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Abstract

Confidence measures aim at discriminating unreliable

disparities inferred by a stereo vision system from reliable

ones. A common and effective strategy adopted by most

top-performing approaches consists in combining multiple

confidence measures by means of an appropriately trained

random-forest classifier. In this paper, we propose a novel

approach by training an n-channel convolutional neural

network on a set of feature maps, each one encoding the out-

come of a single confidence measure. This strategy enables

to move the confidence prediction problem from the con-

ventional 1D feature maps domain, adopted by approaches

based on random-forests, to a more distinctive 3D domain,

going beyond single pixel analysis. This fact, coupled with

a deep network appropriately trained on a small subset of

images, enables to outperform top-performing approaches

based on random-forests.

1. Introduction

Stereo is a well-known methodology to estimate depth

from multiple images. Although many algorithms dealt

with this problem, with different degrees of effective-

ness, performance in difficult environments characterized

by specular or transparent surfaces, uniform regions, sun-

light, etc remains an open research problems as clearly wit-

nessed by recent datasets [25, 4, 15]. Therefore, regardless

of the stereo algorithm, it is essential to detect its failures

to filter-out wrong unreliable points that might lead to a

not correct interpretation of depth data. To this aim, re-

cent works focused on the formulation of meta-information

capable to discriminate whether a disparity assignment has

been correctly inferred by the stereo algorithm or not. Con-

fidence measures encode this property by means of an es-

timated reliability score assigned to each pixel of the dis-

parity map. Several measures obtained by processing dif-

ferent cues from the cost volume, disparity maps or in-

put images have been proposed. Hu and Mordohai pro-
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Figure 1. Comparison between confidence measures obtained by

[19] and by our proposal processing the same input features. (a)

Left image, (b) disparity map, (c) confidence map computed by a

random forest, (d) confidence map computed by our CNN-based

method. In disparity maps, warm colors encodes closer points. In

confidence maps brighter values encode more confident disparity.

vided [10] an exhaustive review categorizing confidence

measures according to the input features used, showing the

strengths and weaknesses of each one. Following this ob-

servation, state-of-the-art approaches focused on combin-
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ing multiple, possibly orthogonal, confidence measures by

means of machine-learning frameworks based on random-

forests.

These results, and the effectiveness of deep machine-

learning applied to computer vision problems motivated

us to inquire about the opportunity to achieve more ac-

curate confidence estimation leveraging on Convolutional

Neural Networks (CNNs). Figure 1, considering a sam-

ple from the KITTI 2015 dataset, shows the disparity map

computed by a local stereo algorithm and two confidence

maps obtained processing the same input features, respec-

tively, by means of a state-of-the-art approach [19] based on

a random-forest and our CNN-based proposal. We can ob-

serve from the figure how the confidence map obtained with

deep-learning provides ”Even More Confident” (EMC) pre-

dictions. In particular, the random-forest approach in (c)

sets a large amount of points to intermediate scores being

not sure enough about their actual reliability. On the other

hand, our proposal (d) clearly depicts much more polarized

scores. In section 4 we’ll report quantitative results con-

firming the advantages yielded by our strategy.

Differently from approaches relying on random-forest

classifiers that infer, for each point, an estimated match re-

liability by processing a 1D input feature vector made of

point-wise confidence measures and features, our proposal

relies on a more distinctive 3D input domain. Such input

domain, for the point under analysis, is made of patches

extracted from multiple input confidence and feature maps

around the examined point as shown in Figure 2. Leverag-

ing on a CNN, our proposal is able to infer more meaningful

confidence estimations with respect to a random forest fed

with the same input data. Doing so, our approach moves

from the single pixel confidence strategy adopted by most

state-of-the-art methods to a patch-based domain in order to

exploit more meaningful local information.

