
Training Sparse Neural Networks

Suraj Srinivas Akshayvarun Subramanya R. Venkatesh Babu

Video Analytics Lab

Department of Computational and Data Sciences

Indian Institute of Science, Bangalore

Abstract

The emergence of Deep neural networks has seen

human-level performance on large scale computer vision

tasks such as image classification. However these deep net-

works typically contain large amount of parameters due

to dense matrix multiplications and convolutions. As a re-

sult, these architectures are highly memory intensive, mak-

ing them less suitable for embedded vision applications.

Sparse Computations are known to be much more memory

efficient. In this work, we train and build neural networks

which implicitly use sparse computations. We introduce ad-

ditional gate variables to perform parameter selection and

show that this is equivalent to using a spike-and-slab prior.

We experimentally validate our method on both small and

large networks which result in highly sparse neural network

models.

1. Introduction

For large-scale tasks such as image classification, large

networks with many millions of parameters are often used

[12], [21], [25]. However, not all of these parameters are

required to achieve high performance. Recent works [6],

[9] have shown that such large, deep neural networks con-

tain lots of redundant parameters. As a result, it is possi-

ble to prune many parameters from networks without im-

pacting performance. This would result in network architec-

tures which make use of sparse computations. What advan-

tages do sparse computations present? Apart from having

fewer number of parameters to store (O(mn) to O(k))1,

sparse computations also decrease feedforward evaluation

time (O(mnp) to O(kp))2. This increased efficiency of

computation is crucial for applications which run on low-

capacity hardware such as embedded platforms. Running

heavy computations on such small devices also largely im-

pacts processing time (making it difficult to achieve real-

1For a matrix of size m× n with k non-zero elements
2For matrix-vector multiplies with a dense vector of size p

time performance) and increases energy requirements[9].

These lead to further challenges when designing such an

embedded system[24]. While there are several strategies

to exploit neural network redundancy (see Related Work

section), in this work we explore the idea of pruning the

weights of neural networks. This approach seems most

promising given the performance of recent weight-pruning

algorithms [9], when compared to other approaches. In our

work we enforce weight sparsity by using suitable regular-

izers.

Regularizers are often used in machine learning to dis-

courage overfitting on the data. These usually restrict the

magnitude (ℓ2/ℓ1) of weights. However, to restrict the com-

putational complexity of neural networks, we need a reg-

ularizer which restricts the total number of parameters of

a network. A common strategy to obtain sparse parame-

ters is to apply sparsity-inducing regularizers such as the ℓ1
penalty on the parameter vector. However, this is often in-

sufficient to induce sparsity for large non-convex problems

like deep neural network training [5]. The contribution of

this paper is to be able to induce sparsity in a tractable way

for such models.

The overall contributions of the paper are as follows.

• We propose a novel regularizer that restricts the total

number of parameters in the network. (Section 2)

• We perform experimental analysis to understand the

behaviour of our method. (Section 4)

• We apply our method on LeNet-5, AlexNet and VGG-

16 network architectures to achieve sparse neural net-

works. (Section 4)

2. Related Work

There have been many recent works which perform com-

pression of neural networks. Weight-pruning techniques

were popularized by LeCun et al.[14] and Hassibi et al.[10],

who introduced Optimal Brain Damage and Optimal Brain

Surgery respectively. Recently, Srinivas and Babu [22] pro-

posed a neuron pruning technique, which relied on neuronal

1138

Figure 1: Our strategy for sparsifying weight matrices. First, we sample / threshold the learnt gate variables. We then perform element-wise

multiplication of the resulting binary matrix with W , to yield a sparse matrix W
s i.e (W s

= W ⊙G
s)

similarity. In contrast, we perform weight pruning based on

learning, rather than hand-crafted rules.

Previous attempts have also been made to sparsify neu-

ral networks. Han et al.[9] create sparse networks by al-

ternating between weight pruning and network training. A

similar strategy is followed by Collins and Kohli [5]. On

the other hand, our method performs both weight pruning

and network training simultaneously. Further, our method

has considerably less number of hyper-parameters to deter-

mine (λ1, λ2) compared to the other methods, which have

n thresholds to be set for each of the n layers in a neural

network.

