
 

 

Abstract 

 

This paper presents methods to reduce the complexity of 

convolutional neural networks (CNN).  These include: (1) 

A method to quickly and easily sparsify a given network. 

(2) Fine tune the sparse network to obtain the lost 

accuracy back (3) Quantize the network to be able to 

implement it using 8-bit fixed point multiplications 

efficiently. (4) We then show how an inference engine can 

be designed to take advantage of the sparsity. These 

techniques were applied to full frame semantic 

segmentation and the degradation due to the sparsity and 

quantization is found to be negligible. We show by 

analysis that the complexity reduction achieved is 

significant. Results of implementation on Texas 

Instruments TDA2x SoC [17] are presented. We have 

modified Caffe CNN framework to do the sparse, 

quantized training described in this paper. The source 

code for the training is made available at 

https://github.com/tidsp/caffe-jacinto  

 

 

1. Introduction 

The computational complexity of full frame CNN 

applications is extremely high. For example it takes 402 

Giga multiply accumulations per second (GMACS) to do 

the inference of AlexNet at 1280x720@30FPS. This kind 

of complexity is out of reach for typical low power 

embedded devices such as Digital Signal Processors 

(DSP), which are typically constrained to power 

consumption in single digit Watts.  For CNN inference to 

be feasible on typical DSPs, the compute requirement has 

to come down below 50 GMACS. Our work presented 

here provides several tools to achieve complexity 

reduction. We show with an example that complexity can 

be reduced to a level where it becomes suitable for 

embedded implementation. We believe that the same 

methods will generalize to other networks and 

applications. In this section, we introduce the motivation 

for our work. The core concepts and results achieved are 

explained in the subsequent sections. 

CNNs have become extremely popular due to their 

capacity to learn and generalize. Krizhevsky et al. [1] 

showed significantly higher classification accuracy in 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) 2012 compared to classical approaches. This 

was the beginning of the transition in interest from 

traditional machine learning approaches such as Support 

Vector Machines and Decision Tree Classifiers to CNNs. 

Even then it was not obvious whether CNNs will 

generalize to other similar or different tasks. However, due 

to the works of Ross Girshick [2], Evan Shelhamer et al. 

[3], and several others, CNNs have been shown to do 

equally well on other tasks. Examples include object 

detection, semantic segmentation, and optical flow 

estimation. These are increasingly being applied for image 

recognition applications at datacenters, cars, mobile 

phones, medical equipment and in several other areas. 

Many of these techniques require CNNs to be operated 

on a huge number of pixels per second. These systems are 

also sensitive to power consumption as well. Some of 

these applications require processing of high resolution 

video streams of 1 Mega pixel or higher – an example is 

Advanced Driver Assistance Systems (ADAS) object 

detection systems, where the range (distance) at which an 

object can be detected is directly related to the resolution. 

Many ADAS systems that process the image near to the 

camera (vs that processes the image at a central location) 

require the power consumption to be in single digits. On 

datacenters, it is necessary to process a large number of 

images in a second, which drives up the MACS required. 

Datacenters are also extremely conscious about the 

efficiency, which is usually measured in terms of Giga 

Operations per Watt (GOPS/W) of Terra Operations per 

Watt (TOPS/W).  

As shown in Table 1, for popular CNN network 

configurations, the complexity of processing a video 

stream at 1 Mega pixel resolution can be quite high. For 

example an analysis in [9] showed that, in practice, an 8-

core TMS320C6678 DSP [10] from Texas Instruments is 

capable of doing nearly 80 single precision GFLOPS 

while consuming 10 Watts for doing Level-3 BLAS 

operations. Since BLAS operations are popularly used to 

implement CNN convolutions, this may be taken as a 

representative number to analyze CNN operations as well. 