We validate our method as follows. Once selected a sub-

set of stereo pairs from the KITTI 2012 [4] training dataset,

we run a fast local stereo algorithm, using as matching cost

the census transform plus Hamming distance, a cost func-

tion common to previous works [19, 21]. From the out-

come of the previous phase we compute a pool of confi-

dence measures and features training a random forest and

our CNN framework on such data. In particular, we choose

as input confidence measures and features the same adopted

by state-of-the-art methods [27], [19] and [21] based on

random-forest frameworks. Then, we evaluate the effective-

ness of our proposal with respect to [27], [19] and [21] by

means of ROC curve analysis [10], on the remaining por-

tion of KITTI 2012. Moreover, we cross-validate without

re-training on KITTI 2015 and Middlebury 2014.

2. Related work

Stereo has been tackled, with different degrees of effec-

tiveness, by many works in literature. Almost any algorithm

deployed to address it belongs to one of the two categories

defined by Scharstein and Szeliski [24]: local and global

methods. Currently, most state-of-the-art stereo pipelines

[4, 15] leverage on the point-wise matching cost MC-CNN

[28] inferred on image patches with a CNN and by refin-

ing the obtained cost volumes with adaptive local cost ag-

gregation and Semi-Global Matching (SGM). Concerning

CNN-based stereo algorithms, Chen et al. [1] and Luo et

al. [12] follow a similar strategy. Conversely, Mayer et al.

[14] proposed a deep architecture for end-to-end disparity

estimation.

In this field, detecting wrong assignments is important

for different purposes and in particular to improve overall

disparity accuracy in challenging conditions. This is carried

out exploiting confidence measures that, with different for-

mulations and effectiveness, allow to estimate match relia-

bility. Hu and Mordohai [10] reviewed, evaluated and cate-

gorized such measures according to the input cues: match-

ing cost, local properties of cost curve, local minima, entire

cost curve, left-right consistency between disparity maps

and distinctiveness. They report a complete benchmark,

by defining a protocol based on ROC curve analysis, de-

ploying different matching cost functions and evaluating

confidences for different tasks such as detection of correct

matches, occlusions and disparity selection. In addition to

their standard deployment, confidence measures proved to

be very effective for others purposes. In [8, 17] for occlu-

sion detection, in [23] for error detection, and in [13, 16] to

combine depth data from multiple sensors. Moreover, such

measures can also be used to improve disparity accuracy

by enhancing the raw cost curve [20, 18, 5, 27, 19]. These

methods turned out to be very effective when dealing with

very challenging scenarios as reported in [19].

A recent trend concerning confidence measures consists

in improving the effectiveness of stand-alone approaches

within machine-learning frameworks. Hausler et al. [6]

proposed to train a random forest classifier, fed with a set

of stand-alone confidences and features computed at dif-

ferent scales, to distinguish correct matches from wrong

ones. Inspired by the results yielded by such strategy, in

other works the problem was addressed similarly such as in

[27] and [19] enabling to obtain results closer to optimal-

ity. Both methods also proposed original methodologies,

driven by confidence measure, to improve the accuracy of

stereo algorithms. In [27], by detecting a subset of reliable

ground control points processed by a global optimization

framework [11]. In [19], by modulating raw cost curve be-

fore aggregating them with methods based on the guided-

filter [7], [9, 3], or performing a disparity optimization with

SGM. Moreover, in [21] a random forest classifier has been
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Figure 2. Architecture of CNN with highlighted in purple the confidence measures and features processed in a 3D domain by our method.

trained only on features obtained from the disparity map,

making the entire cost volume no longer required to effec-

tively predict the reliability of each pixel, proving to outper-

form [19] and establishing as the most effective confidence

measure based on random forest. Moreover, this latter mea-

sure has been deployed to improve SGM results by weight-

ing the contribution of the different scanlines according to

the confidence of their respective WTA maps. In this field,

Mostegel et al. in [2] proposed a process to generate dis-

parity labels exploiting multiple view points and contradic-

tions between depth maps, in order to perform unsupervised

training of confidence measures based on machine-learning

[6, 27, 19]. Finally, more recent deep-learning based con-

fidence measures have been proposed. In particular, Seki

and Pollefeys [26] deployed a CNN inferring confidence by

working on patches obtained from left and right disparity

maps, while Poggi and Mattoccia in [22] trained a deep ar-

chitecture to predict confidence only from the reference dis-

parity map.

