

Abstract

Convolution Neural Networks today provide the best

results for many image detection and image recognition

problems. The computational complexity and the amount of

parameters learned has increased, yet there is little to no

research on the topic of functional safety for systems

incorporating CNNs. The analysis on false detections due

to random hardware faults concentrates on human made

adversarial examples obtained by adding unrealistic noise

sources over carefully selected images. Redundant

execution of these networks is prohibitive in application

domains where power and price constraints dominate,

pushing for alternate approaches. In this paper we

investigate functional safety aspects for a road labeling

application, a common task in the advance driver

assistance systems. We introduce computationally light

safety checks that reduce the error space significantly, train

a CNN on the Cityscape dataset that reaches 93% mean IU

(intersection over union) and use Monte Carlo simulations

to assess the impact of single event upset random hardware

faults. The results show that the networks based on

convolution and ReLU (rectified linear unit) have some

intrinsic robustness and that together with additional

constraints strong function safety claims can be made. We

compare also the diagnostic coverage between floating

point and fixed point implementation of CNNs and

summarize key safety features needed to achieve a high

diagnostic coverage.

1. Introduction

Convolutional neural networks have been driving major

advances in whole image classification [1, 2, 3], semantic

segmentation [4] and object detection [5, 6]. The advances

in accuracy were achieved by dedicating more and more

parameters [1, 2] or more sophisticated and deeper

networks [3]. The growing amount of data and compute

capability of the training infrastructure allows for growing

the parameter space in the coming years and for better and

better accuracy.

The hardware architectures used to deploy CNNs today

are based on parallel computation engines that are limited

mainly by memory bandwidth constraints. For example, the

well-known AlexNet structure [1], for image input

resolution of 227x227 pixels needs 721 Mega Multiply

Accumulate Operations/frame and 224MB/frame data

transfers (considering an ideal, one time read that does not

really apply for all existing architecture e.g. GPUs [7]).

In embedded systems the computation and bandwidth

resources are limited by the power consumption

requirements that follow naturally from temperature profile

of the overall system. The domain is also very competitive,

pushing for efficient and cost effective implementations.

Functional safety aspects are addressed in a mix of

software and hardware, yet target mainly the clock domain

of the SoC, power domain, permanent errors through

periodic checks and soft errors through parity and error

correction codes. At the software level a multi-path

algorithmic approach is taken, where machine learning

algorithms are combined with optical flow and stereo

disparity for a more reliable detection. Temporal

consistency of the detections, redundancy in the key areas

as well as a code tracing mechanisms insure that errors do

not make their way to erroneous and dangerous automated

driving actuations. These methods heavily rely on the driver

being alert to detect eventual false negatives and are

programmed to give control to the driver in case of failure.

The fully automated driving architectures, where such a

safe state is not easily assumable, need to do significantly

better on the functional safety aspects to gain acceptance in

the automotive space (especially now where almost as

many cars are recalled as produced, e.g. 2015 and 2016).

In this paper we introduce a road labeling convolutional

neural network trained and tested on the Cityscapes dataset

that has lower computational need but still manages to keep

a high mean Intersection over Union (IU) value. We

introduce a mathematical framework of error detection

giving a diagnostic coverage for a certain part of the space

of the effects of random hardware faults. For the remaining

uncovered space of fault effects we perform a Monte Carlo

simulation to assess its dangerousness. Generic error

injection is very hard to implement because of the

significant amount of possible sources; our “safety checks”

allow us to limit this space and test only in a limited

subspace.

Diagnostic mechanism and robustness of safety relevant automotive deep

convolutional networks

Krutsch Robert

Intel

Munich, Germany
Robert.Krutsch@intel.com

Dr. Rolf Schlagenhaft

NXP

Munich, Germany
Rolf.Schlagenhaft@nxp.com

61

The paper is structured as follows: Chapter 2 discusses

some of the prior art, in Chapter 3 the road labeling network

is introduced while chapter 4 discusses the functional safety

related topics.

