
LCDet: Low-Complexity Fully-Convolutional Neural Networks for

Object Detection in Embedded Systems

Subarna Tripathi

UC San Diego ∗

stripathi@ucsd.edu

Gokce Dane

Qualcomm Inc.

gokced@qti.qualcomm.com

Byeongkeun Kang

UC San Diego

bkkang@ucsd.edu

Vasudev Bhaskaran

Qualcomm Inc.

vasudevb@qti.qualcomm.com

Truong Nguyen

UC San Diego

tqn001@eng.ucsd.edu

Abstract

Deep Convolutional Neural Networks (CNN) are the

state-of-the-art performers for the object detection task.

It is well known that object detection requires more com-

putation and memory than image classification. In this

work, we propose LCDet, a fully-convolutional neural net-

work for generic object detection that aims to work in em-

bedded systems. We design and develop an end-to-end

TensorFlow(TF)-based model. The detection works by a

single forward pass through the network. Additionally, we

employ 8-bit quantization on the learned weights. As a

use case, we choose face detection and train the proposed

model on images containing a varying number of faces

of different sizes. We evaluate the face detection perfor-

mance on publicly available dataset FDDB and Widerface.

Our experimental results show that the proposed method

achieves comparative accuracy comparing with state-of-

the-art CNN-based face detection methods while reducing

the model size by 3× and memory-BW by 3 − 4× compar-

ing with one of the best real-time CNN-based object de-

tector YOLO [23]. Our 8-bit fixed-point TF-model pro-

vides additional 4× memory reduction while keeping the

accuracy nearly as good as the floating point model and

achieves 20× performance gain compared to the floating

point model. Thus the proposed model is amenable for em-

bedded implementations and is generic to be extended to

any number of categories of objects.

1. Introduction

Deep Convolutional Neural Network (CNN) based mod-

els are the current state-of-the-art for the task of object de-

tection. The best methods for object detection aim to in-

∗Work done in part during an internship at Qualcomm.

crease the accuracy on standard datasets. They run on pow-

erful GPUs that dissipate a huge amount of power. On

the other hand, embedded processors and DSPs are great

low-power solutions where the instruction sets benefit from

fixed-point operations. For practical deployment of object

detector on mobile devices, we need low-complexity CNN

models that can run on embedded processors. The algo-

rithms need to leverage the fixed point operations without

compromising the accuracy.

In this paper, we propose LCDet, a low-complexity ob-

ject detector to address the above issues. We design and de-

velop an end-to-end TensorFlow-based fully-convolutional

deep neural network for object detection inspired by YOLO

[23]. The differences of the proposed network from YOLO

are described in section 3.1.

We choose face detection as a use-case due to its many

practical applications in mobile phones, although the algo-

rithm is generic enough for any number of classes. The

detection pipeline of our TensorFlow-Slim based network

requires a single forward pass through the network. Evalu-

ation results for the face detection performance on publicly

available datasets such as FDDB [12] and Widerface [40]

show that the proposed method achieves comparative ac-

curacy with respect to state-of-the-art CNN-based face de-

tection methods while reducing the model size by 3× and

memory-BW by 3 − 4× comparing with YOLO [23], one

of the fastest DCN-based object detector. Additionally, we

quantize the model by 8−bit precision, which leads to ad-

ditional 4× memory reduction with almost no loss in detec-

tion accuracy. The 8−bit quantization is one of the most im-

portant steps for a deployment in fixed-point architectures

such as DSPs or dedicated convolution accelerators.

We believe we report one of the first studies of 8−bit

quantization on TensorFlow models for object detection

task that heavily uses regression. It is understood that 8-

bit quantization of floating point models that were trained

94



for regression task are more prone to accuracy drop com-

paring with the models that were trained for classification

task. Experimental results show that the highest detection

accuracy with quantized model drops by less than 1 − 2%
comparing with the floating point model and achieves 20×
performance gain in terms of frame rate compared to the

floating-point model.

The rest of the paper is organized as follows. We dis-

cuss the related work in section 2. We present the method,

including the architecture, training, and model quantization

in section 3. In section 4, we report our results on face de-

tection task and discuss relative complexity and accuracy.

Finally, we conclude in section 5.

2. Related Work

2.1. CNN­based Object Detection

Several papers propose ways of using deep convolutional

networks for detecting objects [7, 8, 26, 30, 30, 27, 38, 6, 1].