3. Deep learning for confidence measures

In this work, we follow the successful strategy of com-

bining multiple confidence measures through supervised

learning, by exploiting CNN. Such solution greatly in-

creases the amount of information processed when predict-

ing confidence with respect to conventional random-forest

classifiers. In particular, by processing confidences and

other hand-crafted features as images, our approach moves

from the 1D features domain of the random forest classifiers

to a more distinctive 3D domain, encoding local behavior

of features and, thus, going beyond single pixel confidence

analysis . Two dimensions are given by the image domain

and one by the features domain as shown in Figure 2.

3.1. Hand­crafted features layer

In [6] the random-forest classifier is fed with a feature

vector F containing f different features, obtained accord-

ing to f functions (e.g., multiple confidence measures com-

puted at different scales). Although this strategy and the

others inspired by this method [27, 19, 21] enabled remark-

able improvements, the random forest classifier takes as in-

put a 1D feature domain made of elements of F , encoding

pixel-wise properties.

By moving into the deep learning domain, we can imag-

ine this feature vector F as a set of f general purpose fea-

ture maps that might be generated by a generic convolu-

tional layer Ci and fed as input to the following one Ci+1.

According to this observation, we model our framework as

a CNN with a first layer H in charge of extracting a set of

hand-crafted feature maps. Excluding the front-end layer

H , the remaining portion of the deep architecture is trained

according to the number input feature maps provided by

such layer. For example, adopting the same input features

of [27] in our framework, the H front-end would provide

to the first convolutional layer of the deep network the fol-

lowing eight feature maps described in [27]: MSM, MMN,

AML, LRC, LRD, distance to border, distance to disconti-

nuities and median deviation of disparity.

3.2. Deep network architecture

This section describes the design of the architecture pro-

posed to infer a learned confidence measure. Excluding the

H front-end, in charge of providing multiple feature maps

from the available input cues (e.g., cost curve, disparity

maps, etc), we rely on a deep-network architecture made

of 7 convolutional layers trained to infer a point-wise con-

fidence measure processing 3D input features. Specifically,

we deploy a patch-based fully-convolutional architecture,

as shown in Figure 2.

A patch-based approach, as proposed in [28, 22], re-

quires a significantly lower amount of data for training com-

pared to an end-to-end deep network architecture working

on full-resolution images like the one proposed in [14]. In

fact, in this second case, the dataset required to train such

deep-network for the same purpose would be much more

larger. Considering this fact, our model is made of four

convolutional layers, each one followed by Rectifier Linear

Units (ReLU). Each layer applies 128 kernels of size 3× 3,

applied to each pixel (stride equal to 1). Two additional
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convolutional layers, made of 384 1×1 kernels followed by

ReLU, increase the amount of extracted features, leading to

the final output layer. This model counts more than one half

million parameters and was chosen in our experiments, af-

ter a preliminary testing, as the one yielding more accurate

results. According to this architecture, a single point-wise

confidence measure is obtained by processing a 9 × 9 per-

ceptive field after the front-end H . According to Figure 2

this means that the 3D input domain processed by our net-

work has size 9× 9× f .

Being our architecture a fully-convolutional model, any

input of size greater than the perceptive field can be pro-

cessed by the network. This means that it is capable of

computing a full resolution confidence map by processing

the feature maps forwarded by the H front-end. The deep

network, excluding H , performs on a full-resolution KITTI

2012 image a confidence prediction in a few seconds on an

i7 CPU, dropping to 0.8 seconds with a Titan X GPU, with

an overall memory footprint of about 4.5 GB.

4. Experimental Results

To evaluate our proposal, we feed our network with mul-

tiple stand-alone confidence measures and hand-crafted fea-

tures comparing the results with state-of-the-art confidence

measures [27, 19, 21] based on random-forest frameworks.

