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Abstract 

 

Driver’s status is crucial because one of the main 
reasons for motor vehicular accidents is related to driver’s 
inattention or drowsiness. Drowsiness detector on a car 

can reduce numerous accidents. Accidents occur because 

of a single moment of negligence, thus driver monitoring 

system which works in real-time is necessary. This detector 

should be deployable to an embedded device and perform 

at high accuracy. In this paper, a novel approach towards 

real-time drowsiness detection based on deep learning 

which can be implemented on a low cost embedded board 

and performs with a high accuracy is proposed. Main 

contribution of our paper is compression of heavy baseline 

model to a light weight model deployable to an embedded 

board. Moreover, minimized network structure was 

designed based on facial landmark input to recognize 

whether driver is drowsy or not. The proposed model 

achieved an accuracy of 89.5% on 3-class classification 

and speed of 14.9 frames per second (FPS) on Jetson TK1. 

 

Keywords: Driver Monitoring System, Drowsiness 

Detection, Deep Learning, Knowledge Distillation, 

Real-time Deep Neural Network, Model Compression. 

1. Introduction 

Driver Drowsiness is one of the leading causes of motor 

vehicular accidents. In 2014, 846 fatalities related to 

drowsy drivers were recorded in NHTSA’s reports [1]. 

These fatalities have remained largely consistent across the 

past decade. There was an estimated average of 83,000 

crashes each year related to drowsy driving between 2005 

and 2009. For these reasons, risk alert system for drivers 

using a detector which can determine drowsiness is highly 

recommended. The alert system can awaken the drowsy 

driver or hand over the control to autonomous vehicle. 

Various techniques have been implemented to measure 

driver drowsiness. The techniques can be broadly classified 

into 3 categories 

i. Driving pattern of the vehicle  

ii. Psychophysiological characteristics of drivers 

iii. Computer Vision techniques for driver monitoring 

 

 

In the first group of techniques, various state of the art 

techniques are implemented based on monitoring steering 

wheel movement [2][3]. Some of the techniques in this 

group focus on acceleration or breaking time series, lane 

departure to determine the level of drowsiness in [4]-[6]. 

The techniques in the second category focus on electrical 

bio-signals such as EEG (Electroencephalography), ECG 

(Electrocardiography) and EOG (Electrooculogram) [7]. 

However, the techniques in the two previously mentioned 

classes have severe limitations. The former class of 

techniques can only be used in certain driving condition and 

are not robust in nature, whereas the latter is difficult for 

practical purposes, since it is uncomfortable for the driver to 

wear various signal measuring tools on the body. Thus, 

driver monitoring based on Computer Vision is becoming 

popular [8][9]. Computer Vision techniques mainly 

concentrate on detecting eye closure, yawning patterns and 

the overall expression of the face and movement of head.  

This paper presents a Computer Vision based deep 

learning approach for driver drowsiness. This method takes 

driver’s face as input and classifies the drowsiness behavior 

into 3 classes (normal, yawning and drowsy). The biggest 

advantage of the proposed model is the model is 

compressed small enough that it can be deployed on an 

embedded board while preserving reasonable accuracy. To 

deploy a driver drowsiness detection system in a daily use 

vehicle, a compressed model is significant. Since a person 

can fall asleep at any moment, it is highly necessary to have 

a real-time classifier for drowsiness detection, which 

consumes low power and can be deployed easily on a 

vehicle similarly with ECU (Electronic Control Unit). 

2. Related Work 

In this chapter, we summarize previous approaches on 

drowsiness detection. In order to improve accuracy and 

speed of drowsiness detection, various methods have been 

proposed. Conventional approaches on drowsiness 

detection are listed, followed by the latest approaches using 

deep learning. Furthermore, deep learning model 

compression methods to overcome run-time issues are 

described. 
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2.1. Conventional Approaches for Drowsiness 

Detection 

Driving pattern can be calculated by measuring steering 

wheel movement or deviation from lane or lateral position. 

Micro adjustments to the steering wheel are necessary when 

driving to keep the car in a given lane. Krajweski et al. [3] 

achieved an accuracy of 86% in drowsiness detection based 

on correlations between micro adjustments and drowsiness. 

In the other case of driving pattern recognition, deviation in 

lane position is used. This monitors the car’s position with 

respective to the lane and analyze the deviation [6]. 

However the driving pattern based techniques are highly 

dependent on the driving skills, road conditions and vehicle 

characteristics.  

