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Abstract

Binary gradient cameras extract edge and temporal in-

formation directly on the sensor, allowing for low-power,

low-bandwidth, and high-dynamic-range capabilities—all

critical factors for the deployment of embedded computer

vision systems. However, these types of images require spe-

cialized computer vision algorithms and are not easy to in-

terpret by a human observer. In this paper we propose to

recover an intensity image from a single binary spatial gra-

dient image with a deep autoencoder. Extensive experimen-

tal results on both simulated and real data show the effec-

tiveness of the proposed approach.

1. Introduction

Gradient information, either temporal or spatial, has

been widely used for a variety of computer vision algo-

rithms from visual recognition, to feature detection, to opti-

cal flow and stereo reconstruction. Recently proposed com-

putational cameras can calculate the image gradient directly

on-chip, thus saving power and bandwidth as compared to

regular CMOS image sensors. This is valuable for embed-

ded vision applications, which have stringent power and

bandwidth limitations for the image sensing stage. For in-

stance, Google Glass operating a modern face recognition

algorithm has a battery life of less than 40 minutes, with im-

age sensing and computation each consuming roughly 50%

of the power budget [19]; the cost of sending compressed

images or video for off-line processing in the cloud is also

several orders of magnitude higher than on-chip process-

ing [22]. Gradient cameras represent a promising technol-

ogy to overcome these limitations for embedded vision.

A popular type of binary, gradient camera is the dynamic

vision sensor (DVS), which asynchronously outputs pixels

recording a temporal change in intensity [18]. This camera

has been successfully used for several traditional computer

vision tasks.

For static scenes, however, a DVS camera does not cap-

A version of the paper with animated figures can be found at the

following link: https://research.nvidia.com/publication/reconstructing-

intensity-images-binary-spatial-gradient-cameras.

Figure 1: Figure showing a captured binary spatial gradient video

(left), our intensity reconstruction (middle), and the prototype

camera we used for the capture.

ture any gradient information unless the camera moves. In

this paper, we focus on binary spatial gradients, where only

the pixels in high-contrast regions become active. The re-

sulting images appear like binary edge images (Figure 1),

and do not require any motion. These images are related to

those produced by the DVS camera: the difference of two

consecutive spatial gradient frames essentially produces a

temporal gradient image.

Spatial binary gradients can be captured with specialized

sensors that allow for a significant reduction of the power

required to acquire, process, and transmit images [7]. How-

ever, the information they extract from the scene is limited.

In this paper, we investigate whether the intensity informa-

tion can be reconstructed from binary spatial gradient im-

ages in post-processing. This would be useful for tasks re-

quiring a human in the loop, such as video surveillance on a

limited power and bandwidth budget: a low-power system

can run continuously, and when an event of interest is de-

tected, a human observer inspects the intensity image. This

data can be gathered by triggering a more power-hungry

sensor [9], but it would be more efficient to extract it di-

rectly from the binary data itself. We argue that, in addi-

tion to reducing the bandwidth requirements, moving power

consumption from sensing to post-processing scales better

with Moore’s law, as digital processing becomes cheaper

and faster.

We show that intensity reconstruction from single-shot,

spatial binary gradients, is indeed possible. An example of

an image captured with a prototype camera, and the corre-

sponding gray-scale image reconstructed with our approach
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Figure 2: A traditional image (left) and an example of real

spatial binary gradient data (right). Note that these pictures

were taken with different cameras and lenses and, thus, do

not exactly match.

are shown in Figure 1. To the best of our knowledge, we are

the first to reconstruct intensity images from binary gradient

data captured with this type of camera, in part because this

is an ill-posed problem: both the direction and the sign of

the gradient are lost (Section 3.1).

We utilize a deep autoencoder network to recover the

missing intensity information. We perform our formal tests

simulating the output of the sensor on existing datasets, but

we also validate our findings by capturing real data with

the prototype developed by Gottardi et al. [7], which imple-

ments this acquisition scheme. We believe that this paper

presents a compelling reason for using binary spatial gradi-

ent cameras in certain computer vision tasks to reduce the

power and bandwidth consumption for embedded systems.

