
   

 

 

Abstract 

 

We present a novel on-board perception system for 

collision avoidance by micro air vehicles (MAV). An 

egocentric cylindrical representation is utilized to model 

the world using forward-looking stereo vision. This 

efficient representation enables a 360
o
 field of regard, as 

the vehicle moves around and disparity maps are fused 

temporally on the cylindrical map. For this purpose, we 

developed a new Gaussian Mixture Models-based 

disparity image fusion algorithm, with an extension to 

handle independently moving objects (IMO). The 

extension improves scene models in case of moving 

objects, where standard temporal fusion approaches 

cannot detect movers and introduce errors in world 

models due to the common static scene assumption. The 

on-board implementation of the vision pipeline provides 

disparity maps on a 360
o
 egocentric cylindrical surface at 

10 Hz. The perception output is used in our system by 

real-time motion planning with collision avoidance on the 

MAV. 

    

1. Introduction 

On-board obstacle detection and avoidance is essential 

for autonomous vehicle navigation. This is particularly 

challenging for small micro aerial vehicles (MAVs) that 

have limited payload and power budget. Vision-based 

approaches using compact cameras are good alternatives 

in this context.  

There are several fundamental requirements for vision 

systems for obstacle avoidance. The extracted model 

should be sufficiently dense and accurate with a wide 

depth range to handle near and far objects. The model 

should be stable and consistent as the vehicles moves 

around and IMOs should be detected. Finally, a 

sufficiently high frame rate is required to enable real time 

control of the vehicle. Stereo matching is a common 

technique that addresses these constraints by providing 

dense depth maps of a scene using passive stereo cameras.  

 
Figure 1: Top row: three frames from left camera of a stereo pair. 

Middle row: corresponding disparity maps via stereo matching. 

Last row: temporal fusion with rigid-static scene assumption.  

 

It works well both indoors and outdoors, which is an 

advantage over comparably small active depth sensors. 

The depth range is adjustable via the baseline of the stereo 

cameras and the resolution of the images; fast, compact 

implementations of stereo matching are now available and 

are progressing rapidly.  

Stereo matching algorithms with low computational 

complexity provide depth maps for each frame 

individually. Therefore, obstacle detection errors are 

inevitable, due to environmental factors and stereo 

matching errors. The obstacle avoidance system is prone 

to errors if these techniques are applied without temporal 

fusion of the dense depth maps. In the robotics literature, 

occupancy grid and voxel data structures have been 

standard approaches [1]-[3] for temporal fusion in 3D 

space. These techniques are specifically designed for 

generating accurate maps of the environment that could be 

much more complex than is necessary for obstacle 

avoidance. Image space representations can be an efficient 

alternative, as proposed in [4]-[7]. Temporal fusion in 

image space has potential to reduce stereo depth map 

errors and extend the depth range at lower computational 

cost [8]-[10], particularly for reactive navigation in 

cluttered environments.  
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The literature on temporal fusion of depth data usually 

assumes rigid and static scenes. IMOs have the potential 

to be invisible in fused 3D representations under these 

assumptions (Figure 1), and should be handled carefully 

for a complete and reliable collision avoidance 

framework. IMO handling has been given much less 

attention, limited mostly to feature and optical flow based 

approaches [11]-[13]. The sparse representations of 

feature-based techniques are not adequate for collision 

avoidance, while optical flow techniques are 

computationally heavy for on-board processing.   

In this paper, we modify an efficient depth data fusion 

technique [10] for the on-board vision system of a MAV 

that enables live obstacle avoidance. In this set-up, 

forward-looking stereo cameras are used to sense the 

environment, while vehicle poses are estimated by visual-

inertial odometry (VIO) using an IMU and images from a 

downward-looking camera. The scene is represented via 

an egocentric cylinder [7] that provides a 360
o
 

representation of the environment with constant angular 

resolution. The fusion algorithm is also extended to handle 

moving objects with an incremental increase in 

computational complexity. The output of the visual 

perception system can be used by motion planning 

approaches providing online collision avoidance for 

MAVs in cluttered environments. To our knowledge, this 

is the first on-board implementation of temporally fused 

egocylinder representation with IMO handling. 

