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Abstract

Convolutional neural networks (CNNs) excel in various

computer vision related tasks but are extremely computa-

tionally intensive and power hungry to run on mobile and

embedded devices. Recent pruning techniques can reduce

the computation and memory requirements of CNNs, but a

costly retraining step is needed to restore the classification

accuracy of the pruned model. In this paper, we present

evidence that when only a subset of the classes need to be

classified, we could prune a model and achieve reasonable

classification accuracy without retraining. The resulting

specialist model will require less energy and time to run

than the original full model. To compensate for the prun-

ing, we take advantage of the redundancy among filters and

class-specific features. We show that even simple methods

such as replacing channels with mean or with the most cor-

related channel can boost the accuracy of the pruned model

to reasonable levels.

1. Introduction

In recently years, CNNs kept outperforming tra-

ditional machine learning models in computer vision

[11][13][16][17][8]. However, the exceptionally high com-

putation and memory requirements of these models hinder

their massive deployment on mobile and embedded devices.

To tackle the problem, researchers proposed various

ways to prune convolutional neural networks in order to

reduce the computation and memory requirements of the

models. A big body of works have focused on pruning pa-

rameters from fully connected layers [12][7][6]. Although

large amount of parameters are needed to compute fully

connected layers, it is the convolution layers that are dom-

inating the computation [5]. Realizing this, researchers

started to propose filter-level pruning methods with the aim

to reduce computation requirements in convolutional oper-

ations [14][1][5]. Nevertheless, the procedures in all of the

methods above follow similar patterns: examine which pa-

rameters/filters have less impact on the final outputs, prune

the parameters/filters, retrain the network to regain classifi-

cation. The functionality of the model remain unchanged.

We would like to approach the problem from a different

angle. Instead of trying to prune the model and then retrain

to regain all of its functionality, we explore the possibility

of reducing the size together with some of the of function-

alities of the original models in order to create specialist

models. The notion specialist model also appeared in an

earlier work that reported an attempt to classify a Google

internal dataset that contains 15,000 classes [9]. In their

problem setting, the purpose of creating specialist models

is to assist the generalist model on the classification of spe-

cific classes, as a single model would not have a capacity

large enough for all the classes. We believe that the special-

ist models alone would be meaningful in many use cases. To

better illustrate the use cases, we will use a fictional exam-

ple of a classifier that recognizes handwritten postal codes.

A generic handwritten digit classifier is built for recogniz-

ing 10 digits. But for a postal office that is only responsible

for delivery of postal code 10000, 10001 and 10002, all it

needs is a classifier that recognizes digits 0, 1 and 2. The

ability to recognize digit 3 through 9 is completely redun-

dant for them. Therefore, it would be in the best interest of

this poster office to prune the model such that it only distin-

guishes 3 digits in order to improve the energy efficiency of

the recognition task. Granted that handwritten digit recog-

nition is a lightweight application and that there is little gain

in further pruning the network, the idea itself can be applied

to a wider range of applications.

In this paper, we propose a method that create specialist

models online without the need for retraining. The method

removes the parts of the network that are tied closely to the

non-essential classes. The idea is to first identify and re-

move the parts of the network that do not contribute as much

in distinguishing between the target subset of classes. Then

we use the mean or the most correlated filters to compen-

sate for the filters we removed. We tested the method on

off-the-shelf mobile devices and report effectiveness of the

method.

The rest of the paper is organized in the following man-

ner. Section 2 reviews related work. Section 3 lists the nota-

tions that we will use later to describe the proposed method.
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Section 5 outlines the method on a conceptual level. Section

5 explains how the method can be implemented by directly

modifying existing models in an online fashion. Section 6

evaluates the method through classification accuracy tests

as well as energy and wall-clock time measurements.

2. Related Work

Researchers have proposed various methods to speed up

the computation of deep neural networks. One straight

forward approach is to reduce the precision of computa-

tion. Notable examples include weight quantization (weight

sharing) [4] and binary neural networks [15]. Other re-

searchers proposed to take advantage of the redundancies in

the weight by adopting matrix/tensor decomposition tech-

niques [2][10].