 

Sparse, Quantized, Full Frame CNN for Low Power Embedded Devices 

 

Manu Mathew, Kumar Desappan, Pramod Kumar Swami, Soyeb Nagori 

Texas Instruments 

Bangalore, India 

www.ti.com 

mathew.manu@ti.com, kumar.desappan@ti.com, pramods@ti.com, soyeb@ti.com 

 

 

11



 

However, the GFLOPS achieved in this case is nowhere 

close to the requirement of popular networks. Hence 

further research is needed to come up with network 

configurations that re suitable for low power embedded 

platforms. 

 

CNN Network GMACS 

AlexNet [1] 389  

CaffeNet 643 

ResNet10 [7] 481  

ResNet18 [6] 1005  

ResNet50 1962 

VGG16 [8] 8456  

Table 1. MAC requirement for popular CNN models to 

process a video stream at 1280x720@30FPS (Excluding 

the fully connected layers). 

2. Related work 

There have been various approaches to reduce the 

complexity of CNNs. In this section we discuss some of 

the important ones that are relevant to this work. 

2.1. Separable convolutions 

One of the earlier approaches involved replacing the 

non-separable convolutions with separable convolutions 

[11]. This method claims to achieve about 4.5x speedup, 

with less than 1% drop in accuracy. One drawback of this 

method is that it changes the network structure by splitting 

a layer into separate horizontal and vertical filters. Also 

results on large datasets such as ILSVRC ImageNet need 

to be analyzed clearly.  

2.2. Binary and Ternary operations 

XNOR-Net developed by Mohammad Rastegari et al. 

[4] claims a 58x speedup in convolution operations by 

replacing multiplications with bit-wise XNOR operations. 

But the quality degradation reported for this method may 

not be acceptable for many applications. Binary Weight 

Networks developed by the same authors can help to 

speedup CNNs by using additions or subtractions instead 

of multiplications. Ternary Weight Networks by Fengfu Li 

et al. [5] improved upon this idea by using three levels for 

weights, and this gave better results. However these 

approaches can speed up CNNs only on platforms where 

additions and subtractions are significantly faster than 

multiplications and hence, are suitable for FPGA or ASIC 

implementations. On general purpose DSPs where 

multiplications usually take similar cycles as additions and 

subtractions, it may not result in significant speedup. 

2.3. Sparse convolution 

Yet another approach involves sparse convolution 

algorithms [12]. We found this approach to be quite 

interesting because, it doesn’t change the overall network 

structure. A network is sparsified by training in iterations 

with high weight decay, and whenever the absolute value 

of a weight falls below predefined threshold, it is 

thresholded to zero. It also presented a method to recover 

the lost accuracy by fixing the zeroed out coefficients as 

zeros and fine tuning the non-zero coefficients. The 

sparsity induced is structurally constrained to get speedup 

in GPUs that use matrix multiplications to implement 

convolutions. In devices that do not use matrix 

multiplications for implementing convolution, structural 

constraint may not be beneficial. Also the sparsification 

approach used in the paper is extremely slow and time 

consuming – making it difficult to use for large datasets.  

2.4. Quantization 

Studies have shown that quantization of floating point 

coefficients to dynamic 8-bit fixed point is sufficient to 

retain the accuracy in Image classification problems as 

shown in Caffe Ristretto [13] and in Tensorflow [14]. 

‘Dynamic’ in this context refers to the fact that the 

quantization multiplication factor, range etc. may change 

from layer to layer, between input, weights and outputs 

within a layer, and in the case of Tensorflow, from frame 

to frame as well. Caffe Ristretto used quantization with 

quantization multiplication factors restricted to power of 2, 

and mapped the range between -128 to +127 irrespective 

of whether the tensor being quantized is negative or not. 

The actual range consumed may be less than this because 

the quantization multiplication factor is restricted to power 

of 2, and the values may be unsigned. It also uses a fixed 

pre-computed range, decided at training time. The 

reported accuracy loss was 2.35% for GoogleNet. 

Tensorflow claimed that close to 4x speedup, 4x reduction 

in model size and considerable power savings can be 

obtained by quantizing from floating point to 8-bit with 

1% drop in accuracy [15][16]. But it is also more complex 

than Ristretto. Tensorflow takes the original range of the 

tensor and maps it into an unsigned range of 0 to 255, 

thereby providing the best possible linear quantization. 