2. Related Work

We describe the prior art in terms of the gradient cameras

that have been proposed, and then in terms of computer vi-

sion algorithms developed for this type of data.

Gradient cameras can compute spatial gradients ei-

ther in the optical domain [4, 31, 16], or on-board the

image sensor, a technique known as focal plane process-

ing [3, 17, 20, 10]. The gradients can be either calculated

using adjacent pixels [7], or using current-mode image sen-

sors [8]. Some cameras can also compute temporal gradient

images, i.e. images where the active pixels indicate a tem-

poral change in local contrast [7, 18]. Most of these gradient

cameras have side benefits of fast frame rates and reduced

data bandwidth/power due to the sparseness of gradients in

a scene. In fact, the camera by Lichtsteiner et al. can read

individual pixels when they become active [18]. Moreover,

the fact that gradient cameras output a function of the dif-

ference of two or more pixels, rather than the pixel values

themselves, allows them to deal with high-dynamic-range

scenes.

Applications of gradient cameras were first exposited

in the work by Tumblin et al., who described the advantages

of reading pixel differences rather than absolute values [25].

The appealing benefits of gradient cameras spurred the in-

terest of the computer vision community, which adapted a

number of traditional techniques to this new type of data.

For instance Weikersdorfer et al. proposed to use SLAM

with DVS cameras [27], and O’Connor et al. coupled them

with spiking networks for real-time classification [21]. An-

other area that recently received a great interest is that of

intensity reconstruction from sparse gradient data. This

is often coupled with a vision task: Kim et al. proposed

a method to perform simultaneous intensity reconstruction

and object tracking [13], Bardow et al. combined optical

flow and intensity reconstruction [1], Barua et al. did face

detection and intensity reconstruction [2], and Kim et al.

performed simultaneous depth, localization, and intensity

reconstruction [14].

The intensity reconstruction offered by these methods is

impressive, but requires two assumptions. First, the camera,

the scene, or both must be dynamic: the sensor does not out-

put any information otherwise. Second, several consecutive

frames must be available to perform the reconstruction: we

are not aware of any method that can perform intensity re-

construction from a single frame.

In contrast, we focus on spatial binary gradients, which

work for static scenes as well as dynamic ones. Our method

can reconstruct intensity images from a single binary gradi-

ent frame.

3. Method

In this section, we first outline the binary spatial gradi-

ent camera’s operation based on the sensor by Gottardi et

al. [7], which we use as a reference implementation for a

system that captures this type of data. We then describe our

reconstruction approach, and show results on data we gen-

erated with our simulator. Finally we verify our findings on

data captured with a real prototype.

3.1. Background: Operation and Power Estimate

With spatial binary gradients, we refer to cameras for

which a pixel becomes active when a local measure of con-

trast is above threshold. Specifically, for two pixels i and

j, we define the difference ∆i,j = |Ii − Ij |, where I

is the measured pixel’s brightness. We

also define a neighborhood ν consisting

of pixel P and the pixels to its left, L,

and top, T (see inset). The output at

pixel P will then be:

GS(P) =

{

1 if max
i,j∈ν

∆i,j > T

0 otherwise
, (1)

where T is a threshold set at capture time. The output of this

operation is a binary image where changes in local spatial

contrast above threshold yield a 1, else a 0, see Figure 2.

Note that Equation 1 is an approximation of a binary lo-

cal derivative: ∆T,L alone can trigger an activation for P,

even though the intensity at P is not significantly different
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from either of the neighbors’. It can be shown that the con-

sequence of this approximation is a “fattening” of the im-

age edges by a factor of roughly
√
2 when compared to the

magnitude of the a gradient computed with regular finite

differences.