The second class of techniques uses data taken from 

physiological sensors, like EEG, ECG and EOG data. EEG 

signals contain information about brain’s activity. Three 

main signals in EEG for measuring driver’s drowsiness are 

alpha, delta and theta signals. When a driver is drowsy, delta 

and theta signals spikes up, alpha signal increasing slightly. 

In [7], this technique gives the best accuracy among all the 

three methods (more than 90%). However the major 

drawback of this method is the intrusiveness which disturbs 

drivers by attaching many sensors on the body. 

Non-intrusive methods for bio-signals exist, but are less 

accurate. 

The last one is based on facial feature extraction using 

Computer Vision, where behaviors such as eye closure, 

head movement, yawning duration, gaze or facial 

expression have been used. Danisman et al. [8] used 

distance between eyelids to measure drowsiness of 3 levels. 

The distinguishing was done based on the number of blinks 

per minute, under the assumption the count increases as the 

person becomes drowsier. In [9], behaviors of mouth and 

yawning are adopted as drowsiness measurement where the 

modified Viola-Jones object detection algorithm is used for 

face and mouth detection.  

 

2.2. Drowsiness Detection using Deep Learning 

Recently, deep learning is widely used to resolve difficult 

problems which cannot be handled properly using 

conventional methods. Deep learning based on 

Convolutional Neural Networks (CNNs) makes a 

breakthrough especially for Computer Vision tasks such as 

image classification, object detection, emotion recognition, 

scene segmentation [10]-[13] etc.  

Dwivedi et al. [14] adopted shallow CNNs for drowsy 

driver detection with accuracy of 78%. As the latest 

research, S. Park et al. [15] proposed a new architecture 

using three networks. In the first network, image feature is 

learnt by using AlexNet which consists of 5 CNNs and 3 FC 

layers [16]. 16-layered VGG-FaceNet [17] is utilized to 

extract facial feature in the second network. The last 

network works to extract behavior features by using 

FlowImageNet [18]. As a result, 73% detection accuracy is 

achieved. Both [14] and [15] focused on improving 

drowsiness detection accuracy employing binary 

classification. In real-time applications, performance in 

terms of speed is also a crucial point. 

2.3. Compression Algorithms of Deep Learning 

Model  

Although deep learning is powerful on various 

classification tasks, it is a burden to deploy deep learning 

algorithms to practical applications on embedded systems 

since model size of deep learning is generally large and high 

computational complexity is required. Therefore, in the 

recent years algorithms to reduce model size and improve 

speed have been proposed by using various ways [19]-[29].  

Methods to reduce model size have been proposed in 

[19]-[23].  Generally, trained networks include redundant 

information, so some of weights can be discarded by 

applying pruning without accuracy drop. To reduce model 

size further, quantization techniques have been introduced 

such as bit-quantization. In bit-quantization, the least 

number of bits are utilized for representing information of 

model while minimizing accuracy loss. In some of 

researches, they adopted binary networks. Even though 

these works have advantages in terms of model size and 

speed, accuracy cannot be maintained because of the 

simplicity of binary operations [21][22].  

Moreover, Low-rank decomposition has been proposed 

in [24] to decompose a tensor and reduce number of matrix 

operations.  

R. Caruana et al. [26] introduced the concept of applying 

ensemble selection from libraries of models. According to 

this work, researchers in [25][27][28][29][30] developed 

learning algorithms by adopting knowledge distillation 

approach between two networks. A role of one is teacher 

and that of the other network is student.  

Teacher networks are large and have high computation 

requirements, which can learn patterns from a large dataset. 

On the contrary student networks are small requiring less 

computation and can learn only from teacher network. Due 

to its smaller size, student network is suitable to be 

implemented on embedded devices and has capability to run 

at real time on portable devices. Hinton et al. [25] proposed 

how to transfer weights from teacher network to student 

network using knowledge distillation. As a result the student 

network can successfully learn from the teacher. 
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3. Methodology 

This section presents the proposed network architecture. 

The baseline architecture is described first. Afterwards, two 

compressed models are introduced. Overall, we propose 

three types of models, which include the baseline 4-stream 

drowsiness detection model, 2-stream drowsiness detection 

model and its compressed version using teacher-student 

technique[25]-[30] with minimum accuracy drop.  