However, this is more complex and involves additional 

operations when there is a need to convert from one range 

to another, which is often the case between layers. It also 

uses on-the-fly computation of range for each input image. 

This is quite accurate, but suffers from the drawback of 

having to read the every tensor once completely before it 

is quantized. The un-quantized version of the output of a 

convolution layer is stored in 32-bit precision and then 

read it back to compute the range before applying the 

quantization to output. These additional memory accesses 

are not friendly for low power embedded devices.   

12



 

3. The proposed approach 

Our method involves the following steps. (1) a quick 

sparsification method (2) Fine tuning without loss of 

sparsity (3) Low complexity dynamic 8-bit quantization 

(4) Sparse convolution method to speedup inference. 

3.1. Quick sparsification 

As observed in the reference that induces structural 

sparsity [12], L1 regularized training is good at inducing 

sparsity of coefficients. So one of the first steps is to do an 

L1 regularized training with a relatively high weight 

decay. This will help us to distinguish more important 

coefficients from the less important ones and will make 

the job of thresholding easier. 

Our quick sparsification is an empirical method that 

involves looking at the weights of each convolution layer 

separately and doing the following: 

• Let ௦ܶ be the sparsity target for a layer. ௦ܶ is the ratio 

of number of zero weights to the total number of 

weights in that layer. The sparsity target can be 

different for each layer. 

• Find the maximum of the absolute value of weights in 

the layer. Let it be ௔ܹ௠. 

• Set maximum threshold value, ௠ܶ to be a fraction α of ௔ܹ௠. We used an α value of 0.2.  

 

 ௠ܶ = ߙ ∗ ௔ܹ௠ (1)

• Start with a small sparsity threshold t (which is much 

smaller than	 ௠ܶ), and check the amount of sparsity 

achieved (i.e. fraction of zero weights in the layer). If 

the sparsity is less than ௦ܶ, then increase the sparsity 

threshold t by a small value. Repeat this until the 

threshold t becomes greater than or equal to ௠ܶ or 

the sparsity target ௦ܶ is reached. 

 W: weight tensor of the layer being 

thresholded 

t=0; 

s = Sparsity(W, t); 

while s < Ts and t < Tm; 

    t =t+ β 
    s = Sparsity(W,t); 

(2)

Where; 

Sparsity() is a function that computes the sparsity of 

the given tensor at the threshold specified; it counts 

the number of coefficients having absolute value less 

than t. 

β is a small increment value, example: 1e-7. 

 

In most cases, the sparsity target is reached while 

obeying the constraint of maximum threshold value. In 

some cases, usually observed in the initial layers, the 

sparsity may be less than what is desired. Using a low 

value for maximum threshold is important for retaining 

accuracy.  

As this thresholding step doesn’t involve any training, it 

is quite fast and can be completed in few seconds. 

3.2. Fine tuning without loss of sparsity 

Theresholded model is seen to have lower accuracy 

than the original (not thresholded) model. However, most 

of the quality lost can be recovered by fine tuning, without 

loss of sparsity. It is done as in [12] by not allowing the 

already zero coefficients to change during the fine tuning. 

During the beginning of fine tuning stage, a map 

representing all non-zero coefficients is created. Only the 

non-zero coefficients are updated in the update step after 

the backpropagation, during the entire fine tuning process.  

3.3. Low complexity dynamic 8-bit quantization 

The quantization approach used in this work uses a 

middle ground between complexity and accuracy.  Similar 

to Ristretto’s approach, the minimum and maximum 

ranges of various tensors (weights, inputs and outputs) are 

computed for all the layers during training time, from a 

subset of the training data. Exponential moving averages 

are used during the training to compute these ranges. Once 

these ranges are computed, we determine if each tensor is 

signed or unsigned. Signed tensors are to be quantized 

between -128 and +127; while unsigned tensors are to be 

quantized between 0 and 255. Flags are inserted in our 

quantized CNN model to indicate whether these tensors 

are signed or unsigned.  This is an improvement over 

Ristreto and will result in better accuracy of inference. 