Also, because the sign of the derivative is lost, a dark ob-

ject against a bright background would yield the same exact

binary spatial gradient as a bright object on a dark back-

ground. In the context of reconstructing the intensity image,

this ambiguity prevents the methods of surface integration

from working, even with known boundary conditions.

The advantage of this formulation is that it can be imple-

mented efficiently in hardware, leading to significant power

savings. The power consumption for the sensor by Gottardi

et al. [7] can be approximated by the sum of two compo-

nents. The first, independent of the actual number of ac-

tive pixels, is the power required to scan the sensor and

amounts to 0.0024µW/pixel. The second is the power re-

quired to deliver the addresses of the active pixels, and is

0.0195µW/pixel [6]. While the number of active pixels is a

function of the scene, Gottardi et al. [7] report that for typ-

ical scenes this number is usually below 25% (in the data

we captured, we actually measured that slightly less than

10% of the pixels were active on average). At 30fps, this

power corresponds to 7.3pJ/pixel. A modern image sen-

sor, for comparison, is over 300pJ/pixel [24]. While these

numbers are to be taken as rough estimates, they do offer an

insight on the power savings that one can reasonably expect.

3.2. Recovering Intensity Information from Binary
Spatial Gradients

We take a deep learning approach to intensity reconstruc-

tion and, specifically, we use an autoencoder (AE) architec-

ture, see Figure 3. Autoencoders learn a lower-dimensional

representation of a signal, and thus are particularly well-

suited to learn priors on the distribution of the data and the

noise [26]. This is a very attractive feature that helps with

our problem being intrinsically ill-posed (Section 3.1).

In our experiments, we sought to find a compromise be-

tween the AE’s depth and the accuracy of the results. The

resulting architecture comprises 5 subsampling units for the

encoding stage, each followed by a max-pooling layer. The

decoding stage is symmetric with 5 units, each followed by

upsampling instead of max-pooling. For both the encoding

and the decoding stages, these units consists of 2 convolu-

tional layers and leaky ReLUs. Finally every convolutional

layer consists of 100 filters of kernel size 3× 3.

Because AEs significantly downsample the data, they

sometimes produce blurry results. We addressed this prob-

lem by using skip-connections [11], which propagate high-

frequency information directly to the decoding stage from

the appropriate encoding unit.

The loss function has a strong impact on the quality of

INPUT	

=	Conv	(3x3)	+	Leaky	ReLU	+	Max	Pooling	

=	Upsampling	+	Concatena@on	(SKIP	Connec@on)	+	

Conv	(3x3)	+	Leaky	ReLU	+	Conv	(3x3)	+	Leaky	ReLU	

Figure 3: The architecture of the autoencoder used to re-

construct intensity information from spatial binary gradient

images.

the results [30]. Therefore, we tested several loss functions

including ℓ2, ℓ1 and total variation regularization. For the

purpose of our reconstruction, these alternative losses did

not produce better results than those produced by ℓ1, which

is why we chose it as our loss function.

Finally, we used ADAM [15] for optimization with

learning rate λ = 0.00001, and found that the learning

schedule did not have a significant impact on convergence.

3.3. Training Data

To generate a sufficiently large amount of data to train

our AE, we wrote a simulator of the camera described in

Section 3.1. We empirically tuned the threshold T to match

the appearance of the simulated and real data, which we

captured with a prototype camera. T typically varied from

0.05 to 0.1 for pixel intensities normalized to one. We were

then able to leverage existing datasets to create pairs of gra-

dient/ground truth images.

We used TensorFlow and Keras to construct our net-

works. All experiments were performed on a cluster of

GPUs with NVIDIA Titan X’s or K80s.

We trained our AE on two datasets for faces, BIWI [5]

and WIDER [28], and also the LSUN [29] dataset for indoor

and outdoor scenes.

BIWI: The BIWI face dataset, contains 15,000 images

of 20 subjects, each accompanied by a depth image, as well

as the head 3D location and orientation [5]. We removed

two subjects completely to be used for testing.