Another way to perform compression is to train a smaller

model to mimic a larger model. Bucilua et al.[3] proposed a

way to achieve the same - and trained smaller models which

had accuracies similar to larger networks. Ba and Caruana

[1] used the approach to show that shallower (but much

wider) models can be trained to perform as well as deep

models. Knowledge Distillation (KD) by Hinton et al.[11] is

a more general approach, of which Bucila et al.’s is a special

case. FitNets by Romero et al.[19] use a KD-like method at

several layers to learn networks which are deeper but thin-

ner (in contrast to Ba and Caruana’s shallow and wide), and

achieve high levels of compression on trained models. It is

possible, in principle, to perform knowledge distillation to

train sparse networks that mimic deep networks. Our work

"evolves" sparser networks from dense networks, and as a

result can be thought of as a form of continuous knowledge

transfer.

Many methods have been proposed to train models that

are deep, yet have a lower parameterisation than conven-

tional networks. Denil et al.[6] demonstrated that most of

the parameters of a model can be predicted given only a few

parameters. At training time, they learn only a few parame-

ters and predict the rest. Yang et al.[27] propose an Adaptive

Fastfood transform, which is an efficient re-parametrization

of fully-connected layer weights. This results in a reduction

of complexity for weight storage and computation. Novikov

et al.[18] use tensor decompositions to obtain a factoriza-

tion of tensors with small number of parameters. Cheng

et al.[4] make use of circulant matrices to re-paramaterize

fully connected layers. Some recent works have also fo-

cussed on using approximations of weight matrices to per-

form compression. Gong et al.[8] use a clustering-based

product quantization approach to build an indexing scheme

that reduces the space occupied by the matrix on disk. Note

that to take full advantage of these methods, one needs to

have fast implementations of the specific parameterization

used. One the other hand, we use a sparse parameterization,

fast implementations of which are available on almost every

platform. Srinivas et al.[23] proposed Architecture Learn-

ing, which tried to minimize the total number of neurons

in the network. However, we minimize the total number of

weights in the network.

3. Problem Formulation

To understand the motivation behind our method, let us

first define our notion of computational complexity of a neu-

ral network.

Let Φ = {gs
1
, gs

2
, ..., gsm} be a set of m vectors. This rep-

resents an m-layer dense neural network architecture where

gsi is a vector of parameter indices for the ith layer, i.e;

gsi = {0, 1}ni . Here, each layer gsi contains ni elements.

Zero indicates absence of a parameter and one indicates

presence. Thus, for a dense neural network, gi is a vector

of all ones, i.e.; gsi = {1}ni . For a sparse parameter vector,

gsi would consist of mostly zeros. Let us call Φ as the index

set of a neural network.

For these vectors, our notion of complexity is simply the

total number of parameters in the network.

Definition 1. The complexity of a m-layer neural network

with index set Φ is given by ‖Φ‖ =
m
∑

i=1

ni.

We now aim to solve the following optimization prob-

lem.

θ̂, Φ̂ = argmin
θ,Φ

ℓ(ŷ(θ,Φ), y) + λ‖Φ‖ (1)

where θ denotes the weights of the neural network, and Φ
the index set. ℓ(ŷ(θ,Φ), y) denotes the loss function, which

depends on the underlying task to be solved. Here, we learn

both the weights as well as the index set of the neural net-

work. Using the formalism of the index set, we are able

139

-0.5 0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

y

y = x
2

y = x (1 - x)

(a) Bi-modal regularizer

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

y = N(x|0,1)

y = δ(x)

(b) Spike and slab prior

Figure 2: (a) The bi-modal regularizer used in our work. Note that this encourages values to be close to 0 and 1, in contrast

to a regular ℓ2 regularizer. (b) An example of a spike-and-slab prior similar to the one used in this work.

to penalize the total number of network parameters. While

easy to state, we note that this problem is difficult to solve,

primarily because Φ contains elements ∈ {0, 1}.

3.1. Gate Variables

How do we incorporate the index set formalism in neu-

ral networks? Assume that the index set (Gs in Fig. 1) is

multiplied pointwise with the weight matrix. This results in

a weight matrix that is effectively sparse, if the index set

has lots of zeros rather than ones. In other words, we end

up learning two sets of variables to ensure that one of them

- weights - becomes sparse. How do we learn such binary

parameters in the first place ?

