
 

 

 

Abstract 

Convolution Neural Networks today provide the best 

results for many image detection and image recognition 

problems. The computational complexity and the amount of 

parameters learned has increased, yet there is little to no 

research on the topic of functional safety for systems 

incorporating CNNs. The analysis on false detections due 

to random hardware faults concentrates on human made 

adversarial examples obtained by adding unrealistic noise 

sources over carefully selected images. Redundant 

execution of these networks is prohibitive in application 

domains where power and price constraints dominate, 

pushing for alternate approaches. In this paper we 

investigate functional safety aspects for a road labeling 

application, a common task in the advance driver 

assistance systems. We introduce computationally light 

safety checks that reduce the error space significantly, train 

a CNN on the Cityscape dataset that reaches 93% mean IU 

(intersection over union) and use Monte Carlo simulations 

to assess the impact of single event upset random hardware 

faults. The results show that the networks based on 

convolution and ReLU (rectified linear unit) have some 

intrinsic robustness and that together with additional 

constraints strong function safety claims can be made. We 

compare also the diagnostic coverage between floating 

point and fixed point implementation of CNNs and 

summarize key safety features needed to achieve a high 

diagnostic coverage. 

 

1. Introduction 

Convolutional neural networks have been driving major 

advances in whole image classification [1, 2, 3], semantic 

segmentation [4] and object detection [5, 6]. The advances 

in accuracy were achieved by dedicating more and more 

parameters [1, 2] or more sophisticated and deeper 

networks [3]. The growing amount of data and compute 

capability of the training infrastructure allows for growing 

the parameter space in the coming years and for better and 

better accuracy.  

The hardware architectures used to deploy CNNs today 

are based on parallel computation engines that are limited 

mainly by memory bandwidth constraints. For example, the 

well-known AlexNet structure [1], for image input 

resolution of 227x227 pixels needs 721 Mega Multiply 

Accumulate Operations/frame and 224MB/frame data 

transfers (considering an ideal, one time read that does not 

really apply for all existing architecture e.g. GPUs [7]).  

In embedded systems the computation and bandwidth 

resources are limited by the power consumption 

requirements that follow naturally from temperature profile 

of the overall system. The domain is also very competitive, 

pushing for efficient and cost effective implementations. 

Functional safety aspects are addressed in a mix of 

software and hardware, yet target mainly the clock domain 

of the SoC, power domain, permanent errors through 

periodic checks and soft errors through parity and error 

correction codes. At the software level a multi-path 

algorithmic approach is taken, where machine learning 

algorithms are combined with optical flow and stereo 

disparity for a more reliable detection. Temporal 

consistency of the detections, redundancy in the key areas 

as well as a code tracing mechanisms insure that errors do 

not make their way to erroneous and dangerous automated 

driving actuations. These methods heavily rely on the driver 

being alert to detect eventual false negatives and are 

programmed to give control to the driver in case of failure. 

The fully automated driving architectures, where such a 

safe state is not easily assumable, need to do significantly 

better on the functional safety aspects to gain acceptance in 

the automotive space (especially now where almost as 

many cars are recalled as produced, e.g. 2015 and 2016). 

In this paper we introduce a road labeling convolutional 

neural network trained and tested on the Cityscapes dataset 

that has lower computational need but still manages to keep 

a high mean Intersection over Union (IU) value. We 

introduce a mathematical framework of error detection 

giving a diagnostic coverage for a certain part of the space 

of the effects of random hardware faults. For the remaining 

uncovered space of fault effects we perform a Monte Carlo 

simulation to assess its dangerousness. Generic error 

injection is very hard to implement because of the 

significant amount of possible sources; our “safety checks” 

allow us to limit this space and test only in a limited 

subspace. 

 

Diagnostic mechanism and robustness of safety relevant automotive deep 

convolutional networks 

 
Krutsch Robert 

Intel 

Munich, Germany 
Robert.Krutsch@intel.com 

 

Dr. Rolf Schlagenhaft 

NXP 

Munich, Germany 
Rolf.Schlagenhaft@nxp.com 

 

61



 

 

The paper is structured as follows: Chapter 2 discusses 

some of the prior art, in Chapter 3 the road labeling network 

is introduced while chapter 4 discusses the functional safety 

related topics. 