2. Related Work

The image segmentation task is a well-known and very

often addressed problem in the field of advanced driver

assistance. In 2016 the Cityscapes dataset was introduced

[11] and many publication and approaches, existing and

new, were exercised based on this database. State of the art

road labeling schemes achieve over 95% mean IU but often

compromise on execution speed to achieve better and better

detection performances (e.g. uses VGG [2] , GoogleNet or

AlexNet [1]). We employ a simplified network with only

100000 parameters, dedicated to detecting the road. The

results can be used to generate proposal areas for other

classifiers and reduce the search space and computational

demands for following detectors that need to find small

structures in the image. The need to detect smaller objects

is understandable considering a simple example where for

a camera resolution of 640x480 , focal length 7.5mm and

FoV(Field of View) of 27%, a 30pixel pedestrian is just 4s

away (considering a speed of 55km/h , [13]). Although the

image height has more than doubled in the recent years and

the FoV of the cameras has also increased to cope with use

cases when vulnerable road users enter the drivable path

from the sides the problem of small structure detection is

still of interest.

In the field of functional safety, the ISO26262 [14] gives

guidelines and requirements at the system level, defining

the framework on how hardware and software is built. The

framework does not mandate specific implementation

features, so the designer has the freedom and the

responsibility of how to achieve functional safety for the

final product. In the domain of semiconductors, the

following main fault models have to be considered:

permanent faults that do not vanish (that can have as cause

for e.g. equipment wearout), transient faults that are

unexpected changes due to the physical media, which are

typically short lived. The permanent errors are typically

detected through hardware mechanisms (e.g. logic built-in

self-test) that are beyond the scope of this exposition; we

concentrate on the transient errors since these are more

challenging to detect and handle.

The CNN structures are typically run on massive parallel

hardware accelerators that have tightly coupled memories

(Fig 1). Today’s state of the art implementations have parity

or error correction on the entire path from the DDR memory

to the tightly coupled memory eliminating a significant

amount of possible errors. The errors on the logic side are

either argued away because they might affect single pixels

(e.g. errors in simple image filtering) or excluded through

redundancy or through higher level intelligence about the

overall system. The logic part of the accelerator is always a

gray area where the engineering judgment is used to find

smart diagnostic mechanisms that can lead to high

diagnostic coverages without complete redundancy. This

work proposes such a scheme for the convolutional layer.

In [10] and [12] adversarial examples that lead to

misclassification are produced, yet the papers considers

possible errors that are not seen in practice and take into

account only errors in the input image, ignoring

intermediate layer results. The papers also employ mining

for low confidence classifications to find adversarial

examples more easily.

In [15] a Monte-Carlo testing approach in a simulated

environment is proposed. The tests are conducted at system

level without decomposition into building blocks. Due to

the large error spaces of individual blocks and interaction

of elements such methods are impractical for modern

architectures. Our paper concentrates on CNN

implementation only and combines mitigation mechanisms

with Monte-Carlo testing to limit the simulation space.

Another approach taken by the industry is based on

“Brute Force”, multiple cars drive millions of miles with

the system under test. While this methods are necessary for

algorithmic development they are not statistically relevant

from functional safety perspective considering the error

rates and possible dangerous error space. An increase in

significance could be achieved if error injection is

performed and the system is compared to the error free

prior, yet even so the overall system complexity would

allow only limited claims on system coverage.

Figure 1: Hardware accelerator – abstract block diagram

3. Road Labeling

To be able to run the Monte Carlo simulations quicker and

to be able to deploy the network on low-end embedded

hardware we have decided to investigate lower complexity

networks for the task of the road labeling. For the training

process we have used the Cityscapes database [11] but have

decimated the image size by a factor of two in each

dimension. During the training process we have

experimented with various networks ranging from 6 giga

62

multiply accumulate for 30 frames per second up to 35 giga

multiply accumulate; all networks achieved over 90% mean

IU on the test dataset of Cityscapes for the road class (note,

our network is used only to discriminate road from non-

road and does not discern between any other classes). We

have decided to use for this investigation the network

presented in Table 1 since it is a good compromise of speed

and accuracy. The mean IU obtained on the down-sampled

version of Cityscape is around 93%. We have trained the

network with a learning rate of 10e-9 for 20000 iterations

and decreased it to 10e-10 afterwards while keeping the

deconvolution layers with constant bilinear up-sampling

coefficients. Learning the deconvolution coefficients did

not bring a significant gain in accuracy. Note that the

network uses 3 up-sampling layers with smaller kernels and

not one layer with a bigger kernel, the reason behind is

embedded hardware implementation constraints where

excessive big kernels can lead to inefficiencies. Some of the

results of the network can be visualized in Figure 2.