We perform a single training on a portion of the KITTI

2012 dataset (25 out of 194 total images), then we test the

methods on the remaining stereo pairs available, deployed

as evaluation set. Moreover, we further cross-validate the

confidence measures on KITTI 2015 (200 images) and Mid-

dlebury 2014 datasets (15 images). We will release source

code and trained networks on a public repository.

4.1. Training phase

We trained our network according to stochastic gradient

descend, we choose the binary cross entropy as loss func-

tion, according to the regression problem we are dealing

with. We trained on nearly 3.5 million samples, obtained

from the first 25 stereo pairs of the KITTI 2012 training

dataset. Each sample corresponds to a volume of 9× 9× f

patches output of the H layer, each one centered on a pixel

with provided ground-truth available in the dataset. We

define a batch size of 128 training samples, training for

5 epochs, corresponding to nearly 135 thousand iterations,

with a 0.002 learning rate and 0.8 momentum. We applied

training samples shuffling.

The stereo algorithm used to generate matching costs for

the training phase consists of a 5×5 census based data term,

aggregated on a fixed local window of size 5× 5. We set as

error threshold the value 3, commonly adopted to compute

the error rate of the stereo algorithms on the most popular

datasets [4, 15]. Samples concerning pixels with a dispar-

ity assigned by the fixed window aggregation lower than

the threshold are labeled with high confidence (1 values).

For a fair evaluation, we compare the proposed method-

ology with random-forests trained on the same amount of

data. In our experiments, we choose [27], [19] and [21],

representing state-of-the art confidence measures inferred

by random-forest frameworks. During the validation, these

three methods will be referred to as, respectively,

• GCP (Ground Control Point) [27], processing a feature

vector of cardinality 8 by means of a random-forest.

Such vector contains MSM, MMN, AML, LRC, LRD

confidence measures reviewed in [10], DTB (distance

to border), DTD (distance to discontinuities) and MED

(median deviation of disparity) computed on a 5 × 5
patch.

• LEV (Leveraging-Stereo) [19], processing a feature

vector of cardinality 22 by means of a random-

forest. The vector contains PKR, PKRN, MSM,

MMN, WMN, MLM, NEM, LRD, CUR and LRC con-

fidence measures reviewed in [10], PER confidence

measure proposed in [6], DTBL (distance to left bor-

der), DTE (distance to edges), HGM (horizontal gradi-

ent magnitude), MED (median deviation of disparity)

and VAR (variance of disparity) on 5× 5, 7× 7, 9× 9
and 11× 11 neighborhood.

• O1 (O1) [21], processing a feature vector of cardinal-

ity 20 by means of a random-forest. The vector con-

tains DA (disparity agreement), DS (disparity scatter-

ing, median disparity, VAR (variance of disparity) and

MED (median deviation of disparity), each one com-

puted on 5×5, 7×7, 9×9 and 11×11 neighborhood.

4.2. EMC vs random­forest

A common procedure to evaluate the effectiveness of a

confidence measure is the ROC curve analysis, proposed by

Hu and Mordohai [10] and adopted by subsequent works

[6, 27, 19, 22]. The ROC curve is drawn by iterative sub-

sampling of pixels from the image, according to descending

order of confidence. Starting from a small subset of points

(i.e., 5% most confident), the error rate on such group is

plotted, then more pixels are included into the subset and

the new error is plotted, and so on until all pixels have been

included into the set. This leads to a non-monotonic curve,

whose area (AUC) is an indicator of the effectiveness of the

confidence measure. Given a disparity map with ε% wrong

pixels, an optimal confidence measure should draw a curve

which is zero until ε% pixels have been sub-sampled. The

area of this curve represents the optimal AUC achievable

by a confidence measure and can be obtained, according to

[10], as AUCopt =
∫ ε

1−ε

p−(1−ε)
p

dp = ε+(1−ε) ln (1− ε)
To be compliant with the training protocol, ε is obtained

by fixing a threshold value on disparity error of 3.
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Figure 3. AUC values on the KITTI dataset. Each value on the plot represent the AUC on a single image of the dataset, sorted in non-

descending order according to their optimal values. We report, from top to bottom, comparison between GCP and EMCGCP (a), LEV

and EMCLEV (b), O1 and EMCO1 (c). Cost volumes obtained by census based fixed window algorithm.