3.1. Architecture 

 The overall architecture of the proposed drowsiness 

detection consists of two steps as illustrated in Figure 1. It is 

a two-step process which the first step is the joint face 

detection and alignment and the second is the drowsiness 

detection model. For the face detection and alignment task, 

Multi-Task Cascaded Convolutional Networks (MTCNN) 

[32] is used since it is known as one of the fastest and 

accurate face detector. Exploiting cascaded structure, it can 

achieve high speed in joint face detection and alignment. As 

a result of face detection and alignment, face boundary 

coordinates and five landmark points containing locations 

of left-eye, right-eye, nose, left-lip-end and right-lip-end are 

obtained.  

Driver Drowsiness Detection Network (DDDN) in 

second step indicates the proposed models for detecting 

driver’s drowsiness. DDDN takes in the output of the first 

step (face detection and alignment) as its input. The 

following subsections describe various experiments on the 

proposed models for drowsy driver detection in detail. 

Experimental results of drowsiness detection based on the 

three proposed models are described in section 4. 

 

3.1.1 Baseline-4 Model 

First, a 4-stream deep neural network is proposed as the 

baseline model as shown in Figure 2. This network is named 

as baseline-4 model.  In this network the inputs are left-eye, 

right-eye, mouth and face obtained from the detection 

network. The input images are resized into size of 224ⅹ224. 

The baseline-4 model is a neural network consisting 5 

convolutional layers for each 4-stream input. Each stream of 

the  network structure is similar to the AlexNet [16] 

architecture with filter sizes of 11ⅹ11, 5ⅹ5, 3ⅹ3, 3ⅹ3 

and 3ⅹ3. The number of kernels for each layer is stated in 

Figure 1. Models similar to AlexNet architectures are 

beneficial for deployment on embedded board since 

execution speed of the network is faster than that of the 

other modern networks such as GoogleNet [36] and ResNet 

[10].  

Motivated by the architecture for gaze tracking [33], the 

convolution layers of eyes share the same weight. This was 

proposed because the features from the eyes will 

approximately be the same. Each stream of convolutional 

layers ends with fully connected (FC) layers. Each size of 

the FC layers is stated in the Figure 2. All the FC layers are 

connected to last two FC layers.  

 

We finally predict 3 classes of outputs as described 

earlier, which are normal, yawning and drowsy. Normal 

means that the driver is conscious and not in any state of 

fatigue. Yawning indicates the driver might become in 

danger of drowsy driving in a short time. Drowsy means that 

driver is having severe drowsiness or fatigue condition and 

immediately needs to take rest.  

 

Figure 2: Structure of Baseline-4 Model. This consists of 4 

streams with inputs of left-eye, right-eye, face and mouth. 

 

Figure 1: Overall framework of drowsiness detection: Step 1 consists of face and landmark detector and step 2 consists of 

drowsiness detection network from the detected face and landmark 
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3.1.2 Baseline-2 Model 

However, baseline-4 model has its limitation in terms of 

speed. Thus an improvement in speed is required for 

real-time applications.  

As an initial step to improve the speed, we focus on 

reducing the number of streams of the network. Baseline-4 

model takes four inputs to separate network streams. The 

wide shape of this network makes its size huge and 

significantly affects its efficiency of speed. For this reason, 

our first approach is to reduce the number of inputs and 

streams of the network. 

Previous works have shown that partial face image can 

possess comparable features with whole face image on face 

recognition task [37]. Using sub-images of face as input for 

a face recognition model is useful in situations with 

occlusion or limited field of view and is less dependent on 

accurate face alignment. From this observation, we reduced 

the number of inputs and streams by half to make the best 

use of partial features on the face to make the network 

smaller for faster recognition speed. Instead of using four 

inputs as the basline-4 model, the newly proposed 

baseline-2 model is a 2-stream network structure which 

takes two inputs, the cropped images of left eye and the 

mouth, excluding the whole face from the set of inputs. The 

structure of the baseline-2 Model is illustrated in Figure 3.  

 

 

The model takes only one eye as the input since the 

movements of the two eyes (if involuntary) are generally 

identical to each other. Therefore, it can be assumed that the 

accuracy would not be degraded even though one-eye image 

is utilized for driver’s drowsiness detection. Also, the mouth 

plays a major role when the driver is yawning, thus the 

mouth can be a main triggering point. To validate our claim, 

we passed only two inputs (left eye and mouth) to the 

4-stream model, by making the other two stream inputs as 

null. We obtained just 1% reduction in validation accuracy. 