Figure 2: Output of the road labeling network. With green the

detected road is marked in the image.

Layer Kernel

Size

Stride Channels

Image - - 3

Conv1+Relu 5x5 2 32

Conv2+Relu 5x5 2 32

Conv3+Relu 5x5 2 32

Conv4+Relu 5x5 1 48

Conv5+Relu 5x5 1 2

Deconv1 4x4 2 2

Deconv2 4x4 2 2

Deconv3 4x4 2 2

Table 1: CNN network for road labeling

4. Functional safety aspects

4.1. Discussion on error sources

Considering the typical hardware architecture of vision

accelerators and the task of CNN forward implementation

we identify the following main error categories:

- Error in the code and control flow

o Errors in the code

o Errors in state machines and hardware

pipelines during execution

- Error in data processing

The errors in the code and control flow can be reasonably

well detected by protecting the memories and by

augmenting the normal data with test patterns. At the end

of the processing, consistency checks can be done by

another hardware engine, for e.g. checking a few of the

outputs, checking that the amount of lines that were

supposed to be processed were also processed. Detection of

illegal instruction, watchdog monitoring and proper

handling of the interconnect protocol at the SoC level are

also common mechanisms.

The processing faults are more challenging to detect,

contain and potentially correct. The errors that might appear

in memories can be detected and eventually corrected when

using error correction mechanisms while the errors in the

processing hardware (e.g. registers, multipliers, adders) are

mainly addressed through redundancy or are ignored (for

certain algorithms a single pixel error does not have any

impact). Another approach, that is applicable only for

certain classes of algorithms, is based on consistency

checks having in mind possible bounds of the computation

performed. We present such an approach for convolutional

layers, by employing a scheme that does not use any

multiplication. The lack of multiplications is essential for

embedded hardware due to the significant size of the

multiplier compared to comparators and adders (a

multiplier is more than 20 times bigger than an adder).

When analyzing possible fault sources for convolution

layers we find the following possible fault categories:

- errors in weights

- errors in feature maps or input data

- errors in intermediate accumulators

While the most frequent transient faults are single and

dual bit faults it is very difficult to limit the space of

resulting errors after the computation is done; dependent on

input data, network coefficients and hardware architecture

the error might manifest itself in the output as any arbitrary

number in the possible value range. One interesting aspect

to note is exactly the way numbers are represented, for

example the fixed point representation has equally spaced

numbers while for floating point the numbers are

concentrated around zero and the gap between numbers

increases exponentially. This observation is especially

interesting when computing the coverage of a certain test

based on validity ranges, for example bounding an error

between -0.5 and 0.5 for single precision floating point

means that the coverage is only around 51% (computed as

numbers outside the interval divided by all possible values).

Such small singular errors might have little to no effect on

CNNs, especially if the network is trained also on samples

with synthetic noise added yet we investigate this topic

through Monte Carlo simulations.

63

Another interesting observation on the robustness to

errors of popular CNN architectures is the error masking

behavior of the RELU function. The layer has the

interesting property of masking errors if the input is

negative and the error does not change the state of the sign

bit. Thresholds over the output confidence have similar

effect, yet harder to trace back to induvial neurons in the

network.

It is also natural to expect that the impact on the overall

result depends also on where the error manifests itself (if it

is in one of the first layers or if it is in the last layers).

Another interesting aspect is if the network exhibits some

“attention” patterns; if errors that influence the results in a

certain part of the image are propagated selectively (e.g. the

road in the Cityscape dataset is not present everywhere in

the image).

4.2. Error detection mechanism

The proposed detection mechanism is based on checking

whether the processing result lies within a mathematically

determined valid range. In the following the constraints are

elaborated and their test coverage is investigated.