Our work is more concerned with a third cateogiry of

methods that involves pruning neural networks. Le Cun et

al. were one for the first researchers to introduce the idea

of pruning neural networks, where he pruned parameters

that analytically has less effects when perturbed [12]. Has-

sibi et al. proposed to use second order derivative to deter-

mine which parameters to prune [7]. Han et al. proposed to

remove weights with magnitudes smaller than a threshold,

and retrain the network to regain accuracy. [6]. Specifically

for reducing the size convolutional neural networks, various

researchers have proposed methods that prune the model at

higher levels than individual neurons. Polyak et al. used the

variance in activation to estimate the importance of feature

maps [14]. In comparison, Li et al. used the sum of abso-

lute weights of each filter as the criteria [5]. Anwar et al.

pruned models at different levels and used particle filter to

decide the best filters to prune [1].

In an earlier work, we proposed to prune CNNs and com-

pensate using a linear combination of existing filters [3].

In this paper we show that we can achieve reasonable re-

sults using even simpler forms of compensation, such as the

mean of the feature map and a single correlated channel.

3. Notations

In almost all of today’s machine learning frameworks,

the computation of convolution operation is unrolled into

a matrix multiplication, as shown in Figure 1. Let hf and

wf be the height and width of the filter in a convolution

layer with cout number of filters and with inputs of shape

h × w × cin. Then before computing the convolution, the

image patches with shape hf ×wf for each channel cin are

unrolled into vectors, which make up for the rows in the

matrix on the left in Figure 1(b). The weights for each of

the cout output channels are unrolled to form the columns

in the matrix on the right.

When we involve parameters or variables from convolu-

tion layers in this paper, we are implicitly referring to those
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Figure 1. The unrolled convolution operation.

from the unrolled matrix multiplication form of convolu-

tion. In most cases, we are dealing with only one channel,

the jth channel of the input. In these cases, the input feature

map of ith sample is:

XXXij =











xxx⊺

ij1

xxx⊺

ij2
...

xxx⊺

ijH











XXXij is of height H = ((h−hf )/sh+1)·((w−wf )/sw+1)
and width W = wf · hf , where sh and sw are strides. We

use wwwjk to represent the unrolled weights vector for the jth

input channel and kth output channel.

When it comes to pruning, we use Ytarget =
{y1, y2, . . . , yM ′} to represent the subset of M ′ classes that

the specialist model targets.

4. Method

4.1. Intuition

Recent works in visualizing convolution neural networks

have shed light on the role that different layers in the net-
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work play [18]. It is now widely accepted that different fil-

ters in a convolution layer represent different features. The

filters in earlier layers represent lower level features, while

the filters in later layers represent higher level features.

Given the interpretation above, we have the following

assumption: while some features might be universal, others

are associated closely with certain classes. If we are to tar-

get a certain subset of classes and remove the rest, we only

need the features that are associated with the target classes.

We could remove the rest without severely damaging the

core feature extraction abilities of the model. The errors in-

troduced by pruning can be relatively easily compensated.

Thus, the whole method can be implemented online

without the need of retraining. The following subsections

will explain our methods in more details.

4.2. Pruning

While pruning filters accords with our interpretation of

filters as features, there are other merits in this way of prun-

ing convolution operations. Pruning entire filters in a convo-

lution layer is effectively creating another convolution layer

with a different (smaller) set of weights. It can be easily

implemented on any existing machine learning frameworks.

Thus pruning filters is a great fit to our proposal.

We now introduce our approach to pruning filters. We

introduce our way of determining which filters to prune, the

Filter Sensitivity Analysis method. Then we show how we

apply the method to determine which filters to prune.