The remainder of the paper is organized as follows. The 

next section summarizes prior work related to temporal 

fusion of disparity maps from stereo cameras. Section 3 

presents the details of the visual system including 

proposed IMO handling on egocylinder surface, which is 

followed by experimental results in Section 4. Finally, we 

discuss conclusions in Section 5.   

2. Related Work 

Temporal fusion is a common way to relate frame-wise 

extracted depth maps in various representations of the 

environment. Temporal depth map consistency can be 

achieved by incorporating consecutive frames in a cost 

function with additional constraints on the estimated depth 

maps [14]. This also can be achieved in a multi-view 

framework as in [15], with complex optimizations to 

merge consecutive depth maps. In [16][17], cost functions 

are aggregated temporally as an extension to spatial 

aggregation in order to extract reliable depth maps for 

each frame. SLAM techniques [18] also provide 

consistency through online depth updates in the key 

frames, where a simple Gaussian model is utilized to 

model depth measurements and the depth search is limited 

within the standard deviation of the prior hypothesis. 

Recently, [19] extended SLAM approaches with 

introduction of stereo cameras in order to adjust scale 

parameter in mapping and increase the number of reliable 

points. However, depth maps from SLAM frameworks are 

still inadequate for obstacle avoidance due to the sparse 

representations.  

Another group of methods is based on multi-view 

filtering techniques to improve depth map quality by 

removing outliers and filling holes. A visibility-based 

fusion method in [20] requires multiple 3D warpings as 

well as depth ordering that may not be applicable for on 

board processing. In [21], a median filter is used along 

consecutive frames to filter out outliers and provide 

smooth depth maps. [9] uses projection uncertainties in the 

reference view to estimate probability density functions of 

depth hypotheses. Recently, [10] has extended Gaussian 

Mixture Models for temporal depth fusion, updating depth 

models online with new depth observations. This 

decreases the memory requirement and computational 

complexity as well as yields more accurate results 

compared to recent filtering based techniques.  

The most common way to merge multiple depth map 

observations uses 3D models such as voxels or surfaces 

[3][8][23][24]. The depth data is mapped to 3D 

coordinates to form volumetric representations of the 

environment that are widely utilized for generating 

accurate maps. Grid maps require a lot of memory and 

computation since the main motivation is the generation of 

a complete map. On the other hand, less complex and 

more efficient representations are available for collision 

avoidance based on image space representations. 

Recently, [5][7] proposed an efficient 2.5D image space 

world representation that enables fast collision checking in 

image space, using an egocylindrical data structure to 

provide 360
o
 representation of the environment with 

constant angular resolution. This approach has good 

potential for fast motion planning. 

Research on temporal fusion has mostly focused on 

rigid or static scene assumptions, where moving objects 

are neglected. Intruders in an environment have potential 

to corrupt the 3D representations by violating the static 

scene assumption. On the other hand, missing IMOs in the 

scene representation may cause failures especially for 

reactive collision avoidance. [25] exploits two geometric 

constraints to detect IMOs for moving surveillance 

cameras based on structure consistency and plane-parallax 

filtering. Sparse [11][12] and dense [13] optical flows are 

utilized to detect objects that do not follow the scene flow. 

Sparse flow is insufficient, especially for close objects that 

have significant importance for collision avoidance. Dense 

flow is computationally expensive for onboard processors 

currently available for MAVs. 

In this paper, we borrow the idea of 2.5D image space 
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world representation on an egocylinder surface [5] for 

MAV motion planning and collision checking. We use 

forward-looking stereo cameras to sense the world, as well 

as an IMU and visual odometry [26] with downward 

looking imagery to estimate the pose of the MAV. 