To facilitate this, we interpret index set variables (Gs) as

draws from a bernoulli random variable. As a result, we end

up learning the real-valued bernoulli parameters (G in Fig.

1), or gate variables rather than index set variables them-

selves. Here the sampled binary gate matrix Gs corresponds

exactly to the index set, or the Φ matrix described above. To

clarify our notation, G and g stand for the real-valued gate

variables, while the superscript (.)s indicates binary sam-

pled variables.

When we draw from a bernoulli distribution, we have

two choices - we can either perform a unbiased draw (the

usual sampling process), or we can perform a so-called

maximum-likelihood (ML) draw. The ML draw involves

simply thresholding the values of G at 0.5. To ensure deter-

minism, we use the ML draw or thresholding in this work.

3.2. Promoting Sparsity

Given our formalism of gate variables, how do we en-

sure that the learnt bernoulli parameters are low - or in our

case - mostly less than 0.5 ? One plausible option is to use

the ℓ2 or the ℓ1 regularizer on the gate variables. However,

this does not ensure that there will exist values greater than

0.5. To accommodate this, we require a bi-modal regular-

izer, i.e; a regularizer which ensures that some values are

large, but most values are small. This can be achieved using

a regularizer given by w× (1−w). This was introduced by

[17] to learn binary values for parameters. However, what

is important for us is that this regularizer has the bi-modal

property mentioned earlier, as shown in Figure 2a

Our overall regularizer is simply a combination of this

bi-modal regularizer as well the traditional ℓ2 or ℓ1 regular-

izer for the individual gate variables. Our objective function

is now stated as follows.

θ̂, Φ̂ = argmin
θ,Φ

ℓ(ŷ(θ,Φ), y) + λ1

m
∑

i=1

ni
∑

j=1

gi,j(1− gi,j)

+λ2

m
∑

i=1

ni
∑

j=1

gi,j

(2)

where gi,j denotes the jth gate parameter in the ith layer.

Note that for gi,j ∈ {0, 1}, the second term in Eqn. 2 van-

ishes and the third term becomes λ‖Φ‖, thus reducing to

Eqn.1.

3.3. An Alternate Interpretation

Now that we have arrived at the objective function in

Eqn.2, it is natural to ask the question - how do we know

that it solves the original objective in Eqn.1 ? We shall now

derive Eqn.2 from this perspective.

Assuming the formulation of gate variables, we can re-

write the objective in Eqn.1 as follows.

θ̂, Φ̂ = argmin
θ,G

ℓ(ŷ(θ,Gs), y) + λ
m
∑

i=1

ni
∑

j=1

gsi,j (3)

gsi,j ∼ bernoulli(gi,j), ∀ i, j

where gs is the sampled version of gate variables g. Note

that Eqn.3 is a stochastic objective function, arising from

140

Figure 3: Our method uses different computational graphs during train and test time. During training we use both weights (W) and gate

(G) variables, while during testing we directly use the resultant sparse weights (W s

= W ⊙G
s)

the fact that gs is a random variable. We can convert this

to a real-valued objective by taking expectations. Note that

expectation of the loss function is difficult to compute. As a

result, we approximate it with a Monte-Carlo average.

θ̂, Φ̂ = argmin
θ,G

1

t

∑

t

(ℓ(ŷ(θ,Gs), y)) + λ

m
∑

i=1

ni
∑

j=1

gi,j

gsi,j ∼ bernoulli(gi,j), ∀ i, j

where E(gsi,j) = gi,j . While this formulation is sufficient

to solve the original problem, we impose another condition

on this objective. We would like to minimize the number

of Monte-Carlo evaluations in the loss term. This amounts

to reducing [1
t

∑

t(ℓ(ŷ(θ,G
s), y))−E(ℓ(ŷ(θ,Gs), y))]2 for

a fixed t, or reducing the variance of the loss term. This

is done by reducing the variance of gs, the only random

variable in the equation. To account for this, we add another

penalty term corresponding to Var(gs) = g × (1 − g).
Imposing this additional penalty and then using t = 1 gives

us back Eqn.2.