Lemma 1. Given a convolution function of form (1)

there exists a real value Q such that (2) holds true (we have

used the Einstein summation convention for compactness). ݂ሺݔሻ = ௜ݔ௜ݓ + ܾ, ݅ = ͳ, ܰതതതതത; ݂: ܴே → ܴ										ሺͳሻ					 |݂ሺݔሻ − ݂ሺݔ଴ሻ| ≤ ܳ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ 																			ሺʹሻ

))f(x,(x 00
 – is called a seed, can be any tuple from the

input output domain

Proof - The inequality is trivial to prove, and follows

immediately from the triangle inequality.

 หݓ௜ݔ௜ + ܾ − ௜଴ݔ௜ݓ − ܾห ≤ ෍ ௜ݔ||௜ݓ| − ௜଴|ேݔ
௜ୀଵ

≤ maxሺ|ݓ௜|ሻ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ = ܳ ෍หݔ௜ − ௜଴หேݔ

௜ୀଵ 											ሺ͵ሻ

Where ܳ ≡ maxሺ|ݓ௜|ሻ

Lemma 2. The interval where possible errors are not

detected by (2) is bounded and the bounds depend on how

the seed is selected, given an input space.

The lemma follows the intuitive question, what errors

can be detected by the inequality; for what part of the error

space does the inequality still hold?

We consider the error as an additive value over the true,

uncorrupted, output: ௘݂௥௥ሺݔሻ = ݂ሺݔሻ + ݁																																																ሺͶሻ

We transform the inequality into a function that depends

on the error: ܨሺ݁ሻ ≡ |݂ሺݔሻ + ݁ − ݂ሺݔ଴ሻ| − ܳ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ 					ሺͷሻ

Lemma 2 can then be rephrased as finding e for that

0F(e) ≤ . For simplicity we use the following notation: ܣ ≡ ݂ሺݔሻ − ݂ሺݔ଴ሻ; ܤ ≡ ܳ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ 															ሺ͸ሻ

The inequality is trivial to solve, for space reasons we

give here only the result:

],[ABABe +−∈ (7)

As can be observed from (7), the interval where the

inequality does not detect the potential error, is bounded

and it can reduce the possible error space significantly. The

size of the interval depends on A, the smaller this value is

the tighter the inequality holds. This allows for constructing

a lookup table with seeds that can minimize the error

interval size once a mechanism for selecting the seed is

found.

Lemma 3 Minimizing the cumulative error for the entire

input space can be done for each input dimension separately

and is achieved by halving the input range.

The size of the interval from (7) is: AD 2≡

For a one dimensional case the problem can be rewrite as

= dxDM
x0

min ; in the multidimensional case the

integral is multidimensional, depending on all the ix .

For the simple one dimensional case, the problem is

trivial and considering an interval of [0, 1] for the input

values we can see that the optimal value for
0x is 0.5

(follows from eq. (8)).

)5.0)((min

))(2)(2(min

020

1

0

0

0

0

0

0

0

+−=

−+−= 
xxM

dxxxQdxxxQM

x

x

x (8)

For the multidimensional case, given the fact that there

are no cross dimension factors, the integral can be rewritten

as a sum of single dimension integrals. Each integral is

positive, being made out of absolute values, such that the

minimum is achieved where the minimum of the individual

elements is found ((9) for a normalized input space).



  

=

=

=

=

N

1i

i

0

i

1

N

1i

0

i

dx |-|min2

..|-|2Q..min

0

0

xxQM

dxdxxxM

i
x

Ni
x

 (9)

Note that for an un-normalized input space the individual

integrals will enter with a factor, so placing the seed smartly

64

for this un-normalized spaces has a high impact in the

overall tightness of the inequality, influencing the error

detection capabilities.

Lemma 3 assumes a white noise like distribution of the

data in the interval, each value has an equal probability of

being found. In practice, this is not often the case and it is

only natural if we think about the image space where the

sky is typically in the upper part of the image, the road on

the lower part, etc. The number representation and

quantization introduces also this types of effects, making

the space curved (e.g. floating point number have an

exponential representation with more precision closer to

zero and less once going to larger numbers).