Figure 3 depicts three plots, containing the AUC val-

ues computed over the entire KITTI 2012 (excluding the

images processed during training) of both the EMC ap-

proach and the corresponding random forest counterpart,

for GCP [27], LEV [19], O1 [21]. The curves are plotted

in non-descending order according to optimal values (red),

together with curves related to random forest implementa-

tion (referred to as GCP, LEV and O1, plotted in green)

and our method processing the same inputs (referred to as

EMCGCP , EMCLEV and EMCO1, plotted in blue). In par-

ticular, from top to bottom, (a) concerns with GCP versus

EMCGCP , (b) with LEV versus EMCLEV , (c) with O1 vs

EMCO1. As we can observe, for the first two experiments

the EMC implementations achieves lower AUC values, thus

closer to optimal values. From the AUC curve, it’s evident

how the EMC framework outperforms the random forest on

each image of the dataset. Concerning O1, our implementa-

tions performs very similarly to the original proposal [21],

but on average it achieves a better AUC on the entire dataset.

Figure 4 depicts the three plots for the entire KITTI

2015, comparing the EMC approach with the correspond-

ing random forest counterpart, for GCP [27], LEV [19], O1

[21]. Optimal values are plotted in red, curves related to

random forest implementation (referred to as GCP, LEV and

O1, plotted in green) and our method processing the same

inputs (referred to as EMCGCP , EMCLEV and EMCO1,

plotted in blue). In particular, top graph (a) concerns with

GCP versus EMCGCP , the second one (b) with LEV versus
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Figure 4. AUC values on the KITTI 2015 dataset. Each value on the plot represent the AUC on a single image of the dataset, sorted in

non-descending order according to their optimal values. We report, from top to bottom, comparison between GCP and EMCGCP (a),

LEV and EMCLEV (b), O1 and EMCO1 (c). Cost volumes obtained by census based fixed window algorithm.

EMCLEV , the final (c) with O1 vs EMCO1. The behavior

observed on KITTI 2012 is confirmed, GCP and LEV fea-

tures achieve major improvements when processed within

EMC framework with respect to random forest, while we

can observe a minor improvement concerning O1.

Figure 5 shows three plots concerning the evaluation on

the Middlebury 2014 dataset. As for the previous figures,

optimal values are plotted in red, curves related to random

forest implementation are in green (referred to as GCP, LEV

and O1) and those related to EMC processing the same in-

puts (referred to as EMCGCP , EMCLEV and EMCO1). In

particular, from left to right, (a) concerns with GCP versus

EMCGCP , (b) with LEV versus EMCLEV , (c) with O1 vs

EMCO1. The three confidence measures confirm the behav-

iors already highlighted on the KITTI datasets.

To further perceive the improvements lead by our frame-

work (and, concerning O1, to highlight its behavior more

clearly), we report AUC values averaged over each of the

three datasets for the three confidence measures, for both

random forest and EMC implementations. We report two

aspects allowing for such comparison. The first is the vari-

ation of average AUC achieved by EMC implementation

of confidence measure k with respect to its random forest

counterpart and optimal value, referred to as ∆k and ob-

tained as:

∆k =
AUCk −AUCEMCk

AUCk −AUCopt

(1)
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Figure 5. AUC values on the Middlebury dataset. Each value on the plot represent the AUC on a single image of the dataset, sorted in

non-descending order according to their optimal values. We report, from top to bottom, comparison between GCP and EMCGCP (a),

LEV and EMCLEV (b), O1 and EMCO1 (c). Cost volumes obtained by census based fixed window algorithm.