4.2.1 Filter Sensitivity Analysis

To determine which filters to prune, researchers have pro-

posed to use criteria such as variances in the channel acti-

vation [14] and the sum of absolute weights [5]. For our

particular use case, we need a method that could tie the cri-

terion closely to particular classes. In other words, we want

to prune filters that are less useful to the subset of the classes

that are targeted in the specialist model. To achieve that ob-

jective, we propose Filter Sensitivity Analysis.

In traditional sensitivity analysis methods, usually, only

one variable is at play. In the case of analyzing the impact

of a channel on certain classes, we have h × w number of

variables to examine. Apparently, we need to find a way to

represent the feature map as a whole.

Our proposed method approaches this problem by as-

signing a weight variable ωj = 1 for each channel j of a

layer and shifting our attention to the weight variable in-

stead of the feature map itself. Suppose a sample produces

an feature mapXXXj at channel j (now effectively ωjXXXj after

we added the weight), and py is the score/probability corre-

sponding to the class y that the sample belongs to, then the

impact Ijy of that channel j has on class y is defined as

Ijy =
∂py
∂ωj

In this paper, the impact is obtained by applying a small

perturbation ∆ωf to the weight. We measure the difference

in the output of the score ∆py and calculate the impact by

Ijy = ∆Py/∆ωf . We average the impact values for every

single sample to obtain the final impact.

To intuitively interpret the method, we can view ωj as

a variable that controls how much we want to strengthen

or weaken the feature that the channel j represents. If we

strengthen that feature by increasing ωj , the more the class

score changes, the more the feature is associated with the

class. Thus the impact serves as a good indicator of whether

we should remove a filter: if the channel that the filter pro-

duces has a high impact value on / is not closely associated

with the class we need, then we should prune that channel.

4.2.2 Selecting Which Filters to Prune

Given the measure of a filter’s impact on a particular class,

we now describe the filter selection process. We set a

threshold Ithreshold, and prune filter j if j satisfies

max{Ijy|y ∈ Ytarget} < Ithreshold

. The threshold can be pre-computed given the target per-

centage of removal ∆c. If we want to remove ∆c = 50%
of, then we calculate max{Ijy|y ∈ Ytarget} for each j, and

set the 50th percentile as the threshold Ithreshold.

4.3. Compensation

Once the filters are pruned, traditional methods will re-

sort to retraining the network to regain accuracy. Early

works reported 2x more time spent on retraining than train-

ing [6]. Util recently it still took 20-40 epochs of retraining

for a pruned specialist model to regain accuracy [5]. If the

desired objective is to create a model that classifies on a

subset of labels for every ad hoc situation, a method that re-

quires retraining is equivalent to training a new model every

time. It is certainly inefficient and most likely infeasible.

Therefore, an online method that requires no retraining is

desired in this problem setting. This is where the process of

what we call compensation comes into play. The objective

of compensation is to restore activation of the filters that are

pruned away from the model. The closer the restore values

are to the original ones, the closer the more accurate our

network will be.

We adopted two ways of compensation. The first way is

to simply use the mean of feature map. The second is to

use the feature map of the most similar filter. We choose

between the two methods by using a simple heuristic.
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4.3.1 Compensation with Mean

Since we are compensating for only a subset of classes,

when we are calculating the mean of feature maps, we

should only select the the samples that belong the the subset

of classes Ytarget. The mean of activation for jth channel

X̄XXj is calculated by:

X̄XXj =
1

|{i|yi ∈ Ytarget}|

∑

{i|yi∈Ytarget}

XXXij

Once we obtain X̄XXj , we use it as the feature map for

channel j whatever the input data is.

4.3.2 Compensation with Correlated Filters

The first step of this method is to find the most correlated

channel for all the channels to be pruned. To obtain the cor-

relation measurement, we unroll the feature map of every

channel into a vector. Let Ci(j
′, j) represent the Pearson

correlation of the vectors of channel j′ and j given input

sample i. The correlation between channel j′ and j is cal-

culated by averaging the correlation of individual samples

that belong to the target subset of classes:

C(j′, j) =
1

|{i|yi ∈ Ytarget}|

∑

{i|yi∈Ytarget}

Ci(j
′, j)

To compensate for the channel j that is to be pruned, we

choose a channel j′ that bears the highest correlation value

C(j
′, j).