3.4. Relation to Spike­and­Slab priors

We observe that our problem formulation closely resem-

bles spike-and-slab type priors used in Bayesian statistics

for variable selection [15]. Broadly speaking, these priors

are mixtures of two distributions - one with very low vari-

ance (spike), and another with comparatively large variance

(slab). By placing a large mass on the spike, we can expect

to obtain parameter vectors with large sparsity.

Let us consider for a moment using the following prior

for weight matrices of neural networks.

P (W) =
1

Z

∏

i

exp(− (1− δ(wi)))
α N (wi|0, σ

2)1−α

(4)

Here, δ(·) denotes the dirac delta distribution, and Z de-

notes the normalizing constant, and α is the mixture coeffi-

cient. Also note that like [15], we assume that wi ∈ [−k, k]
for some k > 0. This is visualized in Fig. 2b. Note that this

is a multiplicative mixture of distributions, rather than addi-

tive. By taking negative logarithm of this term and ignoring

constant terms, we obtain

− logP (W) = −α
∑

i

(1− δ(wi)) +
1− α

2σ2

∑

i

w2

i (5)

Note that the first term in this expression corresponds

exactly to the number of non-zero parameters, i.e; the λ ‖Φ‖
term of Eqn. 1. The second term corresponds to the usual ℓ2
regularizer on the weights of the network (rather than gates).

As a result, we conclude that Eqn. 4 is a spike-and-slab prior

which we implicitly end up using in this method.

3.5. Estimating gradients for gate variables

How do we estimate gradients for gate variables, given

that they are binary stochastic variables, rather than real-

valued and smooth? In other words, how do we backpropa-

gate through the bernoulli sampling step? Bengio et al. [2]

investigated this problem and empirically verified the effi-

cacy of different possible solutions. They conclude that the

simplest way of computing gradients - the straight-through

estimator works best overall. Our experiments also agree

with this observation.

The straight-through estimator simply involves back-

propagating through a stochastic neuron as if it were an

141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gate Initialization

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
p
a
rs

it
y

ML Threshold

Bernoulli Sampling

(a) Effect of Gate initialization

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

λ
1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

S
p
a
rs

it
y
 r

a
ti
o

λ
2
 = 0

λ
2
 = 1e-3

(b) Effect of varying λ1

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

λ
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
p
a
rs

it
y
 r

a
ti
o

λ
1
 = 0

λ
1
 = 1e-3

(c) Effect of varying λ2

Figure 4: (a) We vary the initialization of the gate variables and observe it’s effect on sparsity. The dotted blue lines denote

the variance of sparsity in case of the sampling-based method. (b) λ1 seems to have a stabilizing effect on sparsity whereas

(c) increasing λ2 seems to increase sparsity. For both (b) and (c) x-axis is in log10 scale.

identity function. If the sampling step discussed above is

given by gs ∼ bernoulli(g), then the gradient dgs

dg
= 1 is

used.

Another issue of consideration is that of ensuring that g
always lies in [0, 1] so that it is a valid bernoulli parame-

ter. Bengio et al. [2] use a sigmoid activation function to

achieve this. Our experiments showed that clipping func-

tions worked better. This can be thought of as a ‘linearized’

sigmoid. The clipping function is given by the following

expression.

clip(x) =











1, x ≥ 1

0, x ≤ 0

x, otherwise

The overall sampling function is hence given by gs ∼
bernoulli(clip(g)), and the straight-through estimator is

used to estimate gradients overall.

3.6. Comparison with LASSO

LASSO is a commonly used method to attain sparsity

and perform variable selection. The main difference be-

tween the above method and LASSO is that LASSO is pri-

marily a shrinkage operator, i.e.; it shrinks all parameters

until lots of them are close to zero. This is not true for the

case of spike-and-slab priors, which can have high sparsity

and encourage large values at the same time. This is due to

the richer parameterization of these priors.

3.7. Practical issues

In this section we shall discuss some practical issues per-

taining to our method. Our method ironically uses twice the

number of parameters as a typical neural network, as we

have two sets of variables - weights and gates. As a result,

model size doubles while training. However, we multiply

them to result in sparse matrices which considerably re-

duces model size. Also we do not have to store both sets

of parameters while testing, only a element-wise product

of the two sets of variables is required as shown in Fig-

ure 3. Even though the model size doubles at train time, we

note that speed of training / feedforward evaluation is not

affected due to the fact that only element-wise operations

are used.