4.3. Error coverage

One of the first questions that arises is the coverage of

the tests given the possible error space. The coverage is

computed as:

[%]
_

)(
1

tionrepresentanumber

Dycardinalit
C −= (10)

Where D is the set where errors are not detected while

the number representation is the total amount of numbers

that can be represented (depends on the bit-depth and

representation scheme). We have computed the average

value of C for the first convolution layer considering the

following assumptions (Table 2):

- [Case1] Floating point numbers representation; the seed

value is set in the middle of the value ranges observed for

the convolution maps

- [Case2] Floating point numbers representation; the seed

value is set on the average value of the convolution map

- [Case3] Fixed point number representation (Q15

representation for inputs and weights and Q7.24 for the

output feature maps); the seed value is set on the average

value of the convolution maps. The number

representation was chosen based on following

considerations : weights are between -1 and 1 (Q15 gives

the best fractional fidelity for this range) and filter sizes

are 5x5x3 demanding at least 7 bit integer part for

guaranteed overflow less operations.

Case 1 Case 2 Case 3

45% 47% 97%

Table 2: Average coverage for convolution 1

As can be observed the average coverage for the floating

point representation is very low (considering desired

diagnostic coverage of over 90%) due to the fact that the

numbers are concentrated around zero and our bounding

interval contains this region very often. The floating point

representation , due to the exponential form, pushes the

optimal seed value towards zero while for fixed point the

selection of the seeds is more natural and is done based on

the spikes of the distribution of occurrence of values. The

coverage for floating point could be improved if we could

show that the algorithm is robust to small errors; for e.g. if

numbers in the range [-0.5, 0.5] have low impact in the

output. To test this supposition we inject errors from this

interval and asses the output of the network. For the fixed

point representation minimum coverage observed was

around 77%. The coverage tests are based on ~1.6 billion

samples, generated with the test set of the Cityscapes

dataset.

4.4. Error injection

We have injected over 500 million errors over all

possible positions in the feature maps considering the

following test cases:

- [TC1] errors are injected in the interval where the test

does not offer any coverage, considering a placement of

the seed as in [Case 1]

- [TC2] errors are injected in the interval [-0.5,05]

Only one single error at a time is injected and the final

output of the network is compared with the output without

error injection. Errors are generated based on a normal

distribution random number generator. The implementation

is done based on single precision floating point number

representation and the input statistics of the images can be

visualized in the histograms in Figure 3.

Figure 3: Cumulated histograms over all input images used in the

Monte Carlo simulation.

We consider that a 1-2% degradation in detection will

minimally impact the next processing elements that estimate

65

the road model and generate the region of interest for the

object classifiers. This assumption is generally accepted for

RANSAC (random sample consensus) model estimation

where even a higher amount of outliers could be rejected.

We are interested to see the number of errors and the

position where the errors were injected in the feature map. To

better visualize the results we construct a grid of the same size

as the feature map; in each cell of the grid we cumulate the

errors in the output when injecting noise in that location in the

feature maps (e.g. for cell position (100,100) corresponding to

the first convolution layer we cumulate the output errors

coming from injecting errors in feature map positions (100,

100, 1:32), where 32 represents the number of output feature

map of that layer). The results, for the two test cases can be

visualized in Figure 4; the grids are normalized with their

highest values to bring them in the image visual space. An

interesting aspect of the results is the fact that the network

seems to be less affected by errors injected in the upper part

of the image (Figure 4a), suggesting that it learned to suppress

this area more heavily than others. This is intuitively

consistent with the fact that the road is placed in the lower part

of the images as can be observed in Figure 5 and that almost

in all images the sky has a similar texture. In Figure 4, stripe

patterns can be observed that follow the dimension of the

kernel and stride used in the network; the errors are spread into

the neighbors by the convolution filters, according to the

receptive field size.

a)

b) c) d) e)

Figure 4: Error grids, lighter gray values represent more errors

manifested in the output when injecting errors in that location a)

First convolution layer, b) Second convolution layer, c) 3rd

convolution layer, d) 4th convolution layer, e) 5th convolution

layer. The results were obtained by injecting over half a billion

errors, spread over all possible elements of the feature map.