When we compensate channel j using the feature map of

another channel j′, we are effectively calculating the con-

volution on channel j′ twice: the first time using its own

weights wwwj′k, the second time using the weights for the

pruned channel wwwjk. Inevitably there are errors caused by

such replacement. However, there is no easy way of modi-

fying the new feature map such that the values are closer to

the original feature map. By easy, we mean that it could be

implemented using operations existing in convolution neu-

ral networks. One workaround is to adjust the weights such

that the next convolution layer will produce closer results.

Consulting the notation in Section 3, let XXXj′ represent

the feature map of the replacement channel that compen-

sates XXXj , and www′
jk is used to represent the new set of

weights for output channel k that we want to analytically

solve for. We set our objective to be minimizing the mean

square error after we use the new feature map to calculate

the convolution:

argmin
www′

jk

L(www′
jk) =

∑

{i|yi∈Ytarget}

H
∑

h=1

(xxx⊺

ijhwwwjk−xxxij′h
⊺www′

jk)
2

By setting the derivative of the loss function to 0,

∂L(www′
jk)

∂www′
jk

=− 2
∑

{i|yi∈Ytarget}

H
∑

h=1

(xxx⊺

ijhwwwjk − xxxij′h
⊺www′

jk)xxxij′h

=0

We will have W equations for the vector www′
jk with W ele-

ments. We could solve for the new weights www′
jk using tech-

niques that solve standard linear equations.

4.3.3 Selecting How to Compensate

To select whether to compensate a channel with its own

mean feature map or with the most correlated channel, we

use a simple heuristic. If the correlation is larger than an

empirically determined threshold, then we use the latter

method. Otherwise, we use the former method.

5. Implementation

Till now we have elaborated our method on a conceptual

level. In this section, we will explain how we can implement

the method by making modifications to an existing network

model. Thus, we are essentially presenting a function f that

takes in the original model together some parameters, and

returns a smaller model:

pruned model = f(original model, parameters)

This function requires a relatively small footprint, can

run online on mobile devices and does not require retraining

and fine-tuning of the original model.

Similar to the previous section, we will introduce the

procedures for pruning and compensation in separate sub-

sections in the respective order.

To illustrate the procedure of pruning and compensation,

we will focus on a dummy convolution layer called Convo-

lution N , as shown in Figure 2. After computing convolu-

tion on its input, the convolution N layer adds bias to the

results, and runs them through a ReLu layer and a MaxPool

layer before the next convolution layer Convolution N + 1
takes them as its input.

5.1. Pruning

The implementation of pruning is straight forward. We

simply need to remove the weights that are corresponding to

the pruned channels from the previous layer and the current

layer. Suppose the weight in the current convolution layer

is www with shape hf × wf × cin × cout (for every channel

among the cout output channels, there is a hf ×wf filter for
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Figure 2. Implementation of pruning and compensation for convo-

lution N.

every channel among cin input channels). If we prune ∆cin
percent of channels from previous layer and ∆cout percent

from the current layer, which makes c′in = (1 − ∆cin)cin
and c′out = (1−∆cout)cout. Then the new weights will be

in shape hf × wf × c′in × c′out.

5.2. Compensation

5.2.1 Compensation with Mean

Implementing the compensation with the mean feature map

is actually more tricky than it might appear. The key diffi-

culty is that when we run the pruned specialist model, the

network structure has already changed. Not only will the

channels be removed, the weights that are originally used

for these channels in the next convolution layer will no long

exist as well. There is no way of placing the compensation

around the layer where the channels are pruned.

To deal with the problem, we place the compensation at

the next convolution layer. The idea is to look at the con-

tributions of those pruned channels on the next convolution

layer and try to compensate for their contributions. We first

fill the feature maps of the channels to be removed with

their mean values, and set the rest to 0. Then we run in-

ference to obtain the feature maps at the next convolution

layer. The values in those feature maps consists only of the

contribution of the pruned channels. We save the values as

a constant and add these constants to the next layer at run

time.