Some approaches classify the proposal regions [7, 8] into

object categories and some other recent methods [26, 23,

16] unify the localization and classification stages. Detailed

prior-art on object detectors and their speed-accuracy trade-

off can be found in [10].

Precisely, the single stage detection pipeline of YOLO

[23] is extremely fast. YOLO is the first reported real-time

CNN-based object detector model that runs with high-end

GPUs. Its performance accuracy on PASCAL VOC [5]

dataset is comparable with state-of-the-art methods.

Unlike YOLO, our model is fully-convolutional. Thus it

is highly memory-efficient, computationally more effective

and not restricted by input image resolution.

2.2. CNN Object Detection for Embedded Systems

The most accurate and best performing CNN-based models

require high-end GPUs. There is a growing interest for de-

veloping specific hardware design [18, 3] including FPGAs,

DSPs, custom vision chips and embedded GPUs for energy

efficient CNN-based object-detection. Detailed algorithmic

advancements and case-studies for CNN-algorithms for em-

bedded systems can be found in [21, 17].

The best-performing CNN-based object detection meth-

ods which run on real-time (on high-end GPUs), falls signif-

icantly short on embedded GPUs. For example, a supplier

in surveillance camera market found out that even after re-

placing the back-end of YOLO from GoogleNet to a sim-

pler CNN such as AlexNet, it’s embedded implementation

runs at most 5 frames per second on embedded GPUs. This

motivates us to investigate on fully-convolutional low com-

plexity object detector that can run real-time on embedded

platforms.

TensorFlow is an open source framework and used by

many developers to create their own AI-applications. Re-

cently, [28] announced that Snapdragon 835 [22] includes

TensorFlow-optimized Hexagon 682 DSP. This DSP archi-

tecture and others in this family are designed to process cer-

tain features more quickly and at lower power than a CPU or

GPU. Our proposed TensorFlow-based model exploits the

advantages of similar architecture and is useful for real-time

object detection tasks on these platforms.

2.3. CNN­based Face Detection

We choose face detection as an application and evalu-

ate LCDet, the proposed object detector, for this task. As

per the FDDB evaluation server [12], the state-of-the-art

face detection methods are based on convolutional neural

networks [39, 15, 41, 34, 13, 29, 20]. Yang et al. pre-

sented a neural network which combines feature responses

regarding facial parts [39]. Li et al. presented an integrated

method of neural networks and 3D face model [15]. Yu

et al. modified VGG-16 networks, and also proposed in-

tersection over union (IoU) loss layer [41]. Recently pre-

sented works are based on faster R-CNN [26, 34, 13, 29].

Our model achieves comparable quality with Faster-RCNN

based methods. Additionally, our method meets all the re-

quirements for real-time embedded applications while the

above other CNN-based face detection methods can not

achieve real-time performance in embedded platforms.

3. Methods

3.1. Network Architecture

Our proposed model is inspired by YOLO [23] which

adopts a single-pass detection pipeline combining bound-

ing box localization and classification by a single network.

Layers connectivity differences between YOLO and LCDet

is outlined in Figure 1. The last two fully-connected layers

of YOLO are replaced by fully-convolutional layers in the

proposed model.

Other differences are described below. Unlike the

LeakyReLU non-linearity in YOLO, we apply ReLU acti-

vations in all but last layer. Additionally, for the final layer

of output, we apply different activations on classification

(softmax) output, confidence (sigmoid) score, and localiza-

tion (no activation) outputs. YOLO doesn’t apply any non-

linearity in the final layer. From the layers connectivity per-

spective, the back-end of the CNN architecture is almost

similar to YOLO; however, LCDet can work on any input

image resolution by virtue of being fully-convolutional.

Let’s suppose, the convolutional layer right before the

first fully-connected layer in YOLO is called the final fea-

ture map of spatial size Wf ×Hf . Here, Wf and Hf denote

the number of grid centers along the horizontal and vertical

axes.

From the same feature layer, the proposed model con-

nects to the final convolutional layer that outputs in a spa-

95



Figure 1. YOLO vs proposed network. Output channel’s value 16 corresponds to 1 class-conditional and 1+ 4 confidence and coordinates

for each of the B = 3 boxes. All Leaky ReLU activations are replaced by ReLU in the final model of LCDet.

tial grid-like pattern (Wf ×Hf × Channels) as shown in

Figure 1. Each grid center is associated with C class prob-

abilities, 1 confidence score, and 4 scalar values of coor-

dinates for each of the B (= 3) possible bounding boxes.