2. Related Work 

The image segmentation task is a well-known and very 

often addressed problem in the field of advanced driver 

assistance. In 2016 the Cityscapes dataset was introduced 

[11] and many publication and approaches, existing and 

new, were exercised based on this database. State of the art 

road labeling schemes achieve over 95% mean IU but often 

compromise on execution speed to achieve better and better 

detection performances (e.g. uses VGG [2] , GoogleNet or 

AlexNet [1]). We employ a simplified network with only 

100000 parameters, dedicated to detecting the road. The 

results can be used to generate proposal areas for other 

classifiers and reduce the search space and computational 

demands for following detectors that need to find small 

structures in the image. The need to detect smaller objects 

is understandable considering a simple example where for 

a camera resolution of 640x480 , focal length 7.5mm and 

FoV(Field of View) of 27%, a 30pixel pedestrian is just 4s 

away (considering a speed of 55km/h , [13]). Although the 

image height has more than doubled in the recent years and 

the FoV of the cameras has also increased to cope with use 

cases when vulnerable road users enter the drivable path 

from the sides the problem of small structure detection is 

still of interest. 

In the field of functional safety, the ISO26262 [14] gives 

guidelines and requirements at the system level, defining 

the framework on how hardware and software is built. The 

framework does not mandate specific implementation 

features, so the designer has the freedom and the 

responsibility of how to achieve functional safety for the 

final product. In the domain of semiconductors, the 

following main fault models have to be considered: 

permanent faults that do not vanish (that can have as cause 

for e.g. equipment wearout), transient faults that are 

unexpected changes due to the physical media, which are 

typically short lived. The permanent errors are typically 

detected through hardware mechanisms (e.g. logic built-in 

self-test) that are beyond the scope of this exposition; we 

concentrate on the transient errors since these are more 

challenging to detect and handle. 

The CNN structures are typically run on massive parallel 

hardware accelerators that have tightly coupled memories 

(Fig 1). Today’s state of the art implementations have parity 

or error correction on the entire path from the DDR memory 

to the tightly coupled memory eliminating a significant 

amount of possible errors. The errors on the logic side are 

either argued away because they might affect single pixels 

(e.g. errors in simple image filtering) or excluded through 

redundancy or through higher level intelligence about the 

overall system. The logic part of the accelerator is always a 

gray area where the engineering judgment is used to find 

smart diagnostic mechanisms that can lead to high 

diagnostic coverages without complete redundancy. This 

work proposes such a scheme for the convolutional layer.   

In [10] and [12] adversarial examples that lead to 

misclassification are produced, yet the papers considers 

possible errors that are not seen in practice and take into 

account only errors in the input image, ignoring 

intermediate layer results. The papers also employ mining 

for low confidence classifications to find adversarial 

examples more easily.   

In [15] a Monte-Carlo testing approach in a simulated 

environment is proposed. The tests are conducted at system 

level without decomposition into building blocks. Due to 

the large error spaces of individual blocks and interaction 

of elements such methods are impractical for modern 

architectures. Our paper concentrates on CNN 

implementation only and combines mitigation mechanisms 

with Monte-Carlo testing to limit the simulation space. 

Another approach taken by the industry is based on 

“Brute Force”, multiple cars drive millions of miles with 

the system under test. While this methods are necessary for 

algorithmic development they are not statistically relevant 

from functional safety perspective considering the error 

rates and possible dangerous error space. An increase in 

significance could be achieved if error injection is 

performed and the system is compared to the error free 

prior, yet even so the overall system complexity would 

allow only limited claims on system coverage. 

