a deep CNN architecture from start for detect-

ing tools in surgical video is challenged by the limited avail-

ability of annotated surgical data and also by limited vi-

sual variations. Therefore, we use CNN architectures pre-

trained on the large dataset like ImageNet for Large Scale

Visual Recognition Challenge (ILSVRC) [3]. The classi-

fier layer in the pre-trained CNNs is replaced and the en-

tire network is then fine-tuned on the task specific dataset

with fewer annotated data to learn visual features that dif-

ferentiates the appearance of the surgical tools from the

background. We have used ResNet-50 [4] in our proposed

method. The framework for extracting visual attributes used

is shown in Fig. 4. Frames of size 224 × 224px are pro-

vided as input to CNN and the features from the last convo-

lutional layer of ResNet-50 is flattened to obtain a feature of

length 2, 048. The network is then augmented with a fully-

connected layer of length 8 and a log-sigmoid classification

layer with transfer function defined as,

f(x) = log

{
1

1 + exp(−x)

}
(1)

where x is the input to the layer. Unlike the soft-max classi-

fier which is typically used for the single-label classification

task, the log-sigmoid layer allows assigning of multiple la-

bels to an image.

Figure 4. Architecture of the network used.

The CNN is trained using a multi-label multi-class loss

based on binary cross-entropy defined accordingly,

L(x,y) =
−1

N

N∑

i=1

[
y(i) log

{
exp(x(i))

1 + exp(x(i))

}

+(1− y(i)) log

{
1

1 + exp(x(i))

}] (2)

where, x(i) is the prediction for each class, y is the bi-

nary ground-truth annotation for tool presence with y(i) ∈
{0, 1} and N is the number of classes.

4.2. LSTM for tool detection in video sequence

The features learned by last layer of the CNN before

the classification layer is used to train a deep LSTM net-

work. In order to capture the temporal redundancies across

the spatial visual features across neighboring frames fed se-

quentially to the network we stack three LSTM blocks. A

soft-sign layer is added at the end of the network as shown

in Fig.5. Each LSTM network is a vanilla-LSTM [5] com-

prising of three gates viz., input gate, forget gate and output

gate and no peephole connections. The output of the in-

put gate it, forget gate ft, cell state Ct, output gate ot and

hidden state ht at instance t is given as,

it = σ(Wi[ht−1,xt] + bi) (3)

ft = σ(Wf [ht−1,xt] + bf ) (4)

C̃t = tanh(WCxt) +WCht−1 + bC (5)

Ct = ftCt−1 + itC̃t (6)

ot = σ(Wo[ht−1,xt] + bo) (7)

ht = ot ⊙ tanh(Ct) (8)

where, σ(·) is the sigmoid function, Wi,Wf ,Wo,WC are

the weights corresponding to the gates and the states, ht−1

is the hidden state at previous time instance, xt is the in-

put at current instance, bi,bf ,bo,bC are the biases corre-

sponding to the gates and the states and C̃t is the new cell

state value that can be added to Ct.

Figure 5. Architecture of the stacked LSTM network used for tool

detection in surgical videos.

The input to the deep LSTM network is a sequence of

visual features from 10 sequential frames from the video.

These visual features are extracted by the network de-

tailed in Sec. 4.1. The number of hidden states in each

of the LSTM modules are 512, 128 and 8, where the
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number of states is progressively reduced with depth. As

shown in Fig. 5, each LSTM network is followed by norm-

stabilization [7]. It regularizes the hidden states of the

LSTM by minimizing the difference between the L2 norm

of hidden states at consecutive steps. The cost function used

here is defined as,

L = β
1

T

T∑

t=1

(‖ht‖2 − ‖ht−1‖2)
2 (9)

where, ht is the hidden state at time step t and β is the

hyper-parameter controlling the amount of regularization.

In the last layer of the deep network, softsign [1] transfer

defined as below is applied on the output of the LSTM.

softsign(x) =
x

1 + |x|
(10)

where, x is the input. The network is trained using the

multi-label multi-class loss described in (2).

5. Experiments and Results

5.1. Dataset description

The proposed method is experimentally verified on the

m2ccai16-tool1 dataset. The dataset comprises of 15 la-

paroscopy videos (including 10 training and 5 testing sets)

of cholecystectomy procedures and the tool class binary

annotation for tool presence in every 25th of the videos

recorded at 25fps. Fig. 2 shows the seven types of tools that

were used in these videos while performing various surgical

tasks.