However, we restrict the quantization multiplication 

factors to be a power of 2. This will allow us to do range 

conversion from one range to another by using only shifts. 

These shifts can be easily incorporated into the 

convolution itself in the case of the convolution layer. This 

saves additional multiplications required for range 

mapping (used in the case of Tensorflow). Also, since 

signed ranges are used for signed quantities, there are no 

additional offset adjustments required. 

Since the ranges are computed from a subset of the 

training data and also since a moving average is used, the 

intention is not to find the worst case range, but to find a 

representative range. However, some values in a given 

tensor can exceed the computed range and have to be 

clipped appropriately during quantization. Given the 

ranges ܴ௠௜௡and ܴ௠௔௫ of a tensor, the integer length of an 

unsigned tensor is computed as follows: 

 

௟ܫ  = logଶሺ|ܴ୫ୟ୶	|ሻ (3)

 

The integer length of a signed tensor is computed as 

follows: 

 

13



 

௟ܫ  = logଶሺmaxሺ|ܴ௠௜௡|, |ܴ௠௔௫|ሻሻ + ͳ (4)

 

The fractional length is then computed as: 

 

௟ܨ  = ͺ − ௟ܫ  (5)

 

The quantization multiplication factor for tensor is 

calculated as: 

 

௤ܯ  = ʹி೗ (6)

 

The tensor is quantized by multiplying with ܯ௤ and 

then clipped to the appropriate unsigned or signed range. 

For an unsigned tensor: 

 

 ௤ܹ = ൫ܹ݀݊ݑ݋ݎሺ݌݈݅ܿ ∗ ,௤൯ܯ Ͳ,ʹ55ሻ (7) 

 

And for a signed tensor, it is done as follows: 

 

 ௤ܹ = ൫ܹ݀݊ݑ݋ݎሺ݌݈݅ܿ ∗ ,௤൯ܯ −ͳʹͺ, +ͳʹ͹ሻ (8) 

 

Where clip() functions restricts the values to the given 

range and round() function converts the floating point 

value to integer value by a rounding operation. 

3.4. Sparse convolution for inference 

A pseudo-C code for a regular 3x3 convolution is 

shown as follows, where X is the input tensor, Y is the 

output tensor and W is the weight tensor. Wx, Hx are the 

width and height of X respectively. 

 

 for(int i=0; i<Wx;i++) { 

  for(int j=0; j<Hx; j++) { 

    for(int m=-1;m<=1;m++) { 

      for(int n=-1;n<=1;n++){ 

          Y[i][j] +=  X[i+m]*[j+n] * W[m][n] 

      } 

    } 

  } 

} 

 

(9)

 

However the order of these loops can be re-arranged so 

that the inner loops operate as multiplication of an entire 

block or a plane of data by a single weight value. The 

advantage of this re-arrangement is that the multiplication 

of the entire block can be skipped if the weight 

corresponding to that block is 0. 

 

   for(int m=-1;m<=1;m++) { 

    for(int n=-1;n<=1;n++){ 

      wt=W[m][n] 

      if(wt != 0) { 

        for(int i=0; i<Wx;i++) { 

(10)

        for(int j=0; j<Hx; j++) { 

            Y[i][j] += X[i+m][j+n] * wt 

        } 

      } 

    } 

  } 

} 

 

We call this kind of convolution by the name Block 

Multiply Accumulation (BMA) as it operates on one block 

of data at a time. The approach above described 

convolution operation of a single 3x3 filter.  

However it is possible to use BMA and complete the 

entire convolution layer. An analysis stage is first 

performed to first collect the block pointers corresponding 

to the blocks that have non-zero weights. These non-zero 

weights and the corresponding input and output pointers 

are collected in separate lists. Then these lists are passed 

to the BMA kernel which does the entire convolution 

layer. Here X, Y and W are assumed to be three 

dimensional, as these operations involve all the input and 

output channels. BMAList() function takes a block pointer 

from xList, a weight from wList and multiplies and 

accumulates the entire block into the block pointed to by 

the pointer in yList. 