 

 
Figure 1: Hardware accelerator – abstract block diagram 

3. Road Labeling 

To be able to run the Monte Carlo simulations quicker and 

to be able to deploy the network on low-end embedded 

hardware we have decided to investigate lower complexity 

networks for the task of the road labeling. For the training 

process we have used the Cityscapes database [11] but have 

decimated the image size by a factor of two in each 

dimension. During the training process we have 

experimented with various networks ranging from 6 giga 
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multiply accumulate for 30 frames per second up to 35 giga 

multiply accumulate; all networks achieved over 90% mean 

IU on the test dataset of Cityscapes for the road class (note, 

our network is used only to discriminate road from non-

road and does not discern between any other classes). We 

have decided to use for this investigation the network 

presented in Table 1 since it is a good compromise of speed 

and accuracy. The mean IU obtained on the down-sampled 

version of Cityscape is around 93%. We have trained the 

network with a learning rate of 10e-9 for 20000 iterations 

and decreased it to 10e-10 afterwards while keeping the 

deconvolution layers with constant bilinear up-sampling 

coefficients. Learning the deconvolution coefficients did 

not bring a significant gain in accuracy. Note that the 

network uses 3 up-sampling layers with smaller kernels and 

not one layer with a bigger kernel, the reason behind is 

embedded hardware implementation constraints where 

excessive big kernels can lead to inefficiencies. Some of the 

results of the network can be visualized in Figure 2. 

    

 
Figure 2: Output of the road labeling network. With green the 

detected road is marked in the image. 

 

 

Layer Kernel 

Size 

Stride Channels 

Image - - 3 

Conv1+Relu 5x5 2 32 

Conv2+Relu 5x5 2 32 

Conv3+Relu 5x5 2 32 

Conv4+Relu 5x5 1 48 

Conv5+Relu 5x5 1 2 

Deconv1 4x4 2 2 

Deconv2 4x4 2 2 

Deconv3 4x4 2 2 

 
Table 1: CNN network for road labeling 

4. Functional safety aspects 

4.1. Discussion on error sources 

Considering the typical hardware architecture of vision 

accelerators and the task of CNN forward implementation 

we identify the following main error categories: 

- Error in the code and control flow 

o Errors in the code  

o Errors in state machines and hardware 

pipelines during execution 

- Error in data processing 

The errors in the code and control flow can be reasonably 

well detected by protecting the memories and by 

augmenting the normal data with test patterns. At the end 

of the processing, consistency checks can be done by 

another hardware engine, for e.g. checking a few of the 

outputs, checking that the amount of lines that were 

supposed to be processed were also processed. Detection of 

illegal instruction, watchdog monitoring and proper 

handling of the interconnect protocol at the SoC level are 

also common mechanisms. 

The processing faults are more challenging to detect, 

contain and potentially correct. The errors that might appear 

in memories can be detected and eventually corrected when 

using error correction mechanisms while the errors in the 

processing hardware (e.g. registers, multipliers, adders) are 

mainly addressed through redundancy or are ignored ( for 

certain algorithms a single pixel error does not have any 

impact ). Another approach, that is applicable only for 

certain classes of algorithms, is based on consistency 

checks having in mind possible bounds of the computation 

performed. We present such an approach for convolutional 

layers, by employing a scheme that does not use any 

multiplication. The lack of multiplications is essential for 

embedded hardware due to the significant size of the 

multiplier compared to comparators and adders (a 

multiplier is more than 20 times bigger than an adder).  

When analyzing possible fault sources for convolution 

layers we find the following possible fault categories: 

- errors in weights 

- errors in feature maps or input data 

- errors in intermediate accumulators 

While the most frequent transient faults are single and 

dual bit faults it is very difficult to limit the space of 

resulting errors after the computation is done; dependent on 

input data, network coefficients and hardware architecture 

the error might manifest itself in the output as any arbitrary 

number in the possible value range. One interesting aspect 

to note is exactly the way numbers are represented, for 

example the fixed point representation has equally spaced 

numbers while for floating point the numbers are 

concentrated around zero and the gap between numbers 

increases exponentially.  This observation is especially 

interesting when computing the coverage of a certain test 

based on validity ranges, for example bounding an error 

between -0.5 and 0.5 for single precision floating point 

means that the coverage is only around 51% (computed as 

numbers outside the interval divided by all possible values). 