Gaussian mixture models [10] are utilized to fuse frame-

wise extracted disparity maps on the egocylinder 

representation, which is an efficient way to perform fusion 

in image space. In addition, we propose an IMO handling 

step that yields much more reliable fusion for obstacle 

avoidance. All vision algorithms are implemented on-

board an Asctec Pelican (Figure 2) that uses a hierarchical 

processing architecture (Figure 3).  

3. Vision System for Collision Avoidance 

Gaussian Mixture Models are widely used to represent 

background/foreground intensity distributions for 

detecting moving objects in surveillance [27]. Successive 

intensity observations of each pixel are combined in a 

compact representation. Gaussian models have been used 

for SLAM [18] and extended to Gaussian mixtures for 

temporal fusion of disparity maps [10]. In both 

approaches, models are formed in disparity space with 

inverse depth representation, so that uncertainty is 

represented for inverse range. [18] uses Gaussian models 

to narrow the search range during the estimation of 

disparity maps for the following frame, while [10] 

approaches fusion as a filtering step by relating frame-

wise estimated disparity maps. In that manner, the 

framework proposed in [10] fits our set-up with stereo 

matching for depth sensing. Moreover, having the 

background disparity models of a scene is convenient for 

detection of IMOs that violate the rigid-static scene 

assumption.   

3.1. GMM-based Depth Fusion 

The depth fusion is achieved by extending intensity 

based models by pixel position and disparity values 

(�⃗ = ሺݑ, ,ݒ ݀ሻ) in image space. Each pixel is represented 

as a mixture of K Gaussian distributions as follows: 

 Pሺx⃗⃗t|XTሻ = ∑ WሺOm, σmሻNሺx⃗⃗t; µ⃗⃗m, σmሻKm=ଵ       (2)     

 

where µ⃗⃗’s are the mean and �⃗’s are the variance estimates 
of �⃗ and S is the set of observations along T frames. Om is 

the number of frames that corresponding mode m is 

observed and W is a weighting function that defines the 

strength of the corresponding mode. This model can 

directly be utilized per pixel as long as the platform does 

not move. For moving platforms, forward warps are 

required to relate corresponding pixels w.r.t. platform 

motion.  

 There are three steps for GMM based fusion: first; as 

the new disparities are observed for pixels with no GMMs 

or if there is a significant disparity difference between the 

models and the observation, a new mode is created by  

 ܰሺ�⃗; µ⃗⃗଴, �଴ሻ: {µ⃗⃗଴ = ሺݑ, ,ݒ ݀ሻ�଴ = �����        ܱ଴ = ͳ              .   (3) 

 

In (3), the triplet corresponds to the new disparity 

measurement and its pixel coordinates, and �����  is set to a 

high value.  The second step involves the mapping of 

GMMs in the previous frame to the current frame. The 

mapping is performed according to pose changes, for each 

mode. This generates groups of GMMs per pixels from 

different sources in the recent frame. The models from the 

neighboring pixels are also utilized within a specified 

window (i.e., 3x3) to handle holes in forward mapping. 

 
Figure 2: Asctec Pelican quad-copter equipped with a 1.86 GHz 

Intel Core2Duo processor (Asctec Mastermind), Odroid XU4 

flight computer, forward–looking stereo cameras and a 

downward looking camera for odometry. 

 

 
Figure 3: System architecture on-board the Asctec Pelican. 
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There can be multiple hypotheses for a pixel after the 

mapping, as illustrated in Figure 4. The center pixel (red) 

gets contributions from the neighbor pixels within a 

window, where each circle in the disparity plot 

corresponds to a Gaussian distribution. In order to specify 

the new GMMs just before the recent disparity 

observation, a merge and reduction step is required. At 

that point, as stated in [10], there may be various 

alternatives to merge Gaussian distributions; however, this 

step is applied for each pixel and should be as simple as 

possible for fast operation. In that manner, the modes are 

grouped according to similarity of mean disparity values. 