 

 z=0; 

for(p=0;p<P;p++) { //output channels 

  for(l=0;l<L;l++) { //input channels 

    for(int m=-1;m<=1;m++) { 

      for(int n=-1;n<=1;n++){ 

        if(|W[l][m][n]| > eps) { 

          xList[z] = &X[l][m][n]; 

          wList[z] = &W[l][m][n]; 

          yList[z] =&Y[p][0][0]; 

          z=z+1; 

       } 

     } 

   } 

} 

BMAList(xList, wList, yList) 

 

 

 

(11)

14



 

 
Figure 1. Convolution layer using Block Multiply 

Accumulation (BMA) 

 

Note that the block size can be chosen appropriately to 

suite the local memory or data cache available in the 

system. In that case the whole image will have to be split 

into several ROIs and each ROI will have to be processed 

independently. 

3.5. Analysis 

An analysis was done to understand how much gain can be 

achieved in convolution layers by using BMA sparse 

inference. This analysis considers the data band-width 

available for loading data into the CPU along with the 

compute capability. The results of this analysis are given 

in Figure 2. We analysed two scenarios for quantization of 

convolution outputs after sparsification: (1) quantizing to 

16-bit and (2) quantizing to 8-bit. It can be seen that 

quantizing to 8-bit provides much higher speedups at high 

sparsity when compared to 16-bit. So for our further 

experiments, we chose 8-bit quantization. As can be seen 

from the graph, at 85% sparsity a speedup (gain factor) of 

4.5x can be expected from convolution layers. Although 

most of the compute in CNN is in convolution layers, the 

overall speedup of the entire network is expected to be 

slightly lower than this. 

 

 
Figure 2. Analysis of potential speedup using sparse 

convolution. 

4. Experiments and results 

The sparsification and quantization method described in 

this paper (except the BMA inference which was 

implemented in the embedded SoC) was added to our 

custom Caffe fork. The model was trained on this 

modified version of Caffe. The source code and examples 

are made available at https://github.com/tidsp/caffe-jacinto 

4.1. Network configuration 

The base classification network was inspired by 

ResNet10 [7]. The ResNet10 network architecture was 

modified with the following changes.  

• Residual connections are removed since it doesn’t 

help much at small depths such as 10 as observed in 

the original ResNet paper [6]. Added groups of 4 to 

every alternate layer to reduce complexity. Grouped 

convolutions also help in data bandwidth reduction. It 

was first introduced in AlexNet.  

• Max pooling is used instead of strides. We call the 

resultant network as JacintoNet11. More details are 

given in Table 2 

• This network is used to train on the 1000 class 

ImageNet dataset. 

 
 

Layer No Layer type 
Kernel 

size 

Output 

channels 
Stride

Group,  

Dilation 
 

1 Conv,Relu 5 32 2 1,1 

2 Conv,Relu 3 32  4,1 

3 Maxpool 2  2  

4 Conv,Relu 3 64  1,1 

5 Conv,Relu 3 64  4,1 

6 Maxpool 2  2  

7 Conv,Relu 3 128  1,1 

8 Conv,Relu 3 128  4,1 

9 Maxpool 2  2  

10 Conv,Relu 3 256  1,1 

11 Conv,Relu 3 256  4,1 

12 Maxpool 2  2  

13 Conv,Relu 3 512  1,1 

14 Conv,Relu 3 512  4,1 

15 Avgpool 7    

16 FC 1    

Table 2. Layer structure of JacintoNet11 classification 

network 

 

Then we train for Cityscapes [18] semantic 

segmentation using the pre-trained weights. For deriving 

the network for segmentation, the following changes are 

made:  

• Removed the pooling in 5th block and changed the 

subsequent 3x3 convolutions to dilated ones as in the 

Dilation method of segmentation [19].  Added context 

convolution blocks and deconvolution layers as used 

in the same method.  