Similar to YOLO, the confidence score is the predictor

for Intersection-over-Union with the ground truth bound-

ing box. Finally, we employ Non-Maximum suppression

(NMS) for keeping top bounding boxes. During the infer-

ence, the detection pipeline consists of a single forward pass

through the network.

3.2. Training Methodology

Unlike Faster R-CNN [26], which deploys a 4-step alter-

nating training strategy to train Region Proposal Network

(RPN) and detector network, our detection network can be

trained end-to-end, similarly to YOLO [23]. We apply a

multi-part object detection loss as described in (equation 1)

similar to YOLO.

loss = λcoord

S2

∑

i=0

K
∑

j=0

✶
obj
ij

(

xi − x̂i
)

2

+
(

yi − ŷi
)

2

+

λcoord

S2

∑

i=0

K
∑

j=0

✶
obj
ij

(√

wi −

√

ŵi

)

2

+
(√

hi −

√

ĥi

)

2

+

S2

∑

i=0

K
∑

j=0

✶
obj
ij (Ci − Ĉi)

2+

λnoobj

S2

∑

i=0

K
∑

j=0

✶
noobj
ij

(

Ci − Ĉi

)

2

+

S2

∑

i=0

✶
obj
i

∑

c∈classes

(

pi(c)− p̂i(c)
)

2

(1)

where ✶
obj
i denotes if the object appears in cell i

and ✶
obj
ij denotes that jth bounding box predictor in cell

i is responsible for that prediction. The loss function

penalizes classification and localization error differently

based on presence or absence of an object in that grid cell.

xi, yi, wi, hi corresponds to the ground truth bounding box

center coordinates, width and height for objects in grid cell

(if it exists) and x̂i, ŷi, ŵi, ĥi stand for the corresponding

predictions. Ci and Ĉi denote confidence score of object-

ness at grid cell i for ground truth and prediction. pi(c) and

p̂i(c) stand for conditional probability for object class c at

cell index i for ground truth and prediction respectively.

We use similar settings for YOLO’s object detection loss

minimization and use values of λcoord = 5 and λnoobj = 1..

We additionally apply sigmoid activation on the predic-

tion of confidence score. Confidence score should be in

[0,1] as it is ideally the IOU predictor. We employ the soft-

max on class prediction. However, for the special case of

single-class detection in YOLO-style, we employ sigmoid

activation on 1 class prediction output from the network.

The proposed model uses 448 × 448 frames as input

while training and regresses on category types and locations

of possible objects at each one of S × S non-overlapping

grid cells. (The model is capable of using any resolution

image as an input) For each grid cell, the model outputs

class conditional probabilities as well as K bounding boxes

and their associated confidence scores. As in YOLO, we

consider a responsible bounding box for a grid cell to be

the one among the K boxes for which the predicted area

and the ground truth area shares the maximum Intersection

Over Union. During training, we simultaneously optimize

classification and localization error (equation 1). For each

grid cell, we minimize the localization error for the respon-

sible bounding box with respect to the ground truth only

when an object appears in that cell.

3.3. Detection­Specific Layers

From the feature layer of size Wf ×Hf × Chf , YOLO

[23] employs two fully-connected layers. For simplicity,

we denote these two layers together as YLDet. We denote

the last two convolutional layers of the proposed model by

ConvDet.

YOLO works with input feature map size of 7×7×1024.

Ffc1 = 4096, C = 20, W0 = H0 = 7. Thus the number

of parameters in YLDet is about 269× 106. The first convo-

lutional layer in the ConvDet has Chd1 = 256 parameters.

For same feature map size and number of output grid cen-

ters, ConvDet only requires 2.3× 106 parameters, which is

96



RP cls # Parameters

RPN ✓ ✗ ChfK(5 + C)
YLDet ✓ ✓ Ffc1(WfHfChf +WoHo(C + 5K))
ConvDet ✓ ✓ FwFhChd1(Chf + (C + 5K))

Table 1. Comparison between RPN, ConvDet and YLDet. RP

stands for Region Proposals, cls denotes classification.

115× less than YOLO.

3.4. Quantized Model

Often times, DSPs or dedicated convolution accelerators

operate on fixed point instruction set. There exists litera-

ture on fixed point models for embedded systems [37, 9]

for classification task. It is well-known that 8−bit models

[32] perform as good as the floating point model for clas-

sification [33]. The justification for the high accuracy in

low-precision modes comes from the fact that the final ac-

tivation is a probability i.e. in [0,1] intervals, can be rep-

resented with an unsigned number without any concern on

scaling. However, we are not aware of many published re-

ports on the study of quantization for object detection task

that regresses coordinates of all objects.