Similar to the baseline-4 model, baseline-2 model 

consists of 5 convolutional layers for each 2-stream input 

with filter sizes of 11ⅹ11, 5ⅹ5, 3ⅹ3, 3ⅹ3 and 3ⅹ3 . The 

number of kernels for each layer is stated in Figure 3. 

 

3.1.3 Compressed-2 Model 

The initial approach to reduce the number of streams 

from four to two almost halved the execution time compared 

to baseline-4 model. However, the speed of the model could 

be further improved. Therefore, we finally propose the 

compressed-2 model.  

This model adopts a compression method described in 

[25] using distillation of neural network. “Distillation” of 

neural network refers to an approach transferring the 

knowledge from a superfluously huge model to a small 

model. The technique introduces two concepts, namely 

teacher network and student network. Student network are 

smaller in size and does faster computation in contrary to 

the teacher network. The teacher network is the original 

large network which is directly trained from the dataset and 

the student network is a small network which learns features 

from the soft targets produced by the teacher network.  

This technique was introduced because it is difficult to 

train a small network directly from hard-classified labels, 

since small networks don’t converge easily. Large networks 

can easily be trained on huge datasets with discrete, 

hard-classified labels. Instead of training discrete value 

outputs to the student network, the above paper trained soft 

value outputs from the teacher network to student network. 

Since these soft-valued outputs will have more information 

about the input than discrete values, the smaller network can 

converge on the same dataset with fewer iterations and 

maintaining accuracy. In this paper, baseline-2 and 

compressed-2 models are teacher and student networks, 

respectively. The filter sizes of baseline-2 and 

compressed-2 models are the same, whereas the numbers of 

kernels for convolutional layers are reduced to 72, 128, 192, 

192 and 128. 

4. Experimental Results 

In this section, experimental conditions and results are 

presented. First, experimental conditions including the 

dataset and specifications for hardware and software are 

described. Second, driver drowsiness detection accuracy 

and execution speed are discussed in detail. To demonstrate 

the effectiveness of the proposed algorithms, we give a 

comparison with experimental results on Faster R-CNN 

[11], which is one of the well-known algorithms for 

simultaneous object detection and recognition, on our 

dataset. 

4.1. Dataset  

There are publically accessible datasets for drowsiness 

detection. One is DROZY database [34], which contains 

multiple types of drowsiness-related data including signals 

such as EEG, EOG, ECG, EMG and near-infrared (NIR) 

images. 

Figure 3: Structure of Baseline-2 Model. This 

consists of 2 streams with inputs of left-eye and 
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 The dataset contains data of only 11 subjects, which is very 

few to train on CNNs. Also, sensor patches attached on the 

subjects’ faces for collecting electronical bio-signals are 

shown in the image data, which can interrupt accurate 

recognition on Computer Vision-based approaches. These 

limitations make it difficult to apply this dataset on the 

model proposed in this paper. Another dataset is NTHU 

Driver Drowsiness Detection dataset [35] which contains 

both RGB and IR videos in various driving scenarios. 

However, camera angle and class label are different with 

our experimental environment. Thus, our experiment was 

performed on the custom dataset that we collected on our 

own. Custom dataset was collected using Logitech C920 

HD Pro Webcam. All the images were recorded in 640x480 

resolutions.  

Participants were asked to act 3 states of behavior 

including normal, yawning and drowsy, exhibiting each 

behavior for 20 ~30 seconds. The complete video was 

stored in individual frames forming a total of more than 

70,000 images. The total number of subjects is 33 including 

11 people with glasses. For further robustness of the system, 

the dataset includes subjects of diverse ethnic groups and 

gender and the participants were asked to change the head 

pose. The 33 subjects were split into 25 for training, 4 for 

validation and 4 for testing. Each of the validation and test 

dataset has 2 subjects with glasses and two of them without 

it. No two of the train, validation and test sets have a 

common subject; this will provide better interpretation of 

results. Figure 4 shows example images of the custom data. 

 

 
 

Figure 4: Examples of custom dataset 

4.2. Hardware and Software Environments 

In our experiments, GTX 1080 GPU was used for 

training and testing, whereas embedded board NVIDIA 

Jetson TK1 was used for deployment. GTX 1080 has 2560 

CUDA cores, each core with a base clock speed of 

1607MHz and boost clock of up to 1733MHz; it can do 

computations up to 9 TFLOPS (Tera floating point 

operations per second). The PC has i7-2600 CPU which can 

clock till 3.4GHz and 16GB of RAM.  Jetson TK1 has 192 

CUDA cores, each core with a base clock speed of 870MHz 

and it can do computations up to 326 GFLOPS (Giga 

FLOPS), which is 26 times lesser when compared to GTX 

1080. The device has Cortex-A15 CPU. TK1 consumes 2.2 

Watt of power to run the deep learning on it. The device is 

much cheaper than the other GPU boards for embedded 

purpose and consumes less power. Thus, Jetson TK1 is 

appropriate to deploy the proposed models on motor 

vehicles as a small unit. 