5.2.2 Compensation with Correlated Channels

As we explained earlier, when replacing a pruned channel

j with another channel j′, we are effectively computing a

convolution on the replace channel j′ using weights for the

pruned channel j. Since any output channel k is the sum

of convolutions on all input channels, we simply add the

adjusted weights of channel j that we mentioned in Section

4.3.2 to the existing weights of channel j′:

www′
j′k = wwwj′k +www′

jk

If a channel is used to compensate for multiple pruned

channels, we can add all the adjusted weights together.

5.3. Deployment and Computation Reduction

Throughout the paper we have been stressing one of the

key advantages of this pruning and compensation method:

it can be run online. Running online involves doing calcu-

lations with some pre-computed values. There are mainly

four sets of values that we need to pre-compute:

1. The impacts each filter has on different classes Ijy ,

described in Section 4.2.1;

2. The mean of feature maps X̄XXj , described in Section

4.3.1;

3. The pairwise correlations C(j′, j), described in Section

4.3.2;

4. The element wise product among pairs of channels fea-

ture maps used to compute the adjust weight www′
jk in

Section 4.3.2.

These values can be pre-computed before the deployment

of the model. When any user wants to prune a model, the

procedure involves:

• Using 1 to determine which filters to prune;

• Using 3 to determine how pruned channels can be re-

placed by other channels, and 4 to recreate a new set

of weights that accounts for the replacements;

• Using 2 to create the constant bias that are for the chan-

nels to be compensated by their mean values.
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As we mentioned in Section 5.1. For a pruned convolu-

tion layer, the number of weights reduced from hf × wf ×
cin × cout to hf ×wf × (1−∆cin)cin × (1−∆cout)cout.
That amounts to a (1 − (1 −∆cin)(1 −∆cout)) reduction

in the number of parameters and amount of computation.

6. Evaluation

6.1. Case Study

To clearly illustrate our approach, we present a 5-class

pruned NIN model that achieves 38.9% computation sav-

ings as a case study. The NIN model, which is trained to

classify the CIFAR-10 dataset, consists of 3 sets of MLP

convolution layers. Each set consists of a 5× 5 convolution

layer (CONV) followed by 2 cascaded cross channel para-

metric pooling(CCCP) layer, which are effectively 1 × 1
convolution layers. The last CCCP layer of the last set out-

puts a total of 10 channels, each corresponding to one of the

10 classes. They use a global average pooling on that layer

to produce the score for each class and then use a softmax

layer to generate probabilities.

Table 1 shows the comparison between the original NIN

model and the pruned specialist model. Through our ex-

periments, we found out that the first few layers produce

universal features, and are indispensable to the extraction

of higher level features in later layers. Pruning those lay-

ers will significantly reduce the classification accuracy of

the whole network. Thus we empirically decide to leave the

first two layers intact while pruning the rest of the layers.

The first two layers contribute to roughly 20% of the total

amount of computation. For the rest of the layers, we set

the target to be removing ∆c = 30% of the filters. For the

layer CCCP2, the first layer whose filters are removed, such

removal amounts to 30% reduction in computation. For the

rest of the layers (except the last layer), the computation is

reduced by 1− (1− 30%) · (1− 30%) = 51%. For the last

layer, since we have 5 classes, we remove 5 channels from

a total of 10 channels. The computation reduction can thus

be calculated as 1 − (1 − 30%) · (1 − 50%) = 65%. The

total amount of reduction adds up to 38.9%.

6.2. Classification Accuracy

The case study subsection above should serve as a clear

illustration of the approach that we take to conduct exper-

iments. We further repeat the approach with different sets

of parameters and report the accuracy results in this subsec-

tion.