For each layer of LCDet, we convert the 32-bit floating

point parameters to 8-bit fixed point parameters via [35, 31].

The entire object detection model can work in 8-bit fixed

point implementation without going back and forth from

floating and fixed point after the accumulation in each con-

volutional layer. Although literature exists for training with

low precision mode [4], we perform quantization only for

the inference. Since training is performed off-line, it is rea-

sonable and more practical to quantize the trained model for

inference.

To quantize the 32-bit floating point to the 8-bit fixed

point, we first store minimum and maximum value at a

layer. Then, we quantize the relative value to the linearly

distributed closest integer in [0,255].

wq =
[

255
wf − wmin

wmax − wmin

]

(2)

where wq , wf , wmin, and wmax represents quantized vari-

able, variable in floating point, minimum, and maximum.

[·] represents rounding to the closest integer.

Although we know of no fundamental mathematical rea-

son as to why the low precision mode works well without

low-precision training, we see from our experimental re-

sults that regression models (such as our LCDet) also works

well for low-precision inference. Quantized LCDet is as

good as the floating-point model in terms of detection accu-

racy for the face detection application in general.

4. Experimental Results

In this section, we present the performance of the

proposed algorithm with floating point model as well as

the associated 8-bit quantization on commonly used face

databases such as FDDB benchmark [12] and Widerface

[40] validation split. We also provide an analysis of the pro-

posed method’s performance in terms of speed, complexity

and memory requirements. Although, face detection is stud-

ied as a use case, the network does not use any face-specific

processing such as facial parts or attributes. LCDet is a gen-

eral purpose object detector.

We use transfer learning by first converting the weights

for detecting 20-category PASCAL objects [5] from Dark-

Net [25] library to a TensorFlow checkpoint, called YOLO

PASCAL TF. For face detection with baseline YOLO [23],

we first restore parameters from the YOLO PASCAL TF

checkpoint for all except the last layer. We then fine-

tune it for the 1-class (only face) object detection task.

For LCDet, we restore parameters for all but last two lay-

ers from the YOLO PASCAL TF. We then initialize the

last two layers with random weights and train the pro-

posed LCDet for single-class object detection. Also, we

replace all LeakyReLU activations from YOLO architec-

ture to ReLU activation after each convolution except the

final output layer. Readers are referred to section 3.2 for the

activations in the last layer.

We adopt data augmentation techniques such as scaling

and object-centric cropping to minimize overfitting. In our

experiments, we use initial learning rate of 10−5, the mini-

batch size of 32, and 8K epochs. We use Adam [14] opti-

mizer for training. We used NVIDIA Tesla K40 GPUs for

training and testing experiments. We also trained similar

models with batch normalization for the convolutional lay-

ers. The training appeared to converge early, but that didn’t

yield any improvement in the detection accuracy. In order

to minimize the number of parameters, we go with models

without batch normalization.

4.1. Dataset

FDDB [12] is a benchmark dataset for face detection in

unconstrained settings. It contains 2, 845 images with a to-

tal of 5, 171 faces. The dataset provides fixed partitioning

of 10 folds. WIDER FACE is a larger dataset [40] for face

detection. It consists of 32, 203 images with 393, 703 faces.

The dataset is organized in 61 event classes. For each event

class, 40%, 10%, and 50% of data were selected for train-

ing, validation, and testing. The ground truth for test split is

not disclosed. In our experiments, we scaled each image to

a pre-determined size. For gray-scale images, we duplicate

the single channel three times to make them images with

three channels.

97



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

False Positives

T
r
u

e
 P

o
s
it

iv
e
 R

a
te

 

 

Floating LeakyReLU IOU-50
Floating ReLU IOU-50

Figure 2. Performance of LCDet on FDDB for LeakyReLU vs

ReLU model with discrete core metric.

4.2. Detection Accuracy

We first evaluate LCDet for two different nonlinearities

such as Leaky ReLU and ReLU at each convolutional lay-

ers. Although the model has been initialized from YOLO

PASCAL TF which was trained with Leaky ReLU activa-

tions. After finetuning for face detection task with two

different models with two different activations, we find

ReLU activation performs better than leaky ReLU. The per-

formance of LCDet with LeakyReLU vs ReLU has been

shown in Figure 2. Next we evaluate the performances of

LCDet and its 8-bit quantized model on FDDB dataset. The

models are trained on FDDB images. This allows us to in-

vestigate the performance gap of floating and fixed point

models independent of the other components in the whole

system.