• We call the resultant network as JSegNet21, since it 

has 21 convolutional and deconvolution layers. Most 

15



 

of the complexity of this network is concentrated in 

layers 13 and 14 because the Maxpool stride before 

these layers is removed. Further details are given in 

Table 3.  

 
 

Layer type 

 

Input 

Layer 

No 

 

Output 

Channels 

 

Kernel Size, Stride, 

Group, Dilation 

 

Laye

r No 

 

1 Conv,Relu  32 5,2,1,1 

2 Conv,Relu  32 3,1,4,1 

3 Maxpool   2,2,-,- 

4 Conv,Relu  64 3,1,1,1 

5 Conv,Relu  64 3,1,4,1 

6 Maxpool   2,2,-,- 

7 Conv,Relu  128 3,1,1,1 

8 Conv,Relu  128 3,1,4,1 

9 Maxpool   2,2,-,- 

10 Conv,Relu  256 3,1,1,1 

11 Conv,Relu  256 3,1,4,1 

12 Maxpool   1,1,-,- 

13 Conv,Relu  512 3,1,1,2 

14 Conv,Relu  512 3,1,4,2 

15 Conv,Relu 14 64 3,1,2,4 

16 Deconv  64 4,2,64,- 

17 Conv,Relu 8 64 3,1,2,1 

18 Eltwise 16,17   

19 Conv,Relu  64 3,1,1,1 

20 Conv,Relu  64 3,1,1,4 

21 Conv,Relu  64 3,1,1,4 

22 Conv,Relu  64 3,1,1,4 

23 Conv,Relu  8 3,1,1,1 

24 Deconv  8 4,2,8,- 

25 Deconv  8 4,2,8,- 

26 Deconv  8 4,2,8,- 

27 Argmax    

Table 3. Layer structure of JSegNet21 segmentation 

network 

4.2. Training procedure 

A smaller subset of 5-classes was selected for semantic 

segmentation. 32 classes of cityscapes were converted into 

5-classes - so the trained model would learn to segment 5-

classes (background, road, person, road signs, and 

vehicle). This 5-class training is different from the 

typical 19-class training done for cityscapes and reported 

on the benchmark website. This change was done to 

address a minimal scenario required for on-road 

classification for ADAS applications. The overall training 

procedure is as follows: 

• ImageNet classification training for JacintoNet11 

• L2 regularized Cityscapes training of JSegNet21 

using pre-trained weights of JacintoNet11 

• L1 regularized training. L1 regularization is a 

powerful technique in inducing several small 

coefficients. As shown in the final results, this is a 

powerful technique to induce sparsity (many of these 

small coefficients will become zero during 

quantization).  

• Quick sparsification using thresholding. The first and 

last convolutions layers in the network were given a 

lower sparsity target as they have very few 

convolution coefficients.  For example when sparsity 

target is 85%, the first and last convolution layers 

were a given a target of only 55%.   

• Fine tuning to recover the quality lost during 

thresholding. In this stage and in the following 

training stages, coefficients that are already zero are 

not updated during back propagation update. 

• Fine tuning with 8-bit quantization. 

4.3. Sparsity measurements 

Table 4 shows the sparsity achieved after various stages 

involved in the training. Quantization was done for each 

stage to collect the sparsity statistics (Quantization in the 

intermediate stages was used only for the purpose of 

statistics collection – the subsequent stage in training uses 

un-quantized weights). 