Such small singular errors might have little to no effect on 

CNNs, especially if the network is trained also on samples 

with synthetic noise added yet we investigate this topic 

through Monte Carlo simulations. 
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Another interesting observation on the robustness to 

errors of popular CNN architectures is the error masking 

behavior of the RELU function. The layer has the 

interesting property of masking errors if the input is 

negative and the error does not change the state of the sign 

bit. Thresholds over the output confidence have similar 

effect, yet harder to trace back to induvial neurons in the 

network. 

It is also natural to expect that the impact on the overall 

result depends also on where the error manifests itself (if it 

is in one of the first layers or if it is in the last layers). 

Another interesting aspect is if the network exhibits some 

“attention” patterns; if errors that influence the results in a 

certain part of the image are propagated selectively (e.g. the 

road in the Cityscape dataset is not present everywhere in 

the image). 

4.2. Error detection mechanism 

The proposed detection mechanism is based on checking 

whether the processing result lies within a mathematically 

determined valid range. In the following the constraints are 

elaborated and their test coverage is investigated. 

Lemma 1. Given a convolution function of form (1) 

there exists a real value Q such that (2) holds true (we have 

used the Einstein summation convention for compactness). ݂ሺݔሻ = ௜ݔ௜ݓ + ܾ, ݅ = ͳ, ܰതതതതത; ݂: ܴே → ܴ										ሺͳሻ					 |݂ሺݔሻ − ݂ሺݔ଴ሻ| ≤ ܳ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ 																			ሺʹሻ 

 

))f(x,(x 00
 – is called a seed, can be any tuple from the 

input output domain  

Proof - The inequality is trivial to prove, and follows 

immediately from the triangle inequality. 

   หݓ௜ݔ௜ + ܾ − ௜଴ݔ௜ݓ − ܾห ≤ ෍ ௜ݔ||௜ݓ| − ௜଴|ேݔ
௜ୀଵ  

≤ maxሺ|ݓ௜|ሻ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ = ܳ ෍หݔ௜ − ௜଴หேݔ

௜ୀଵ 											ሺ͵ሻ 

 

Where ܳ ≡ maxሺ|ݓ௜|ሻ 

 

Lemma 2. The interval where possible errors are not 

detected by (2) is bounded and the bounds depend on how 

the seed is selected, given an input space. 

The lemma follows the intuitive question, what errors 

can be detected by the inequality; for what part of the error 

space does the inequality still hold? 

We consider the error as an additive value over the true, 

uncorrupted, output: ௘݂௥௥ሺݔሻ = ݂ሺݔሻ + ݁																																																ሺͶሻ 

                                                     

We transform the inequality into a function that depends 

on the error: ܨሺ݁ሻ ≡ |݂ሺݔሻ + ݁ − ݂ሺݔ଴ሻ| − ܳ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ 					ሺͷሻ 

Lemma 2 can then be rephrased as finding e for that

0F(e) ≤ . For simplicity we use the following notation: ܣ ≡ ݂ሺݔሻ − ݂ሺݔ଴ሻ; ܤ ≡ ܳ ෍หݔ௜ − ௜଴หேݔ
௜ୀଵ 															ሺ͸ሻ 

The inequality is trivial to solve, for space reasons we 

give here only the result: 

],[ ABABe +−∈                                                   (7) 

As can be observed from (7), the interval where the 

inequality does not detect the potential error, is bounded 

and it can reduce the possible error space significantly. The 

size of the interval depends on A, the smaller this value is 

the tighter the inequality holds. This allows for constructing 

a lookup table with seeds that can minimize the error 

interval size once a mechanism for selecting the seed is 

found. 

Lemma 3 Minimizing the cumulative error for the entire 

input space can be done for each input dimension separately 

and is achieved by halving the input range. 

The size of the interval from (7) is:    AD 2≡  

For a one dimensional case the problem can be rewrite as  

= dxDM
x0

min  ; in the multidimensional case the 

integral is multidimensional, depending on all the  ix  . 

For the simple one dimensional case, the problem is 

trivial and considering an interval of [0, 1] for the input 

values we can see that the optimal value for 
0x  is 0.5 

(follows from eq. (8)).  