Our method can be applied to both convolutional tensors

as well as fully connected matrices. However while per-

forming compression, we note that convolutional layers are

less susceptible to compression than fully connected layers

due to the small number of parameters they possess.

Layers Initial

Params

Final

Params

Sparsity (%)

conv1 0.5K 0.04K 91

conv2 25K 1.78K 92.8

fc1 400K 15.4K 96.1

fc2 5K 0.6K 86.8

Total 431K 17.9K 95.84

Table 1: Compression results for LeNet-5 architecture.

4. Experiments

In this section we perform experiments to evaluate

the effectiveness of our method. First, we perform some

experiments designed to understand typical behaviour of

the method. These experiments are done primarily on

LeNet-5 [13]. Second, we use our method to perform net-

work compression on three standard networks - LeNet-

5[13],AlexNet[12] and VGG-16[21]. LeNet-5 was trained

on MNIST[13] while AlexNet and VGG-16 was trained

on ILSVRC-2012 dataset[20] respectively. Our implemen-

142

Method Parameters Accuracy(%) Compression Rate(%)

Baseline model 431K 99.20 1x

SVD(rank-10)[7] 43.6K 98.47 10x

Architecture Learning [23] 40.9K 99.04 10.5x

Fastfood-1024 [27] 38.8K 99.29 11x

Han et al.[9] 36K 99.23 12x

Result-1 of proposed method 18K 99.19 24x

Result-2 of proposed method 22K 99.33 19x

Table 2: Comparison of compression performance on LeNet-5 architecture.

tation is based on Lasagne, a Theano-based library[26].

4.1. Analysis of Proposed method

We shall now describe experiments to analyze the be-

haviour of our method. First, we shall analyze the effect of

hyper-parameters. Second, we study the effect of varying

model sizes on the resulting sparsity.

For all analysis experiments, we consider the LeNet-5

network. LeNet-5 consists of two 5×5 convolutional layers

with 20 and 50 filters, and two fully connected layers with

500 and 10 (output layer) neurons. For analysis, we only

study the effects sparsifying the third fully connected layer.

Layers Initial

Params

Final

Params

Sparsity (%)

conv(5 layers) 2.3M 2.3M -

fc6 38M 1.3M 96.5

fc7 17M 1M 94

fc8 4M 1.2M 70

Total 60.9M 5.9M 90

Table 3: Layer-wise compression performance on AlexNet

4.1.1 Effect of hyper-parameters

In Section 3.1 we described that we used maximum likeli-

hood sampling (i.e.; thresholding) instead of unbiased sam-

pling from a bernoulli. In these experiments, we shall study

the relative effects of hyper-parameters on both methods. In

the sampling case, sparsity is difficult to measure as differ-

ent samples may lead to slightly different sparsities. As a

result, we measure expected sparsity as well the it’s vari-

ance.

Our methods primarily have the following hyper-

parameters: λ1, λ2 and the initialization for each gate value.

As a result, if we have a network with n layers, we have

n+ 2 hyper-parameters to determine.

First, we analyze the effects of λ1 and λ2. We use differ-

ent combinations of initializations for both and look at it’s

effects on accuracy and sparsity. As shown in Table 5, both

Layers Initial

Params

Final

Params

Sparsity(%)

conv1_1 to

conv4_3

(10 layers)

6.7M 6.7M -

conv5_1 2M 2M -

conv5_2 2M 235K 88.2

conv5_3 2M 235K 88.2

fc6 103M 102K 99.9

fc7 17M 167K 99.01

fc8 4M 409K 89.7

Total 138M 9.85M 92.85

Table 4: Layer-wise compression performance on VGG-16

the thresholding as well as the sparsity-based methods are

similarly sensitive to the regularization constants.

λ1 λ2 Sparsity

(%)

[T]

Avg.Sparsity

(%)

[S]

Variance

(%)

[S]

0 0 54.5 53.1 16.1

1 1 98.3 93.7 3.3

1 0 62.1 57.3 5.4

0 1 99.0 92.7 4.1

Table 5: Effect of λ parameters on sparsity. [T] denotes the

threshold-based method, while [S] denotes that sampling-

based method.