 

Layer No 

 

Layer type 

 

Sparsity obtained with quantization 

Initial L2 

regularized 

training 

L1 

regularized 

training 

Induced  

80% 

1 Conv,Relu 11.71 21.75 41.54 

2 Conv,Relu 9.46 19.57 79.82 

3 Maxpool    

4 Conv,Relu 9.90 38.02 80.00 

5 Conv,Relu 3.73 21.93 79.97 

6 Maxpool    

7 Conv,Relu 7.79 52.97 80.05 

8 Conv,Relu 5.82 42.68 79.99 

9 Maxpool    

10 Conv,Relu 8.14 66.31 82.71 

11 Conv,Relu 6.51 61.59 80.12 

12 Maxpool    

13 Conv,Relu 11.60 84.11 88.10 

14 Conv,Relu 5.84 91.27 94.00 

15 Conv,Relu 2.97 72.33 82.65 

16 Deconv    

17 Conv,Relu 2.65 52.38 80.26 

18 Eltwise    

19 Conv,Relu 2.39 47.04 79.99 

20 Conv,Relu 2.18 46.39 79.99 

21 Conv,Relu 2.29 47.42 80.01 

22 Conv,Relu 2.28 54.19 80.00 

23 Conv,Relu 38.85 53.93 47.94 

24 Deconv    

25 Deconv    

26 Deconv    

27 Argmax    

Table 4. Sparsity achieved after various stages in 

training – with quantization 

4.4. Accuracy 

Change in accuracy due to sparsification and 

quantization is reported in Table 5. It is seen that the pixel 

16



 

accuracy loss is almost negligible and the change in Mean 

IOU loss is reasonable. Sample images are shown 

indicating example segmentations in Figure 3. 

 

 

 

Configuration 

 

80% sparsity induction 

Pixel 

Accuracy (%)

Mean IOU 

(%) 

Initial L2 regularized training 96.20 83.23 

L1 regularized fine tuning 96.32 83.94 

Sparse, fine tuned 96.10 82.86 

Sparse, Quantized (8-bit 

dynamic fixed point) 

95.90 82.15 

Overall impact due to 

sparsification  and quantization 

-0.42 -1.79 

Table 5. Impact of sparsification and quantization, for 

semantic segmentation on the Cityscapes dataset. 

4.5. Implementation on device 

These sparse convolutions were implemented on the 

TDA2x SoC [17] from Texas instruments. It is a low 

power SoC that operates in single digit Watts of power.  It 

has 4 Embedded Vision Engines (EVEs), which are co-

processors suited for computer vision applications. All 

together, they are capable of delivering up to 64 integer 

MACS per clock cycle. This translates to roughly 57 

GMACS when running at 900 MHz clock frequency.  

Table 6 compares the complexity of the dense form and 

its corresponding sparsified form for JSegNet21 CNN 

model. It shows the actual Giga MACS and Giga Cycles 

measurements from TDA2x SoC for inferring the 

segmentation of one frame of size 1024x512. Frames per 

Second (FPS) that can be achieved are also given. Without 

utilizing sparsity the FPS that can be achieved is 5.14. 

When using sparse BMA kernels and L1 regularized 

training, the FPS increases to 12.04. In addition, by 

inducing a sparsity of 80% the FPS increases to 20.22. The 

overall speedup is by a factor of 3.93x. 

Note that the quantization stage alters the sparsity 

distribution in layers and even with 80% sparsity 

induction, the final sparsity achieved after quantization is 

large in some layers. This alteration is higher in layers 

with large number of channels where the coefficients tend 

to be small. Thus the convolution layers (layers 13, 14 in 

Table 3) with most of the complexity, has a higher sparsity 

after the quantization than the sparsity that was induced. 

 

 

 

 

 

 

 

 

 

Inference 

method 

 

 

Configuration 

for inference 

 

 

Giga 

Macs 

Giga 

Cycles 

 

Time 

(Milli-

Seconds)

Frames 

Per 

Second

Dense 

Without 

utilizing 

sparsity  

8.843 0.700 194.44 5.14

Sparse 

L2 regularized 

trained 
8.163 0.653 181.39 5.51

L1 regularized 

trained 
3.264 0.299 83.06 12.04

Sparsity 

induced at 80% 
1.540 0.188 52.22 20.22

Table 6. Measurements from TDA2x SoC for inferring 

semantic segmentation of an image of 1024x512 

resolution 

5. Conclusion 

The sparsity inducing step is based on thresholding and 

can be done quickly. The subsequent fine tuning step 

converges in reasonable number of iterations. This is a 

significant improvement in speed of thresholding 

compared to [12]. We also get reasonably precise control 

on the amount of sparsity induced. Usage of sparsity 

results in nearly 4x improvement in the speed of inference 

on TDA2x using 80% sparsity induction.  