)5.0)((min

))(2)(2(min
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For the multidimensional case, given the fact that there 

are no cross dimension factors, the integral can be rewritten 

as a sum of single dimension integrals. Each integral is 

positive, being made out of absolute values, such that the 

minimum is achieved where the minimum of the individual 

elements is found ((9) for a normalized input space ). 
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Note that for an un-normalized input space the individual 

integrals will enter with a factor, so placing the seed smartly 
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for this un-normalized spaces has a high impact in the 

overall tightness of the inequality, influencing the error 

detection capabilities.  

Lemma 3 assumes a white noise like distribution of the 

data in the interval, each value has an equal probability of 

being found. In practice, this is not often the case and it is 

only natural if we think about the image space where the 

sky is typically in the upper part of the image, the road on 

the lower part, etc. The number representation and 

quantization introduces also this types of effects, making 

the space curved (e.g. floating point number have an 

exponential representation with more precision closer to 

zero and less once going to larger numbers). 

4.3. Error coverage 

One of the first questions that arises is the coverage of 

the tests given the possible error space. The coverage is 

computed as: 

[%]
_

)(
1

tionrepresentanumber

Dycardinalit
C −=                (10) 

Where D is the set where errors are not detected while 

the number representation is the total amount of numbers 

that can be represented (depends on the bit-depth and 

representation scheme). We have computed the average 

value of C for the first convolution layer considering the 

following assumptions (Table 2): 

- [Case1] Floating point numbers representation; the seed 

value is set in the middle of the value ranges observed for 

the convolution maps  

- [Case2] Floating point numbers representation; the seed 

value is set on the average value of the convolution map 

- [Case3] Fixed point number representation (Q15 

representation for inputs and weights and Q7.24 for the 

output feature maps); the seed value is set on the average 

value of the convolution maps. The number 

representation was chosen based on following 

considerations :  weights are between -1 and 1 (Q15 gives 

the best fractional fidelity for this range) and filter sizes 

are 5x5x3 demanding at least 7 bit integer part for 

guaranteed overflow less operations.  

 

Case 1 Case 2 Case 3 

45% 47% 97% 

 
Table 2:  Average coverage for convolution 1 

 

As can be observed the average coverage for the floating 

point representation is very low (considering desired 

diagnostic coverage of over 90%) due to the fact that the 

numbers are concentrated around zero and our bounding 

interval contains this region very often. The floating point 

representation , due to the exponential form, pushes the 

optimal seed value towards zero while for fixed point the 

selection of the seeds is more natural and is done based on 

the spikes of the distribution of occurrence of values. The 

coverage for floating point could be improved if we could 

show that the algorithm is robust to small errors; for e.g. if 

numbers in the range [-0.5, 0.5] have low impact in the 

output. To test this supposition we inject errors from this 

interval and asses the output of the network. For the fixed 

point representation minimum coverage observed was 

around 77%. The coverage tests are based on ~1.6 billion 

samples, generated with the test set of the Cityscapes 

dataset. 

4.4. Error injection 

We have injected over 500 million errors over all 

possible positions in the feature maps considering the 

following test cases: 

- [TC1] errors are injected in the interval where the test 

does not offer any coverage, considering a placement of 

the seed as in [Case 1] 

- [TC2] errors are injected in the interval [-0.5,05] 

Only one single error at a time is injected and the final 

output of the network is compared with the output without 

error injection. Errors are generated based on a normal 

distribution random number generator. The implementation 

is done based on single precision floating point number 

representation and the input statistics of the images can be 

visualized in the histograms in Figure 3. 

 

 
Figure 3:  Cumulated histograms over all input images used in the 

Monte Carlo simulation. 

 

We consider that a 1-2% degradation in detection will 

minimally impact the next processing elements that estimate 
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the road model and generate the region of interest for the 

object classifiers. This assumption is generally accepted for 

RANSAC (random sample consensus) model estimation 

where even a higher amount of outliers could be rejected. 