Then, an averaging is performed for all parameters except 

standard deviation of disparity, on which the minimum � among the grouped models is chosen. The final number 

of models is fixed to a predefined threshold by neglecting 

the modes with high standard deviations. 

 The final step is the model update and disparity 

assignment. The most recent disparity observations are 

compared to the GMM hypotheses per pixel individually. 

There is considered to be a match as long as the minimum 

disparity distance between the current observation and 

GMMs is below a threshold, Td, (such as 3 pixels). In case 

of a match, the corresponding mode (M) is updated as 

follows:  ��ଶ = ���ଶ + ሺͳ − �ሻ|݀ − µ⃗⃗�ሺ݀ሻ|ଶ µ⃗⃗� = �µ⃗⃗� + ሺͳ − �ሻ�ܱ⃗� = ܱ� + ͳ    (4) 

where d is the newest disparity observation, �⃗ is the recent 

triplet representation, and α corresponds to an update rate 

that determines the adaptation speed of the fusion to new 

observations. The same equations in (4) are utilized to 

update the unmatched modes, where the standard 

deviation is updated and the number of occurrences is 

decremented instead. If there is no match, a new mode is 

generated as given in (3). Depending on the scene 

geometry and motion of the vehicle, some pixels may not 

have an observation. In that case, each mode is penalized 

by incrementing standard deviation and decrementing 

occurrence count by a forgetting factor (αforget). 

 Each pixel is assigned a disparity value as long as the 

matched mode or the mode with best standard deviation 

(in case of no observation) satisfies the validity condition 

given as: ݒ���݀: {ͳ       ��ଶ < ଶ�����݌ �ܱ ݎ݋  > ��Ͳ                                            ݁�(5)  ݁ݏ 

 

where p is the scale factor that shows the reliability of the 

current mode, TC is the occurrence threshold. Finally, a 

resulting disparity map is obtained by robust GMM 

models that have been observed for sufficient number of 

frames with low variation. 

3.2. Independent Moving Object Handling 

GMM-based temporal fusion, as with most fusion 

approaches, uses a rigid and static scene assumption by 

neglecting IMOs. As discussed previously, in dynamic 

scenes IMO detection is a crucial step for reliable collision 

avoidance. Therefore, we now extend the depth fusion 

framework to handle moving objects as well. Dense 

optical flow is not practical with current onboard 

computational limitations of MAVs. Instead, using GMMs 

enables efficiently detecting IMOs with methods similar to 

foreground object detection in surveillance videos. The 

main assumption in surveillance applications is the 

existence of noticeable intensity differences from the 

background models. Exactly the same idea can be 

modified by introducing disparity change with respect to 

background scene structure for IMO detection in temporal 

fusion.  

We extend the parameterization of GMM-based fusion 

discussed in 3.1 with the addition of an intensity model (I) 

of the pixels. In the new model, each mode is represented 

by quadruple �⃗ = ሺݑ, ,ݒ ݀, �ሻ. Candidate moving pixels are 

detected in two steps. First, pixels that do not match to a 

background mode and have disparity values significantly 

larger than the background are considered as candidate 

moving objects. This group is classified into strong and 

weak candidates. The strong candidates have larger 

intensity differences, while the weak candidates have 

intensity values barely differentiated from the background. 

This type of classification approach helps to grow IMO 

regions (obtained by strong candidates) at the final step 

that yield more complete object detection.  

Connected component analysis is performed on the 

strong candidates to eliminate false alarms such as small 

regions. At that point, a moving object is expected to have 

sufficiently large area (Tarea) that it cannot be ignored for 

collision avoidance. Then, those regions are grown within 

bounding boxes and through weak pixels as long as they 

have connected paths in between. In that way, objects with 

visible disparity divergence are detected completely even 

though they have intensity variation within. After the 

detection of candidate moving pixels, disparity values for 

 
Figure 4: The center pixel (red) gets contributions within a 

neighborhood which forms a large number of mixture of 

Gaussians. Multiple models are merged for compact 

representation. 
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these pixels are directly copied from the recent disparity 

observation without any update in GMMs. This does not 

force consistency along the moving objects, which would 

require object motion models. Instead, this avoids 

invisibility of moving objects and prevents incorrect 

background mode generation.   