Table 2 shows the classification accuracy on CIFAR-10

dataset with the NIN model pruned at different levels. The

values with dark grey background are equal of higher than

the accuracy of the original 10-class model. Those with

light gray background are within 6% of the standard ac-

curacy. The columns represent the level of pruning mea-

sured in FLOPs, with values ranging from reducing 57.8%

to ”None”, which represent the original network. The rows

represent networks pruned for subsets of classes of differ-

ent sizes. For each level of pruning (except for the original

network), we randomly pick 10 different combinations of

classes to make up for a subset and test the pruned network

against the test set to obtain the mean and the 95% confi-

dence interval of the classification accuracy. For the original

network, the results are obtained after removing unneeded

classes from the SoftMax output.

To make more sense of the different levels for pruning,

we have to use Section 6.1 as a reference. The different

level of pruning is achieved by removing different portions

of all the channels from layer CCCP2 to CCCP6. As shown

in the case study, 38.9% is achieved by removing 30% from

the aforementioned list of channels. Similarly, the 57.8%,

48.6%, 27.9% and 14.3% reduction rates are achieved by

reducing 50%, 40%, 20% and 10% of the channels respec-

tively. These reduction rates are referred to as levels of

pruning throughout the paper. As described in the subsec-

tion above, CCCP6, the last convolution layer of the net-

work, has different channel counts given the size of the tar-

get subset of classes. For models with the same level of

pruning but target different number of classes, only the last

layer will be different. Since the last layer only contributes

to 0.05% of the total number of FLOPs, we ignore the dif-

ferences and consider models with the same level of pruning

share the same computation requirements.

Note that the accuracies of some of the pruned specialist

models are the same as or even higher than the original 10-

class classifier. The reasons behind it stem from our prob-

lem setting of ”pruning classes”. Given our definition of the

problem, the test set only contains samples of the chosen

subset of the classes, and thus the problem space is smaller.

One problem that we observe in our experiments is that

models for different subsets of classes with the same level

of pruning vary in prediction accuracy. This problem is es-

pecially prominent when we prune larger portions of the

network. For example, pruning half of the filters for some

combination of two classes produces an accuracy of merely

0.624, while for other combinations it produces an accu-

racy as high as 0.923. We believe it has to do with the fact

that different subsets of classes have a stronger dependency

on different subsets of filters at each layer. Some classes de-

pend on more features than others and thus need more chan-

nels at each layer. Some combination of classes could share

similar sets of features and are more ”compatible” with each

other in a combination. In our approach, we prune uniform

percentage of filters across all layers and for all subset of

classes. That approach is clearly problematic. We have yet

to devise a method that could compare the normalized im-

pact of one filter (in any layer) on each of the class. We

believe such a method could drastically improve the accu-
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Name Output Size #Maps Before #Params #FLOPs Before #Maps After #FLOPs After FLOPs Pruned

CONV1 32× 32 192 1.92e+04 2.95e+07 192 2.95e+07 0%

CCCP1 32× 32 160 3.09e+04 6.29e+07 160 6.29e+07 0%

CCCP2 32× 32 96 1.55e+04 3.15e+07 67 2.20e+07 30.2%

CONV2 16× 16 192 4.66e+05 2.36e+08 134 1.15e+08 51.3%

CCCP3 16× 16 192 3.71e+04 1.89e+07 135 9.26e+06 51.0%

CCCP4 16× 16 192 3.71e+04 1.89e+07 136 9.40e+06 50.3%

CONV3 8× 8 192 3.34e+05 4.25e+07 136 2.13e+07 49.9%

CCCP5 8× 8 192 3.71e+04 4.72e+06 134 2.33e+06 50.6%

CCCP6 8× 8 10 1.93e+03 2.46e+05 5 8.58e+04 65.1%

Total 4.45e+08 2.72e+08 38.9%

Table 1. Comparison between the original 10-Class NIN model and a pruned 5-class NIN model.

Num.