Ubuntu 14.04 for OS and Caffe for deep learning 

framework were used. The complete dataset is stored in hd5 

format for easy and fast training. No pre-training is done to 

the proposed models and the training is done completely 

from scratch. Starting learning rate of 0.01 is taken since the 

initial weights are all randomly initialized. 40 epochs of 

training is done, by decreasing the learning rate by a factor 

of 0.1 for 10 epochs.  

4.3. Results on the proposed and benchmark 

models 

In section 3.1, the proposed models were described. To 

validate performance of the models, accuracy of driver’s 

drowsiness detection and execution speed on GPU boards 

were tested under various conditions. The following 

subsections describe results of the proposed and benchmark 

models. 

 

4.3.1 Baseline-4 Model 

As described in section 3.1.1, the baseline-4 model is a 

4-stream network with each network receiving the two eyes, 

mouth and face crops as the input individually. The model 

size was 56MB on disk, with the deployed model taking 

nearly 600MB of GPU memory.  

Execution times to run baseline-4 model are 3.4ms 

(milliseconds) and 88.5ms on GTX 1080 and Jetson TK1, 

respectively. Including face detection and alignment end to 

end speeds of approximately 72.0fps (frames per second) 

and 6.1fps are achieved on GTX 1080 and Jetson TK1, 

respectively. During the training phase we achieved a 

validation accuracy of 91.6%. The model when run on the 

test subjects reported an accuracy of 91.3%.  
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4.3.2 Baseline-2 Model 

 The baseline-2 model is proposed in section 3.1.2 where 

it adopts 2-stream network instead of 4-stream and left-eye 

and mouth are used as inputs. Since the number of streams 

has been reduced, disk and GPU usage has been reduced. 

The model takes 28MB in disk space and 443MB in GPU 

memory while testing.  

2.3ms and 28.4ms are taken to run the baseline-2 model 

on GTX 1080 and Jetson TK1 respectively. Speeds for the 

end to end process (including face detection and alignment) 

are 82.0fps and 12.5fps on GTX 1080 and Jetson TK1, 

respectively. The baseline-2 model achieved a validation 

accuracy of 94.8% and a test accuracy of 93.84%. 

 

4.3.3 Compressed-2 Model 

 The final model is the compressed-2 model stated in 

section 3.1.3 where the model has similar structure to 

baseline-2 model. Size of this Model is 10MB. This is 3 

times smaller than its teacher network. It takes 353MB of 

GPU memory for testing.  

Run times for running the compressed-2 model on GTX 

1080 and Jetson TK1 are 1.4ms and 18.9ms, respectively. 

Speeds for the end to end process are 90.1fps and 14.9fps on 

GTX 1080 and Jetson TK1, respectively. The validation 

accuracy during training is 91.2% and the test accuracy is 

89.5%.  

 

4.3.4 Benchmark model 

To evaluate the proposed models, Faster RCNN 

proposed in [11] is used to compare performance. Faster 

RCNN models are trained and tested using the custom 

dataset used in experiments for the proposed model. To 

compare with the above proposed networks, VGG-16 [38] 

and AlexNet [16] architectures for faster-RCNN are used. 

VGG16 based faster-RCNN takes 547MB of disk space, 

requiring approximately 3GB of GPU memory during run 

time. AlexNet based faster-RCNN takes 236MB of disk 

space with 845MB of GPU memory during run time.  

Faster-RCNN takes end to end run time of 9.1fps and 

22.7fps on GTX 1080 GPU with VGG16 and AlexNet 

based architectures. Since VGG16 architecture based 

faster-RCNN model takes more than 2GB of memory it is 

not possible to deploy on TK1 board, even though it has a 

reported 90% test accuracy on the dataset. Whereas 

AlexNet architecture can be deployed on TK1, but it runs 

really slow at 1.1fps. This makes it impractical for 

faster-RCNN models to run on embedded board.  