3.3. Egocylinder Representation 

An egocentric cylinder surface image [7] is an efficient 

way to maintain a persistent 360
o
 representation of the 

world. As illustrated in Figure 5 with the top view of 

egocylinder, the disparity map at a time instant covers a 

part (white rectangle) of the egocylinder corresponding to 

the FOV of the stereo cameras. As the vehicle moves 

around and covers different view angles, temporal fusion 

accumulates depth data to form a complete scene 

representation. At each time, new observations are located 

at the center (forward direction) of the egocylinder image.  

With this representation, the update step of temporal 

fusion is performed on the FOV of stereo cameras (within 

the white square) where the most recent disparity map is 

observed. The remaining areas are subject to fade out (or 

not updated) with a speed related to the forgetting factor. 

The parameterization of the fusion approach enables 

defining the fade out rate based to the motion of the 

vehicle. Currently, we use a constant forgetting factor for 

the sake of simplicity. This representation is used by a 

motion planner (similar to [7]) for collision avoidance.  

4. Experimental Results 

Two sets of experiments were performed to test the 

performance of the proposed vision system as a basis for 

collision avoidance. The first set measured the detection 

performance of the IMO handling algorithms and 

compared resulting disparity maps to the original GMM-

based temporal fusion algorithm. This used the well-

known KITTI stereo benchmark [30], which specifically 

includes temporal stereo datasets with moving objects. 

The second set of experiments analyzed on onboard 

performance with real data captured by our MAV. 

4.1. Offline Performance Evaluation 

The KITTI 2015 stereo dataset provides an excellent 

benchmark to test the IMO handling algorithm. The 

dataset includes 194 different scenes with 20 consecutive 

stereo frames captured from a car. The ground truth 

disparity maps of center frames are also provided for each 

sequence. The center frame of each sequence also includes 

labeled moving objects to evaluate the performance of 

detection. The average distribution of static and moving 

regions in this dataset is 85 and 15%, respectively.  

With this data, we use the Semi Global Matching 

algorithm [28] to extract disparity maps from stereo 

images for each frame independently. The vehicle poses 

are estimated through stereo visual odometry [29]. The 

parameter set for the fusion algorithm is given as follows: 

 
Table 1: The parameter values throughout the experiments � �ࢋࢍ�࢕ࢌ� ���࢔��   p �ࢋ��� �� ࢊ� 

0.1 0.05 20 0.1 3 5 20 

 

IMO detection performance is measured through the 

object labels provided by the KITTI benchmark. The 

distribution of the distance (meters) of all moving objects 

is given in Figure 6, where the missed objects are also 

shown in orange color. The remaining blue color 

corresponds to the successfully detected objects. Detection 

performance improves as objects get closer to the 

observer. Our approach detects all of the IMOs that are 

closer than 9 meters, which are important for collision 

avoidance. The distributions of the spatial location of 

detected and missed moving objects in image space are 

also illustrated in Figure 6. Missed vehicles are generally 

located at the center of the image and have mostly the 

same moving direction with the observer. Therefore, these 

objects are stored and modeled as background in GMMs 

due to repeated observations. On the other hand, detected 

objects move along nearby lanes, most of which are 

located on the left of the observer and move in opposite 

direction with high probability of collision.  

The average distance of detected objects is 12 meters, 

while missed objects are at an average distance of 25 

meters and average disparity error on these objects is 1.8 

pixels. Thus, missed vehicles are located at greater 

distances with small disparity errors in the fused maps. 