As noted earlier, CNN inference using 8-bit 

quantization can be much faster than floating point 

implementations. The quantization method described in 

this paper enables inference of CNN using 8-bit fixed 

point operations. This quality loss observed is minimal.  

Optimized implementation on TDA2x SoC shows that 

the proposed approach is suitable for embedded 

implementations and remarkable speedup can be obtained 

with minimal quality loss. Source code and scripts are 

provided for training sparse and quantized models. 

It may be possible to induce even higher sparsity than 

80% by the quick sparsification method, without incurring 

significant quality loss. This is an area for future research. 

 

 

 

 

 

17



 

  

Figure 3. Sample input images from the validation set and the segmentation produced using sparse (80%), 

quantized inference (chroma blended visualization)

18



 

References 
[1] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet 

classification with deep convolutional neural networks. In 

NIPS, 2012. 

[2] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich 

feature hierarchies for accurate object detection and 

semantic segmentation. In: CVPR. (2014) 

[3] Evan Shelhamer, Jonathan Long, Trevor Darrell, Fully 

Convolutional Models for Semantic Segmentation PAMI, 

2016 

[4] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon 

and Ali Farhadi. XNOR-Net: ImageNet Classification 

Using Binary Convolutional Neural Networks. ECCV 2016. 

[5] Fengfu Li, Bo Zhang, Bin Liu, Ternary Weight Networks, 

arXiv preprint arXiv:1605.04711 

[6] Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, Deep 

Residual Learning for Image Recognition, CVPR, 2016 

[7] Marcel Simon, Erik Rodner, Joachim Denzler, ImageNet 

pre-trained models with batch normalization,  

arXiv preprint, arXiv:1612.01452 [cs.CV] 

[8] K. Simonyan, A. Zisserman, Very Deep Convolutional 

Networks for Large-Scale Image Recognition. arXiv 

technical report, 2014 

[9] Murtaza Ali, Eric Stotzer, Francisco D. Igual, Robert A. van 

de Geijn, Level-3 BLAS on the TI C6678 Multi-core DSP, 

2012 IEEE 24th International Symposium on Computer 

Architecture and High Performance Computing (SBAC-

PAD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] TMS320C6678 Multicore Fixed and Floating-Point Digital 

Signal Processor, 

http://www.ti.com/lit/ds/symlink/tms320c6678.pdf 

[11] Max Jaderberg, Andrea Vedaldi, Andrew Zisserman. 

Speeding up Convolutional Neural Networks with Low 

Rank Expansions, British Machine Vision Conference, 2014 

[12] Wei Wen, Chunpeng Wu, Yandan Wang, Learning 

Structured Sparsity in Deep Neural Networks, NIPS 2016 

[13] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. 

“Hardware-oriented Approximation of Convolutional 

Neural Networks.“, International Conference on Learning 

Representation (ICLR) – workshop track, May 2016 

[14] Tensorflow. https://www.tensorflow.org/ 

[15] Pete Warden. TensorFlow: Enabling Mobile and Embedded 

Machine Intelligence, Emdedded Vision Summit, May 

2016. 

[16] Jeff Dean, Large-Scale Deep Learning for Intelligent 

Computer Systems, Emdedded Vision Summit, May 2016. 

[17] TDAx ADAS SoCs, 

http://www.ti.com/lsds/ti/processors/dsp/automotive_proces

sors/tdax_adas_socs/overview.page 

[18] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, 

R. Benenson, U. Franke, S. Roth, and B. Schiele, "The 

Cityscapes Dataset for Semantic Urban Scene 

Understanding," in Proc. of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2016. 

[19] Fisher Yu and Vladlen Koltun. Multi-Scale Context 

Aggregation by Dilated Convolutions, ICLR 20 

19