4.4. Discussion 

The summary of the overall experimental results are 

shown in Table 1. Experiments were performed using three 

types of models which are baseline-4, baseline-2 and 

compressed-2 models .Faster RCNN with VGG-16 and 

AlexNet architectures are used as benchmarks for 

comparison study.  

In terms of accuracy, baseline-2 model achieves the best 

among all the proposed models at 93.8%. The best accuracy 

of faster-RCNN model is for VGG based architecture at 

90.5%.  

Compressed-2 model has the smallest model size and 

GPU memory usage. The disk size of compressed-2 model 

is about 52 times smaller than VGG16 based faster-RCNN 

and consumes 10 times lesser GPU memory. By 

maintaining the accuracy of nearly 90%, the compressed-2 

model has a 3 times lesser disk space than baseline-2 model.  

As we can see in Table 1, compressed-2 model is the 

fastest among the models. If we consider only drowsiness 

detection, compressed-2 model takes 2.6 and 4.5 times 

lesser time than baseline-4 on GTX 1080 and TK1 

respectively. When comparing compressed-2 with 

baseline-2, the time reduced by 1.6 and 1.5 times on GTX 

1080 and TK1. 

In terms of end to end speed, compressed-2 is still the 

fastest version. The overall speed of compressed-2 model 

when compared with baseline-4 is 25% faster on GTX 1080 

and 144% faster on Jetson TK1. The percentages are 10% 

and 19% when we compare between compressed-2 and 

baseline-2. The numbers are not as significant as the 

drowsiness only speed because face detection is the main 

bottleneck in this problem. The proposed model 

 
Faster 

RCNN 
(VGG-16) 

Faster RCNN 
(AlexNet) 

Baseline-4 

(ours) 

Baseline-2 

(ours) 

Compressed-2 

(ours) 

Accuracy (%) 
Validation 76.6 70.9 91.6 94.8 91.2 

Test 90.5 82.8 91.3 93.8 89.5 

Compression (MB) 
Model size 547 236 56 28 10 

GPU Memory 3183 845 600 443 353 

Drowsiness 

Detection time (ms) 

GTX 1080 - - 3.7 2.3 1.4 

Jetson TK1 - - 88.5 28.4 18.9 

Overall speed 

(fps) 

GTX 1080 9.1 22.7 72.0 82.0 90.1 

Jetson TK1 - 1.1 6.1 12.5 14.9 

Table 1: Summary of overall experimental results (‘-’ means ‘not applicable’) 
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successfully outruns faster-RCNN (AlexNet based 

architecture) by 4 times and 13.5 times on GTX 1080 and 

TK1.  

 

 

 
Figure 5: Speedup ratio of models on GTX 1080 and 

Jetson TK1 

 

 
Figure 6: Comparison of speed (fps, blue-bar graph, 

right axis) and the test accuracy (%, red-line graph, left 

axis) 

 

Figure 5 shows speed comparison graphs on both GPU 

boards. Here speedup is calculated based on the speed of 

baseline-4 model. Improvements of baseline-2 and 

compressed-2 models are larger on Jetson TK1 than on 

GTX 1080. It means that the proposed models are more 

effective to improve speed on embedded boards than high 

performance devices.  Generally, accuracy and speed have a 

trade-off. Nevertheless, speed improvement is achieved by 

using the proposed models while maintaining reasonable 

accuracy as shown in Figure 6. 

 

5. Conclusion and Future Works 

In this paper, highly optimized deep neural network 

model for driver’s drowsiness detection is designed and 

compressed for embedded system. The minimum facial 

landmarks are utilized as inputs to detect driver’s 

drowsiness and a compression technique of knowledge 

distillation is applied to be implemented on real-time 

embedded system. 

The experimental results under various circumstances 

supported possibility of implementation for real-time 

driver’s drowsiness detector. Results showed that eyes and 

mouth play the major roles in drowsiness classification. Use 

of an eye and mouth gives additional accuracy of 3% 

comparing to that of eyes, mouth and face. This can happen 

when the model tries to learn unnecessary data from face. 

The results thus conclude that our optimized deep neural 

networks model can be used for driver’s drowsiness 

detection on embedded devices with a high accuracy for 

safety with Advanced Driver Assistance System (ADAS) 

and Driver Monitoring System (DMS). 

As a future work, Infra-red camera can be used to capture 

driver’s behavior at night situation. Moreover, casual 

hear-rate sensor and image can be analyzed as multimodal 

deep learning approach and more recent model compression 

and knowledge distillation techniques can be adapted to 

reducing runtime more. 
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