 
Figure 5: An egocentric cylinder is an efficient way to model the 

world with a 360o of Field-of-Regard (FOR). At any time, the 

FOV of the stereo vision system corresponds to a region centered 

at 180o of the egocylinder image. 
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In In terms of collision avoidance, IMO detection can 

sense nearby moving objects that are collision risks (the 

left region of the histogram), while it misses distant 

objects with low probability of collision. This is a natural 

consequence of testing disparity differences: as object 

distance increases, the frame-to-frame disparity difference 

decreases.  

The IMO handling step has an influence on the 

accuracy of fused disparity maps as well. The precision of 

the disparity maps is calculated based on two measures: 

the percentage of pixels with ∆d>3 (Out-3%) compared to 

the ground truth disparity maps and the average disparity 

error. The results for the stereo matching algorithm alone 

[28], GMM-based fusion [10], and the IMO handling 

extension are given for static and moving regions in Table 

2. GMM-based temporal fusion decreases the error ratio 

by almost 30% compared to frame independent stereo 

matching. As expected, the IMO handling approach has an 

insignificant effect in the static regions. 

On the other hand, temporal fusion fails for the moving 

regions that violate the rigid-static scene assumptions. The 

average disparity error is almost 4 times larger than the 

initial disparity maps, indicating that the background 

disparity modes are assigned for those regions. The 

proposed IMO handling step significantly decreases the 

error rates of standard temporal fusion while it is still 

worse compared to frame-wise stereo matching for 

moving regions. Overall (weighted with average 

distributions (85-15%)), the proposed approach has the 

best error rates, providing a trade-off by improving 

disparity maps along static regions without large failures 

on the moving pixels.  

The output disparity maps are illustrated in Figure 7 for 

visual interpretation. The initial disparity maps are shown 

in the second row and temporal fusion results are given in 

the third row. The red regions in the last row belong to the 

IMO detection mask of the proposed algorithm. These 

regions are compensated by the disparity values given in 

the second row. The improvement is clear for the static 

regions, which is the result of accumulating temporal data. 

On the other hand, as long as the disparity and intensity 

differences are significant, proposed approach can detect 

the IMOs with sufficient object coverage. 

4.2. Onboard Experiments 

The Asctec Pelican implementation platform (Figure 2) 

is equipped with a 1.86 GHz Intel Core2Duo processor 

running the stereo vision, egocylinder, and temporal 

fusion modules and an Odroid XU4 processor for VIO. 

The forward-looking stereo cameras (752x480) are 

installed with a baseline of 25 cm and frame-wise stereo 

disparity maps are calculated by block matching over 

search range of 100 pixels. Temporal fusion is performed 

on an egocylinder image with resolution of 660x200. 

 The computation time of stereo matching and the steps 

of temporal fusion are given in Table 3. The full 

perception pipeline maintains a 10 Hz update rate using 

both cores of the Core2Duo, which enables real-time 

motion planning on the MAV.    

Typical results of temporal fusion on the egocylinder 

are illustrated in Figure 8. The left stereo image, unfused 

disparity map, and the corresponding egocylinder images 

are shown for five different time instants in the scenario of 

moving towards an obstacle. Temporal fusion increases 

the density of the initial disparity maps. The world 

representation propagates around the egocylinder as the 

vehicle moves around, with new frames of stereo data 

being fused in the forward direction. The consistency of 

the model can be observed by following the same tree, as 

shown by the black ellipse, through the successive time 

instants even though it is out of sight at some point. 

Moreover, temporal fusion retains memory of close 

 
Figure 6: Top: depth distribution of moving objects in the data 

set (blue), missed objects (orange). Bottom: the distribution of 

objects masks in image space for detected and missed cases.  

Table 2: The performances of stereo matching and temporal 

fusion with and without IMO handling are given based on two 

different error statistics for static and moving regions. 