In Section 3.3, we saw that λ1 roughly controls the

variance of the bernoulli variables while λ2 penalizes the

mean. In Table 5, we see that the mean sparsity for the pair

(λ1, λ2) = (0, 1) is high, while that for (1, 0) is consid-

erably lower. Also, we note that the variance of (1, 1) is

smaller than that of (0, 1), confirming our hypothesis that

λ1 controls variance.

Overall, we find that both networks are almost equally

sparse, and that they yield very similar accuracies. How-

ever, the thresholding-based method is deterministic, which

is why we primarily use this method.

143

Method Parameters Top-1 Accuracy(%) Compression Rate

Baseline model 60.9M 57.2 1x

Neuron Pruning [22] 39.6M 55.60 1.5x

SVD-quarter-F [27] 25.6M 56.18 2.3x

Adaptive FastFood 32 [27] 22.5M 57.39 2.7x

Adaptive FastFood 16 [27] 16.4M 57.1 3.7x

ACDC [16] 11.9M 56.73 5x

Collins & Kohli [5] 8.5M 55.60 7x

Han et al.[9] 6.7M 57.2 9x

Proposed Method 5.9M 56.96 10.3x

Table 6: Comparison of compression performance on AlexNet architecture

Method Parameters Top-1 Accuracy(%) Compression Rate

Baseline model 138M 68.97 1x

Han et al.[9] 10.3M 68.66 13x

Proposed Method 9.85M 69.04 14x

Table 7: Comparison of compression performance on VGG-16 architecture

To further analyze effects of λ1 and λ2, we plot spar-

sity values attained by our method by fixing one parameter

and varying another. In Figure 4b we see that λ1, or the

variance-controlling hyper-parameter, mainly stabilizes the

training by reducing the sparsity levels. In Figure 4c we see

that increasing λ2 increases the sparsity level as expected.

We now study the effects of using different initializations

for the gate parameters. We initialize all gate parameters of

a layer with the same constant value. We also tried stochas-

tic initialization for these gate parameters (Eg. from a Gaus-

sian distribution), but we found no particular advantage in

doing so. As shown in Figure 4a, both methods seem ro-

bust to varying initializations, with the thresholding method

consistently giving higher sparsities. This robustness to ini-

tialization is advantageous to our method, as we no longer

need to worry about finding good initial values for them.

4.2. Compression Performance

We test compression performance on three different net-

work architectures - LeNet-5, AlexNet and VGG-16.

For LeNet-5, we simply sparsify each layer. As shown

in Table 1, we are able to remove about 96% of LeNet’s

parameters and only suffer a negligible loss in accuracy.

Table 2 shows that we obtain state-of-the-art results on

LeNet-5 compression. For Result-1, we used (λ1, λ2) =
(0.001, 0.05), while for Result-2, we used (λ1, λ2) =
(0.01, 0.1). These choices were made using a validation set.

Note that our method converts a dense matrix to a sparse

matrix, so the total number of parameters that need to be

stored on disk includes the indices of the parameters. How-

ever, for ASIC implementations, one need not store indices

as they can be built into the circuit structure.

For AlexNet and VGG-16, instead of training from

scratch, we fine-tune the network from pre-trained weights.

For such pre-trained weights, we found it be useful to pre-

initialize the gate variables so that we do not lose accuracy

while fine-tuning begins. Specifically, we ensure that the

gate variables corresponding to the top-k% weights in the

W matrix are one, while the rest are zeros. We use this pre-

initialization instead of the constant initialization described

previously.

To help pruning performance, we pre-initialize fully con-

nected gates with very large sparsity (95%) and convolu-

tional layers with very little sparsity. This means that 95%
of gs parameters are zero, and rest are one. For gs = 1,

the underlying gate values were g = 1 and for gs = 0, we

used g = 0.49. This is to ensure good accuracy by preserv-

ing important weights while having large sparsity ratios.

The resulting network ended up with a negligible amount of

sparsity for convolutional layers and high sparsity for fully

connected layers. For VGG-16, we pre-initialize the final

two convolutional layers as well with similarly large (88%)

sparsity.