KITTI 2012 KITTI 2015 Middlebury 2014

GCP LEV O1 GCP LEV O1 GCP LEV O1

Optimal 0.107802 0.088357 0.068375

RF 0.152764 0.144077 0.127645 0.139611 0.131662 0.108812 0.109302 0.104146 0.090908

EMC 0.133684 0.125211 0.126898 0.117551 0.107969 0.106523 0.091749 0.088473 0.089928

∆k -42.44% -52.01% -3.76% -43.04% -54.71% -11.19% -42.88% -43.81% -4.35%
Table 1. Average AUC values on the three dataset, KITTI 2012, KITTI 2015 and Middlebury from left to right respectively. First row

reports optimal AUC values according to [10], second row shows values concerning the random forest implementation of GCP [27], LEV

[19] and O1 [21], third row shows results achieved by EMC implementation. Final row shows the improvement ∆k led by EMC with

respect to optimal AUC values. Cost volumes obtained by census based fixed window algorithm.

KITTI 2012

GCP LEV O1

EMC win rate 169/169 169/169 122/169

KITTI 2015

GCP LEV O1

EMC win rate 200/200 200/200 181/200

Middlebury 2014

GCP LEV O1

EMC win rate 15/15 15/15 8/15
Table 2. EMC win rate on the three dataset, KITTI 2012, KITTI

2015 and Middlebury (i.e., number of images per dataset on which

EMC outperforms the random forest) from top to bottom respec-

tively. First row reports optimal AUC values according to [10],

second row shows values concerning the random forest implemen-

tation of GCP [27], LEV [19] and O1 [21], third row shows results

achieved by EMC implementation. Final row shows the improve-

ment ∆k led by EMC with respect to optimal AUC values. Cost

volumes obtained by census based fixed window algorithm.

Negative values of this variation reflects an improvement

achieved by EMC, while positive stand for a worse confi-

dence prediction. The second is the win rate, as the num-

ber of images on which EMC achieves a lower AUC with

respect to its random forest counterpart. Table 1 reports av-

erage AUC for each confidence measure (GCP, LEV, O1)

on the three datasets KITTI 2012, KITTI 2015 and Middle-

bury. The first row reports optimal AUC, according to [10],

averaged over each dataset, then AUC concerning both im-

plementations (referred to as, respectively, RF for random

forest, EMC for our approach). Finally, ∆k highlights the

effectiveness of the CNN with respect to the random for-

est. We can observe how on the KITTI 2012 dataset the im-

provement yielded by our method is, concerning GCP and

LEV, higher than 40%, respectively, 42.44% with respect

to GCP and 52.01% with respect to LEV. These results are

confirmed on the KITTI 2015 dataset, reporting ∆k very

close to the previous ones, and on Middlebury 2014, on

which LEV achieve a lower, yet important ∆k value. Fo-

cusing on O1, the improvement is lower, between 3% and

12% (the higher is on KITTI 2015, -11.19% ) on the three

datasets. This may be caused by the higher accuracy of the

random forest implementation compared to GCP and LEV

solutions, or to the nature of the features extracted by O1,

all processed from the disparity map only and, probably,

encoding less different behaviors with respect to GCP and

LEV features. Nonetheless, on average with O1, EMC is

more effective than the random forest counterpart. Table 2

reports the win rate achieved by EMC for each confidence
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 6. Confidence maps obtained by random forest and EMC. The disparity map is concerned with the considered stereo algorithm on

pair 000176 of the KITTI 2015 dataset. Reference image (a) , disparity map (b), confidence map obtained by GCP [27] using a random

forest (c) and EMC (d), confidence map obtained by LEV [19] using a random forest (e) and EMC (f), confidence map obtained by O1

[21] using a random forest (g) and EMC (h).