Static/Moving 

(85/15) % 
Out-3% 

Avg 

Disp. error 

SGM [28] 12.6 / 22.7 2.6 / 3.3 

GMM [10] 8.4  / 61.4 1.9 / 12.1 

IMO Handle 8.6 / 37.8 1.9 / 5.3 
 

Table 3: Onboard computation times for each step in visual 

perception system. 

Perception Step Time (msec) 

Stereo Matching 100 

Cylindrical Mapping 14.4 

GMM Forward Mapping 38.5 

GMM Selection 10.6 

GMM Update 3.5 

IMO Handling 2.6 
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objects in the egocylinder after they disappear from the 

raw disparity maps because they are too close for the 

maximum disparity search range. The trees pass out of the 

FOV of the disparity maps as the vehicle approaches, 

while they are retained in the egocylinder representation. 

These characteristics benefit collision avoidance by 

increasing the representation range in both depth and field 

of regard. In both cases shown in Figure 8, collisions can 

be avoided by the temporally fused egocylinder 

representation, while it would be failure if only the frame-

wise stereo disparity maps were exploited. 

The proposed IMO handling approach is tested by 

introduction of movers in the static scenes. IMO detection 

is performed in the egocylinder region corresponding to 

stereo camera FOV with the most recent disparity 

observation (white rectangle in Figure 5). The egocylinder 

representations with and without IMO handling are 

illustrated in Figure 9 for two different scenes. The first 

row is the left image, and successive rows are for disparity 

maps, fusion with static assumption, the proposed IMO 

handling extension, and IMO detection masks. We crop 

the egocylinder representations for better visualization, 

where the corresponding angles are (120
o
-240

o
) and (100

o
-

260
o
) for two different scenes consecutively. As is clearly 

observed, IMOs disappear under the static scene 

assumption; on the other hand, the proposed IMO 

approach detects those objects completely, improving the 

obstacle avoidance capability. It is also important to note 

that IMO handling not only detects the moving objects but 

also preserves the fine structure of the background model. 

Especially under small motion of the IMOs, due to 

continuous observation of the same disparity levels, these 

values are observed in the background model when IMO 

handling is not active. In the second and third time instants 

of scene 2, incorrect disparity assignments are observed on 

the left side of the tree (the third row), which are the 

results of fusion of repetitive regions to the background. 

These regions correspond to false alarms that are not 

desired for collision avoidance. On the other hand, this 

effect is removed by IMO handling and a more reliable 

model of the environment is provided.   

5. Conclusion and Future Work 

In this paper, we propose an efficient visual perception 

system implemented onboard for MAV collision 

avoidance. Forward-looking stereo cameras are used to 

sense the world via disparity maps that are fused 

temporally using an egocentric cylindrical representation 

yielding a 360
o
 scene model. We extend image based 

temporal depth fusion to handle independently moving 

objects to provide reliable perception for cluttered and 

dynamic environments. The proposed IMO handling step 

detects moving objects and improves the fused disparity 

maps. The onboard implementation on an Asctec Pelican 

MAV provides 10 Hz visual maps on the egocylinder that 

are used in live motion control for collision avoidance. 

As future work, we plan to compare the proposed 

representation with voxel based 3D representations 

through the collision avoidance framework that includes 

motion planning for obstacle avoidance. 
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Figure 7: Top row: left color images. Middle row: corresponding unfused disparity maps (lighter pixels are closer to the camera). Last 

row: temporal fusion with IMO detection mask (red). 
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Figure 8: First column: left stereo image and disparity maps for five time instants. Second column: corresponding egocylinder 

representations (blue to red: far to close). The same tree is marked by the ellipse throughout the five frames. 

 

Figure 9: First row: left stereo image. Second row: unfused disparity map. Third row: cropped egocylinder image with static scene 

assumption (120o-240o for the first scene and 100o-260o for the second scene). Fourth row: cropped egocylinder image after IMO 

handling, last row: detected IMO masks. 
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