We are interested to see the number of errors and the 

position where the errors were injected in the feature map. To 

better visualize the results we construct a grid of the same size 

as the feature map; in each cell of the grid we cumulate the 

errors in the output when injecting noise in that location in the 

feature maps (e.g. for cell position (100,100) corresponding to 

the first convolution layer we cumulate the output errors 

coming from injecting errors in feature map positions (100, 

100, 1:32), where 32 represents the number of output feature 

map of that layer). The results, for the two test cases can be 

visualized in Figure 4; the grids are normalized with their 

highest values to bring them in the image visual space. An 

interesting aspect of the results is the fact that the network 

seems to be less affected by errors injected in the upper part 

of the image (Figure 4a), suggesting that it learned to suppress 

this area more heavily than others. This is intuitively 

consistent with the fact that the road is placed in the lower part 

of the images as can be observed in Figure 5 and that almost 

in all images the sky has a similar texture. In Figure 4, stripe 

patterns can be observed that follow the dimension of the 

kernel and stride used in the network; the errors are spread into 

the neighbors by the convolution filters, according to the 

receptive field size. 

 

 

a) 

     

b)                    c)           d)         e) 

Figure 4: Error grids, lighter gray values represent more errors 

manifested in the output when injecting errors in that location a) 

First convolution layer, b) Second convolution layer, c) 3rd 

convolution layer, d) 4th convolution layer, e) 5th convolution 

layer. The results were obtained by injecting over half a billion 

errors, spread over all possible elements of the feature map. 

 

 

Figure 5:  a) Cumulated area in the images of the Cityscapes 

dataset where the road is present; marked with gray color in image 

above 

Another aspect that we would like to understand is if the 

errors in the first convolution layers have a higher or lower 

impact than in later convolution layers. We construct 

histograms with the cumulate errors obtained from the 

different layers and normalize them by the number of test 

we have performed and also record the maximum amount 

of changes in the output label mask due to an error (Figure 

6). As can be observed, the errors in the first layers have 

less average impact (Figure 6a) yet can have high individual 

impact as can be observed in Figure 6b where more output 

pixel labels have been changed due to errors injected in the 

first layers.  

 
a) 

 
b) 
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Figure 6:  a) Average output errors for each of the five 

convolution layers; b) Maximum amount of pixels in the output 

mask affected by an error. 

 

Note that the amount of errors introduced can give only 

a hint on the overall influence of soft errors. As can be 

observed in Figure 4 the effect of error injection is uniform 

and one would expect this if the data set and injection 

patterns would have reasonable size, yet they do not cover 

all the possible error space (for a -0.5, 0.5 range and a single 

image, considering only the first convolution layer we 

would need to inject over 22 trillion errors to cover only 1% 

of the error space). What can be also observed is that the 

fixed point variant has a better out of the box coverage than 

the floating point counterpart due to the compression of the 

dynamic range around zero.  

For TC2 we have injected noise between [-0.5, 0.5] from 

a uniform distribution. Similar to TC1 we have aggregated 

the data in form of grids (Figure 7) and also computed the 

average pixels selected and the maximum pixel affected by 

the error injection (Figure 8). We can observe that the 

average and maximum values decrease compared to TC1 

yet the amount of pixels affected is significant (more than 

3%) in certain cases and needs some careful assessment if 

it is still usable for the next processing steps. 

 

 
a) 

     
b)                    c)           d)         e) 

Figure 7:  Error grids, lighter colors represent more errors 

manifested in the output when injecting errors in that location a) 

First convolution layer, b) Second convolution layer, c) 3rd 

convolution layer, d) 4th convolution layer, e) 5th convolution 

layer. The results were obtained by injecting over half a billion 

errors, spread over all possible elements of the feature map. 

 

 
a) 

 
b) 

Figure 8:  a) Average output errors for each of the five 

convolution layers; b) Maximum amount of pixels in the output 

mask affected by an error. 

5. Conclusions and future work 

In this paper we have introduce a computationally light 

network for road segmentation and studied generic 

approaches for functional safety tailored to CNN 

architectures. We have introduced a mitigation technique 

that has low computational requirements and that gives 

good coverage numbers for fixed point implementations. 

For a larger deployment and test the infrastructure of error 

injection needs to be improved. We have used the Caffe 

framework that could be extended with error injection 

layers that would restrict the computation only to the 

feature map points affected by an error (only in the 

receptive affected); in our implementation we run the 

complete computation. 
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