Figure 5: a) Cumulated area in the images of the Cityscapes

dataset where the road is present; marked with gray color in image

above

Another aspect that we would like to understand is if the

errors in the first convolution layers have a higher or lower

impact than in later convolution layers. We construct

histograms with the cumulate errors obtained from the

different layers and normalize them by the number of test

we have performed and also record the maximum amount

of changes in the output label mask due to an error (Figure

6). As can be observed, the errors in the first layers have

less average impact (Figure 6a) yet can have high individual

impact as can be observed in Figure 6b where more output

pixel labels have been changed due to errors injected in the

first layers.

a)

b)

66

Figure 6: a) Average output errors for each of the five

convolution layers; b) Maximum amount of pixels in the output

mask affected by an error.

Note that the amount of errors introduced can give only

a hint on the overall influence of soft errors. As can be

observed in Figure 4 the effect of error injection is uniform

and one would expect this if the data set and injection

patterns would have reasonable size, yet they do not cover

all the possible error space (for a -0.5, 0.5 range and a single

image, considering only the first convolution layer we

would need to inject over 22 trillion errors to cover only 1%

of the error space). What can be also observed is that the

fixed point variant has a better out of the box coverage than

the floating point counterpart due to the compression of the

dynamic range around zero.

For TC2 we have injected noise between [-0.5, 0.5] from

a uniform distribution. Similar to TC1 we have aggregated

the data in form of grids (Figure 7) and also computed the

average pixels selected and the maximum pixel affected by

the error injection (Figure 8). We can observe that the

average and maximum values decrease compared to TC1

yet the amount of pixels affected is significant (more than

3%) in certain cases and needs some careful assessment if

it is still usable for the next processing steps.

a)

b) c) d) e)

Figure 7: Error grids, lighter colors represent more errors

manifested in the output when injecting errors in that location a)

First convolution layer, b) Second convolution layer, c) 3rd

convolution layer, d) 4th convolution layer, e) 5th convolution

layer. The results were obtained by injecting over half a billion

errors, spread over all possible elements of the feature map.

a)

b)

Figure 8: a) Average output errors for each of the five

convolution layers; b) Maximum amount of pixels in the output

mask affected by an error.

5. Conclusions and future work

In this paper we have introduce a computationally light

network for road segmentation and studied generic

approaches for functional safety tailored to CNN

architectures. We have introduced a mitigation technique

that has low computational requirements and that gives

good coverage numbers for fixed point implementations.

For a larger deployment and test the infrastructure of error

injection needs to be improved. We have used the Caffe

framework that could be extended with error injection

layers that would restrict the computation only to the

feature map points affected by an error (only in the

receptive affected); in our implementation we run the

complete computation.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet
classification with deep convolutional neural networks. In NIPS,
2012.

[2] Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep
Residual Learning for Image Recognition. In CoRR,
abs/1512.03385, 2015.

[4] Jonathan Long et al., Fully Convolutional Networks for Semantic
Segmentation. In CoRR, abs/1411.4038, 2014.

[5] Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
LeCun. Overfeat: Integrated recognition, localization and detection
using convolutional networks. In ICLR, 2014

[6] Ross B. Girshick et al,. Rich feature hierarchies for accurate object
detection and semantic segmentation. In CoRR, abs/1311.2524,
2014.

[7] Robert Hochberg, Matrix Multiplication with CUDA - A basic
introduction to the CUDA programming model, 2012

[8] GPU - Based Deep Learning Inference: A Performance and Power
Analysis, Whitepaper, November 2015.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

[10] I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013. 1, 5, 7, 8

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.
Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes
Dataset for Semantic Urban Scene Understanding," in Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016

67

[12] Anh Nguyen et. all .Deep Neural Networks are Easily Fooled:
High Confidence Prediction for Unrecognizable Images. arXiV
preprint arXiV:1412.1897v4, 2015

[13] Piotr Dollar et all, Pedestrian Detection : A Benchmark . CVPR 2009

[14] ISO26262 – Road Vehicle Functional Safety

[15] Daniel Meltz , Hugo Guterman Verification of Safety for
Autonomous Unmanned Ground Vechicles, 2014 IEEE 28-th
Convention of Electrical and Electronics Engineers Israel

68