In the videos provided in the dataset, it was observed

that during the initial stage of the procedure when the sur-

geon is preparing for the surgery and the final stage when

the surgeon is withdrawing the endoscope from the inci-

sion, no tools appear in the frame as shown in Fig. 7(a) and

Fig. 7(b) respectively. Therefore, we consider an additional

class in the multi-label multi-class classification problem

which corresponds to no tool being present in the frame so

as to decrease the false positive detections.

(a) Start of surgery with no tool (b) End of the surgery with no tool

Figure 7. Sample frames from a video without any tool present.

1http://camma.u-strasbg.fr/datasets

5.2. Compensating class imbalance

The various surgical tasks in the cholecystectomy proce-

dure are characterized by the usage of certain set of tools.

Due to varying duration of these tasks, certain tools occur

more frequently across all the videos resulting in severe

class imbalance in the dataset as shown in Fig. 6(a). The

figure graphically illustrates the proportion of each tool and

their combination present in the dataset. Sections connected

to a single tool indicates the number of frames in which

the tool is present by itself and strips joining two different

tools indicates the number of frames in which they occur

together. This includes frames with two as well as three

tools.

In order to compensate for this imbalance we methodi-

cally extract frames from the videos such that the number

of frames containing each of the tools are approximately

same. Since the annotation in the dataset is provided at 1fps

while the actual video is recorded at 25fps, the class imbal-

ance can be compensated by considering the frames which

are not annotated and interpolating the existing annotation

to these frames. As an example, there are 411 annotated

frames in the training set that contain scissors. We balance

the data for this class by extracting the intermediate frames

between the annotated frames. Data augmentation by flip-

ping the frames from left to right, top to bottom and their

combination is also done when required to balance the data

for a class. Exactly equal proportion could not be achieved

due to co-occurance of various tools. Tab. 2 shows the num-

ber of annotated frames containing each of the tool in the

raw training data and the class-balanced training data. The

proportion of occurrence of various tools and their com-

binations in the balanced data is graphically illustrated in

Fig. 6(b).

Tool Raw data Balanced data

No tool 2,749 14,321

Grasper 10,967 14,342

Bipolar 635 14,327

Hook 14,130 14,110

Scissors 411 13,449

Clipper 878 13,928

Irrigator 953 14,231

Specimen bag 1,504 14,495

Table 2. Comparison of number of frames containing each class of

tool in the raw training data and balanced training data.

5.3. Training parameters

The CNN detailed in Sec. 4.1 is trained on the class bal-

anced data with a learning rate 1× 10−4, weight decay pa-

rameter 1 × 10−4, momentum 0.9 and batch size 64. The

network is optimized using stochastic gradient descent al-

gorithm (SGD).
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(a) Raw data (b) Balanced training data

Figure 6. Proportion of occurrence of the different tools in (a) raw and (b) balanced training data.

Baseline Description Train. time

per epoch

(min)

Test. time per

frame (ms)

BL1 Modified (multi-label multi-class) AlexNet[6] 18.00 0.40

BL2 Modified (multi-label multi-class) AlexNet[6] (BL1) + LSTM 18.33 1.34

BL3 Modified (multi-label multi-class) GoogLeNet[14] 23.00 0.94

BL4 Modified (multi-label multi-class) GoogLeNet[14] (BL3) + LSTM 23.17 1.20

BL5 Modified (multi-label multi-class) ResNet-50[4] 35.00 1.95

Proposed

Method

Modified (multi-label multi-class) ResNet-50[4] (BL5) + LSTM 35.30 2.42

Table 1. Baselines for performance comparison.

5.4. Baselines

To evaluate the performance of the proposed method, we

have considered six baselines (BL) for comparison as sum-

marized in Tab. 1.

5.5. Implementation

The proposed method was implemented and evaluated

using Torch2 and accelerated with CUDA 8.1 3 and cuDNN

5.14 on Ubuntu 14.04 LTS OS. The networks were trained

on a system with 3×GTX TitanX GPU each with 12GB

RAM, 2×Intel Xeon E5 2620 v3 processor and 176 GB

of RAM. The codes used for implementing the framework

is available at https://github.com/kaustuv293/

Tool-Detection. The time taken for training and test-

ing is also summarized in Tab. 1. We have trained the

2http://torch.ch/
3https://developer.nvidia.com/cuda-downloads
4https://developer.nvidia.com/cudnn

CNN models (BL1, BL3 and BL5) for 2,000 epochs and

the LSTM for adjuncted models (BL2, BL4 and proposed

framework) for 2,000 epochs.