We run fine-tuning on AlexNet for 30k iterations (∼ 18
hours), and VGG-16 for 40k (∼ 24 hours) iterations before

stopping training based on the combination of compression

ratio and validation accuracy. This is in contrast with [9],

who take about 173 hours to fine-tune AlexNet. The original

AlexNet took 75 hours to train. All wall clock numbers are

reported by training on a NVIDIA Titan X GPU. As shown

in Table 6 and Table 7, we obtain favourable results when

compared to the other network compression / sparsification

methods.

144

5. Conclusion

We have introduced a novel method to learn neural net-

works with sparse connections. This can be interpreted

as learning weights and performing pruning simultane-

ously. By introducing a learning-based approach to prun-

ing weights, we are able to obtain the optimal level of spar-

sity. This enables us to compress deep neural networks and

achieve sparse neural network models.

6. Acknowledgement

This work was partly supported by Robert Bosch Cen-

tre for Cyber Physical Systems (RBCCPS) Research grant,

Indian Institute of Science, Bangalore.

References

[1] J. Ba and R. Caruana. Do deep nets really need to be deep? In

Advances in Neural Information Processing Systems, pages

2654–2662, 2014. 2

[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432, 2013. 4, 5

[3] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model

compression. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data

mining, pages 535–541. ACM, 2006. 2

[4] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary,

and S.-F. Chang. An exploration of parameter redundancy

in deep networks with circulant projections. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2857–2865, 2015. 2

[5] M. D. Collins and P. Kohli. Memory bounded deep convolu-

tional networks. CoRR, abs/1412.1442, 2014. 1, 2, 7

[6] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting

parameters in deep learning. In Advances in Neural Informa-

tion Processing Systems, pages 2148–2156, 2013. 1, 2

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural In-

formation Processing Systems, pages 1269–1277, 2014. 6

[8] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compress-

ing deep convolutional networks using vector quantization.

arXiv preprint arXiv:1412.6115, 2014. 2

[9] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both

weights and connections for efficient neural networks. arXiv

preprint arXiv:1506.02626, 2015. 1, 2, 6, 7

[10] B. Hassibi, D. G. Stork, et al. Second order derivatives for

network pruning: Optimal brain surgeon. Advances in Neu-

ral Information Processing Systems, pages 164–164, 1993.

1

[11] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-

edge in a neural network. In NIPS 2014 Deep Learning

Workshop, 2014. 2

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012. 1, 5

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 5

[14] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In Advances in Neural Infor-

mation Processing Systems, volume 2, pages 598–605, 1989.

1

[15] T. J. Mitchell and J. J. Beauchamp. Bayesian variable selec-

tion in linear regression. Journal of the American Statistical

Association, 83(404):1023–1032, 1988. 4

[16] M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas.

Acdc: A structured efficient linear layer. arXiv preprint

arXiv:1511.05946, 2015. 7

[17] W. Murray and K.-M. Ng. An algorithm for nonlinear op-

timization problems with binary variables. Computational

Optimization and Applications, 47(2):257–288, 2010. 3

[18] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov.

Tensorizing neural networks. In Advances in Neural Infor-

mation Processing Systems, pages 442–450, 2015. 2

[19] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv

preprint arXiv:1412.6550, 2014. 2

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al.

Imagenet large scale visual recognition challenge. Interna-

tional Journal of Computer Vision, 115(3):211–252, 2015.

5

[21] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 1, 5

[22] S. Srinivas and R. V. Babu. Data-free parameter pruning

for deep neural networks. In M. W. J. Xianghua Xie and

G. K. L. Tam, editors, Proceedings of the British Machine

Vision Conference (BMVC), pages 31.1–31.12. BMVA Press,

September 2015. 1, 7

[23] S. Srinivas and R. V. Babu. Learning neural network archi-

tectures using backpropagation. In Proceedings of the British

Machine Vision Conference (BMVC). BMVA Press, Septem-

ber 2016. 2, 6

[24] F. Stein. The challenge of putting vision algorithms into a

car. In 2012 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 89–

94, June 2012. 1

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015. 1

[26] Theano Development Team. Theano: A Python framework

for fast computation of mathematical expressions. arXiv e-

prints, abs/1605.02688, May 2016. 6

[27] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola,

L. Song, and Z. Wang. Deep fried convnets. arXiv preprint

arXiv:1412.7149, 2014. 2, 6, 7

145