Classes

FLOPs

Pruned
57.8% 48.6% 38.9% 27.9% 14.3% None

2 84.1± 6.7 90.8± 4.0 95.2± 2.4 96.1± 3.1 97.7± 1.5 98.5± 0.6
3 72.7± 7.0 84.0± 4.5 91.1± 2.6 93.9± 1.9 95.4± 1.9 96.4± 1.2
4 62.0± 9.0 76.0± 7.6 85.8± 4.4 90.8± 2.7 93.3± 2.1 95.1± 1.0
5 59.8± 2.5 74.9± 3.2 83.8± 2.6 89.3± 1.7 92.4± 1.2 94.2± 0.8
6 55.1± 3.4 72.5± 2.9 82.7± 1.6 88.7± 0.8 92.0± 0.7 92.9± 0.9
7 47.0± 5.6 68.9± 2.5 79.5± 1.8 86.0± 1.5 89.6± 1.2 91.8± 0.8
8 47.4± 2.9 67.7± 1.2 78.7± 1.3 86.3± 0.7 89.8± 0.7 90.7± 0.6
9 36.3± 2.2 65.8± 1.5 75.4± 1.2 83.7± 0.7 88.0± 0.5 90.3± 0.6

10 28.7 62.6 74.3 82.7 87.2 89.6

Table 2. Classification accuracy on CIFAR-10 dataset using NIN with different levels of pruning.

racy of the pruned networks.

6.3. Energy Consumption and WallClock Time

Using the mobile support from TensorFlow, we are able

to port the model to off-the-shelf smartphones. We conduct

energy consumption and wall-clock-time measurement on

a Google Nexus 4 Android Smartphone, and report results

in this section. The energy is measured using a Monsoon

power monitor. The wall-clock time is obtained by check-

ing system time before and after running the inference.

Table 3 lists the energy measurement results. The aver-

age energy consumption of running inference on one sam-

ple as well as the percentage of energy saved are reported

for different levels of pruning. To obtain the energy con-

sumption per sample, we first measure the total amount of

energy of running inference on all the samples with a cer-

tain model. Then, we measure the energy used for loading

data by running a dummy neural network that stay idle for

the duration of running the inference. The energy shown in

the table is the difference between the two measurements

stated above.

In the case where we prune 57.8% of the FLOPs, we

achieve 41.73% in energy savings. For a 14.3% rate of prun-

ing, the energy savings drop to less than 2%. The reason

that we are not getting exactly proportional savings is that

in compensating with mean we created another ”add” layer

that involves additional arithmetic and memory operations.

Table 4 shows the wall-clock time improvements. We are

not getting significant improvements in terms of wall-clock

time. The smallest model grants around 25% savings in

delay. Yet for less pruned models, the savings from pruning

filters gets amortized by the additional add operation, and

model takes the same or even more time to run compared to

the original one.

7. Conclusion

In this paper, we propose an online method of pruning

CNNs to create new specialist models that only classifies a

subset of the classes for better energy efficiency in differ-

ent use cases. In this method, we first prune filters that are

of less importance to the target subset of classes using the

proposed filter sensitivity analysis method. Then we com-

pensate for the filters pruned using either the mean feature

map or the feature map of the most correlated filter. We test

our method on the Network in Network [13] model on the
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FLOPs Pruned 57.8% 48.6% 38.9% 27.9% 14.3% None

Energy (mJ) 157.9 187.9 209.6 237.3 266.0 271.0

Energy Saved 41.73% 30.67% 22.66% 12.44% 1.845% -

Table 3. Average inference energy consumption per sample.

FLOPs Pruned 57.8% 48.6% 38.9% 27.9% 14.3% None

Wall-Clock Time (ms) 60.89±0.22 72.97±0.26 78.00±0.26 86.54±0.26 86.75±0.22 81.08±0.21

Time Saved 24.90% 10.00% 3.799% -6.734% -6.993% -

Table 4. Average inference wall-clock time per sample.

CIFAR-10 dataset. In the extreme case of pruning the model

down to a binary classifier, we could get 22.66% in energy

savings and achieve 95.2% in accuracy with some variance.

It is 5.6% better than the original 10-class classifier while

3.3% worse than the full model tuned for 2 classes.
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