WIDER: We also trained the network on the WIDER

face dataset, a collection of 30,000+ images with 390,000+

faces [28]. The WIDER dataset, does not contain repeated

images of any one person except for a few celebrities which

we remove from our testing set, guaranteeing that no test

face is seen by the network during training. We extracted

face crops by running a face detection algorithm [23], and

resized them to 96x96, by either downsampling or upsam-

pling, unless the original size was too small.
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LSUN: The LSUN dataset is an extremely large collec-

tion of images divided in several categories [29]. We used it

to verify the ability of our network architecture to learn data

from a more diverse distribution. We focused on one indoor

(‘bedroom’) and one outdoor (‘church’) category. We use

roughly 100k images for each dataset. Note that the size

of the dataset comes at a cost: there are several outlier im-

ages, and many of the other images have artifacts, such as

watermarks or overlaid text.

4. Experimental Results

We reconstruct intensity images from both simulated

data, and from the actual output of a prototype camera that

implements the algorithm described in Section 3.1.

Regarding the simulated data, a note on the threshold T

used in Equation 1 is in order. Similarly to exposure time

for traditional cameras, T should be adapted to the content

of the image so that the binary gradients are not too sparse,

Figure 6(j), nor too crowded, Figure 7(b). However, instead

of defining an arbitrary algorithm to select T for each image

independently, we opted to empirically set a unique thresh-

old for each one of the datasets. The quality of the recon-

struction degrades when T significantly deviates from its

optimal value, leading us to believe that a per-image thresh-

old would only improve the results. Below we report the

threshold we used for each dataset.

4.1. Simulated Data

Figure 4 shows the reconstruction on one of the two test-

ing subjects from the BIWI dataset. The threshold T used

was 0.05 for this dataset. As mentioned above, the solu-

tion is not unique given the binarized nature of the gradient

image, and indeed the network fails to estimate the shade

of the first subject’s sweater. Nevertheless, the quality is

sufficient to identify the person in the picture, which is sur-

prising, given the sparseness of the input data.

Figure 5 shows results of the reconstruction for the

WIDER dataset. The threshold T used was 0.09. Note that

the failure cases are those where the quality of the gradients

is not sufficient, Figure 5(i), or the face is occluded, Fig-

ure 5(j). The rest of the faces are reconstructed well, once

again, allowing to identify the person.

Figure 6 shows some reconstructed images for the ‘bed-

room’ category of the LSUN dataset. The threshold T =
0.07 for this dataset. This dataset presents a more signifi-

cant variability in terms of the actual image content, see for

instance Figure 6(j). This weakens the prior on the expected

image content. Nevertheless, our network produces reason-

able reconstructions whether the input portraits a relatively

standard bedroom setup, or when it contains less common

subjects, such as kids (i) or even a cat (j).

Figure 7 shows some reconstructed images for the

‘church’ category of the LSUN dataset. The threshold

Figure 4: Figure of the intensity reconstruction (middle

pane) on the binary data (left pane) simulated from the

BIWI dataset [5]. The ground truth is on the right.

T = 0.07 for this dataset. This is probably the most dif-

ficult dataset for the network due to the variability of the

data. Also the assumption that a single threshold can be

used for the whole dataset works more poorly due to the

varying dynamic range of different images, causing several

binary gradient images to be overly-active. This reflects in

a poorer quality of the reconstruction.

4.2. Real Data

We validate our findings by running experiments on bi-

nary gradient images captured with the actual prototype

camera described by Gottardi et al. [7]. The spatial res-

olution of this camera is 128x64 pixels, which limits the

quality of the spatial gradients. We use the widest aperture

setting allowed by the lens to gain the most light, though at

the cost of a shallower depth of field, which we did not find

to affect the quality of the gradient image. To validate our

simulator, we also captured a few grayscale images of the

same scene with a second camera set up to roughly match

the field of views of the two. Figure 2, shows a comparison

between a grayscale image and the (roughly) corresponding

frame from the prototype camera. Barring resolution issues,

we believe our simulations match the real data (compare for

instance the real data in Figure 5 and the simulated data in

the second row of Figure 8).