5.6. Results

With baselines BL2, BL4 and proposed framework, we

experimented on the depth of the stacked LSTM network

and the length of the sequence fed into the LSTM. We have

evaluated the performance for the baselines with 2, 3 and 4

stacked LSTM networks and sequence lengths of 3, 5, 10,

and 50. The performance of BL2 with the different depths

of the network and sequence length is shown in Fig. 9(a).

Performance of BL4 is shown in Fig. 9(b). Performance

of proposed framework is shown in Fig. 9(c). Performance

comparison of BL1, BL3 and BL5 with the best performing

configuration of BL2 and BL4 and the proposed method is

shown in Fig. 8. The error in the prediction for each frame

of one of the test video is graphically illustrated in Fig. 10.
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(a) Performance of BL2

(b) Performance of BL4

(c) Performance of proposed method

Figure 9. Performance of BL2, BL4 and proposed method with different depth and sequence lengths. The best performing configuration is

marked with a red box in each case.
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Figure 10. Error in the prediction for each frame on one of the test videos no. 11.

(a) Frame no. 1776 (b) Frame no. 1777 (c) Frame no. 1778 (d) Frame no. 1779 (e) Frame no. 1780

(f) Frame no. 2273 (g) Frame no. 2274 (h) Frame no. 2275 (i) Frame no. 2276 (j) Frame no. 2277

Figure 11. Transitions in the video causing causes errors in tool detection as in observed in (a)-(e) corresponding to BL1 and BL2 in Fig. 10

and for (f)-(j) corresponding to BL5 and Proposed method in Fig. 10.

Figure 8. Performance of BL1, BL2, BL3, BL4, BL5 and pro-

posed method.

Video demonstrating the predictions on a test video clip can

be viewed at https://youtu.be/IyXc5F78ZU4.

6. Discussion

As can be seen from Fig. 6(a), the occurrence of vari-

ous tools in the videos of the dataset is heavily unbalanced.

Out of the seven tools and their combinations, hook and

hook-grasper combination occurs the most number of times.

Whereas, scissors and bipolar occur scarcely. Training the

network on such an unbalanced data results in the network

getting biased to the tool or tool combination having max-

imum rate of occurrence. When trained of the balanced

training data graphically illustrated in Fig. 6(b) the network

learns to detect tool presence with significant accuracy as

presented in Sec. 5.6.

It is observed that learning of temporal connectionism

decreased the local error in detection of tool presence. The
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red boxes in Fig. 10 in BL1 and BL5 are centered at frames

1,778 (Fig. 11(c)) and 2,275 (Fig. 11(h)) respectively. In

these frames, either a new tool is being is introduced or there

is a significant shift in the position of the tools. These tran-

sitions result in erroneous detection. With the introduction

of temporal learning in BL2 and proposed method, it can

been seen in that the error decreased considerably for these

frames. The sequence of frames preceding and succeeding

the transitional frames are shown in Fig. 11 for more clarity.

The proposed method can be broken down into two

stages. Where in stage one, a CNN is trained to detect tool

presence in the frames of a surgical video. In stage two,

the features learned by the CNN in the first stage is used to

learn a temporal model using LSTM for tool presence de-

tection. It is observed that the accuracy of detection for the

stage two (BL2, BL4 and proposed method ) surpasses that

of stage one(BL1, BL3 and BL5). This can be attributed to

the fact that in stage one, tool detection is performed on in-

dividual frames of the video without considering the infor-

mation contained in the previous frames which could lead

to incorrect out of context detections. On the other hand, the

temporal learning in the stage two processes a sequence of

frames for detecting tool presence in one frame of the video

thereby decreasing chances of false detections.

7. Conclusion

We have presented a framework for automated tool pres-

ence detection in laparoscopy videos which can aid in sur-

gical workflow modeling. In the proposed method, a deep

LSTM network presented in Sec. 4.2 is trained to detect

tool presence in surgical videos using spatial visual fea-

tures extracted from the frames using a CNN trained on

ILSVRC [3] followed by fine-tuning on a publicly available

laparoscopy video dataset. The performance of the pro-

posed framework is experimentally verified by comparing

with a set of baselines. It is observed that our framework,

and specifically the proposed method using deep residual

spatial attributes of the images and learning with temporal

connectionism with LSTM outperforms the different base-

lines in terms of detecting the tool presence end with high

accuracy of {87.21%, 65.73%, 98.02%, 66.14%, 98.93%,

98.06%, 98.8% and 97.34%}for the tools classes {No tool,

Grasper, Bipolar, Hook, Scissors, Clipper, Irrigator, Speci-

men bag} and average tool detection accuracy of 88.75%.
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