measure on the three datasets. While EMC outperforms ran-

dom forests on all the stereo pairs of the three datasets for

GCP and LEV (i.e., 100% win rate), it wins 122 out of 169

times on KITTI 2012, 181 out of 200 on KITTI 2015 (con-

firming to be more effective on this dataset) and 8 out of 15

on Middlebury for O1, confirming to be less effective, but

still outperforming random forest implementation on aver-

age. We would like to point-out that the training proce-

dure did not take into account any of the KITTI 2015 nor

Middlebury 2014 data for random forest approaches and

EMC. This evaluation proves how the effectiveness of the

CNN-based proposal implementation result is kept process-

ing different data. This fact (i.e., the capability to general-

ize to new data) represents a notable result for a machine-

learning framework. Finally, Figure 6 reports a qualitative

comparison of confidence maps obtained by random forest

and EMC, respectively, with GCP (c,d), LEV (e,f) and O1

(g,h), for a stereo pair from KITTI 2015 dataset.

5. Conclusions

In this paper we tackled the confidence prediction prob-

lem exploiting a deep network to combine multiple confi-

dence and feature maps. Differently from state-of-art ap-

proaches based on random-forest framework processing in-

put features in a 1D domain, our proposal relies on more

distinctive features in the 3D domain enabling to extract

more effective confidence predictions. Extensive experi-

mental results show that our proposal improves the effec-

tiveness of top-performing approaches based on random-

forest when fed with the same input features and trained

on the same amount of data.
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[14] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,

A. Dosovitskiy, and T. Brox. A large dataset to train convo-

lutional networks for disparity, optical flow, and scene flow

estimation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 2, 3

[15] M. Menze and A. Geiger. Object scene flow for autonomous

vehicles. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. 1, 2, 4

[16] P. Merrell, A. Akbarzadeh, L. Wang, J. michael Frahm, and

R. Y. D. Nistr. Real-time visibility-based fusion of depth

maps. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2007. 2

[17] D. B. Min and K. Sohn. An asymmetric post-processing

for correspondence problem. Sig. Proc.: Image Comm.,

25(2):130–142, 2010. 2

[18] P. Mordohai. The self-aware matching measure for stereo. In

The International Conference on Computer Vision (ICCV),

pages 1841–1848. IEEE, 2009. 2

[19] M.-G. Park and K.-J. Yoon. Leveraging stereo matching with

learning-based confidence measures. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2015. 1, 2, 3, 4, 5, 7, 8

[20] D. Pfeiffer, S. Gehrig, and N. Schneider. Exploiting the

power of stereo confidences. In IEEE Computer Vision and

Pattern Recognition, pages 297–304, Portland, OR, USA,

June 2013. 2

[21] M. Poggi and S. Mattoccia. Learning a general-purpose con-

fidence measure based on o(1) features and asmarter aggre-

gation strategy for semi global matching. In Proceedings of

the 4th International Conference on 3D Vision, 3DV, 2016.

2, 3, 4, 5, 7, 8

[22] M. Poggi and S. Mattoccia. Learning from scratch a confi-

dence measure. In Proceedings of the 27th British Confer-

ence on Machine Vision, BMVC, 2016. 3, 4

[23] N. Sabater, A. Almansa, and J.-M. Morel. Meaningful

Matches in Stereovision. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 34(5):930–42,

dec 2011. 2

[24] D. Scharstein and R. Szeliski. A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. Int. J.

Comput. Vision, 47(1-3):7–42, apr 2002. 2

[25] D. Scharstein and R. Szeliski. High-accuracy stereo depth

maps using structured light. In Proceedings of the 2003 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, CVPR’03, pages 195–202, Washington,

DC, USA, 2003. IEEE Computer Society. 1

[26] A. Seki and M. Pollefeys. Patch based confidence prediction

for dense disparity map. In British Machine Vision Confer-

ence (BMVC), 2016. 3

[27] A. Spyropoulos, N. Komodakis, and P. Mordohai. Learning

to detect ground control points for improving the accuracy

of stereo matching. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1621–1628.

IEEE, 2014. 2, 3, 4, 5, 7, 8

[28] J. Zbontar and Y. LeCun. Stereo matching by training a con-

volutional neural network to compare image patches. Jour-

nal of Machine Learning Research, 17:1–32, 2016. 2, 3

84