We trained the network on synthetic data generated from

the WIDER dataset at the resolution of 64x64. We then

performed forward inference on the real data. We did not

perform fine-tuning due to the lack of ground truth data—

the data from an intensity camera captured from a slightly

different position, and with different lenses, did not gener-

alize well. While the quality of the reconstruction is slightly

degraded with respect to that of the synthetic data, the faces

are reconstructed well. Figure 1 shows an animation on a

captured binary gradient video. We are reconstructing in-

tensity information from a single frame: we are not enforc-

ing temporal consistency, nor we use information from mul-

tiple frames to better infer intensity. Figure 8 shows a few

static frames from different subjects. Note that despite the

low resolution (these crops are 1.5 times smaller than those

in Figure 5), the face features are still recognizable.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5: Intensity reconstruction (bottom row) on the binary data (middle row) simulated from the WIDER dataset [28]. The

ground truth is in the top row. Note that our neural network is able to recover the fine details needed to identify the subjects.

We observed that failure cases happen when the gradients are simply too poor (i) or the face is occluded (j).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6: Intensity reconstruction (bottom row) on the binary data (middle row) simulated from the ‘Bedroom’ category

from the LSUN dataset [29]. The ground truth is in the top row. The dataset is very large, but the images it contains are not

very carefully chosen, thus allowing for spurious subjects, such as the cat in (j). However, even in such cases, our network

produces a reasonable reconstruction so long as the gradients are correctly captured, such as the kids in (i) or cat in (j).

We find that the quality of the reconstruction of any sin-

gle frame varies: some reconstructions from real data allow

the viewer to determine the identity of the subject, others

are more similar to average faces.

5. Discussion and limitations

We believe that our intensity reconstruction results are

good, but they can still be improved. While the ability to

reconstruct intensity from a single image is important, in-

corporating temporal information may be beneficial. This

could be achieved by using a recurrent network that works

on sequences of frames. Note that this is different from

using temporal gradients, though the network can learn to

generate them, because of the issues with static and dy-

namic content. Our reconstruction leverages the fact that

we can learn a prior about the data. This could lead to fail-

ure when the scene is significantly different from what the

network was trained on, although we have observed that the

network still produces reasonable results even in those cir-

cumstances (as seen in Figure 6(i)). Finally, aside from try-

ing to learn the more likely color from the training data, the

network cannot disambiguate the intrinsic ill-posedness of

the binary gradient data.

6. Conclusion

We have proposed to use an autoencoder network to

learn the prior distribution of a specific class of images

to solve the under-constrained problem of recovering in-

tensity information from binary spatial edges. We are

able to achieve visually plausible reconstructions for sev-

eral classes of images simulating the binary gradient data

on existing image datasets. We also validate our method on
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 7: Intensity reconstruction (bottom row) on the binary data (middle row) simulated from the ‘Church’ category from

the LSUN dataset [29]. The ground truth is in the top row.

Figure 8: Intensity reconstruction result inferred by the net-

work described in Section 3.2 and trained on the WIDER

simulated data. The top row shows 64x64 face crops cap-

tured with the prototype camera, the bottom the correspond-

ing reconstructed images. While the quality is not quite on

par with the intensity reconstructions, it has to be noted that

the resolution of the crops in Figure 5, is 96x96, i.e. 1.5x

larger.

real images taken from a prototype camera.

There are several avenues for future research in gradi-

ent cameras. Recent work in GANs has shown success

in converting sketches or edge maps to full colored im-

ages [12] which may yield better intensity reconstructions

for our problem. In addition, collecting a large dataset of

registered RGB and gradient images would enable better

machine learning and allow us to investigate the use of gra-

dient cameras for classification and other visual recognition

tasks.
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