Figure 3 shows the performance of the floating point

model and the 8-bit quantized model by the TP-FP curve

with discrete score evaluation method per [12]. Solid curve

denotes the performance at standard detection crietria i.e.

50% Intersection over Union (IoU) with ground truth. Dot-

ted lines denote less strict but practical detection criteria i.e.

40% IoU with ground truth boxes. Regressed coordinate

locations from the fixed point model suffer from higher de-

viation from the floating point model prediction. This effect

becomes more evident when we increase the IoU criteria for

detection. As we see in Figure 4, for more relaxed IoU cri-

teria such as 40% IoU, floating vs fixed point model exhibit

similar detection performances. However, for stricter de-

tection criteria such as 60% IoU or higher, the performance

of the fixed-point model appears to drop significantly, es-

pecially for the lower false positive regions on the TP-FP

curves.

Mobile devices use face detection for several face based

quality enhancement processing such as auto-exposure or

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

False Positives

T
r
u

e
 P

o
s
it

iv
e
 R

a
te

 

 

Floating IOU-50
Floating IOU-40
Quantized IOU-50
Quantized IOU-40

Figure 3. Performance of Fixed vs Floating point models (ReLU)

on FDDB with discrete score metric. Effects of quantization on

regression is better understood with relaxed detection criteria in

terms IOU going down from 50% to 40%. Although the floating

point model achieves a little improvement, the fixed point model

achieves 5% improvement in true positives. As expected, regres-

sion of box coordinates appear to be affected by quantization sig-

nificantly.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IOU thesholds

T
r
u

e
 P

o
s
it

iv
e
 R

a
te

 

 

Floating point LCDet
Quantized LCDet

Figure 4. Performance comparison between floating and fixed

point models (ReLU) at different IoU thresholds on FDDB.

auto-focus. Any false detection should be highly penalized

as their consequences are more expensive. On the other

hand, if the detected box overlaps with the actual face by

little less than 50%, certain end use cases that use face de-

tection bounding box as input can still function with simi-

lar performance. In less strict IoU operating region, LCDet

fixed point model is regarded as good as the the LCDet

floating point model. Figure 4 shows that the detection rate

in those operating points (upto 45% IoU) is similar for float-

ing and fixed LCDet models.

98



Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCDet-IoU: 0.1-0.780

LCDet-IoU: 0.2-0.744

Faceness-WIDER-0.713

LCDet-IoU: 0.3-0.697

LCDet-IoU: 0.4-0.620

LCDet-IoU: 0.5-0.510

Figure 5. Precision-Recall performance on Widerface Validation

set with relaxed IoU criteria.

Next, we train LCDet on the Widerface training split.

The Widerface has about 20× more faces than FDDB. some

of the faces are extremely small. We evaluate the perfor-

mance of LCDet on the Widerface validation split using the

provided evaluation toolbox. One of the current limitation

of the YOLO-style training is that it assumes at most one

ground truth object at each grid location, although it can

predict up to k objects per grid. For a training image of

size 448× 448 means 7× 7 grids, thus can exploit only 49
ground truth objects. On the other hand, the Widerface has

more than 100 ground truth faces in at least 200 training im-

ages. YOLO-style training could not use all the ground truth

available. In such cases, we used the ground truth with high-

est area per grid location. On the contrary, faster-RCNN

type network can use all possible ground truth objects. As

shown in Figure 5, the model needs improvement for the lo-

calization accuracies especially for small objects those are

present in Widerface. As the IoU criteria is getting relaxed,

the model approaches comparable or even better accuracy

than other state-of-the-methods such as Faceness [39].

4.3. Complexity and Memory­BandWidth analysis

We first convert the darknet [25] YOLO implementation

to TensorFLow-Slim based implementation. We leveraged

the weights from the darknet [25] for all of the 24 convolu-

tional layers and first fully connected layer. The number of

output nodes in the final detection layer is Wf ×Hf × (C+
K × 5). For face detection task, C = 1, and we use K = 3
for all our experiments. Then using the mentioned training

methodology, we fine-tune all layers for the face detection

task. Table 2 demonstrates the performance and accuracy

of these models along with some of the other recent models

on powerful GPUs.

The detection-specific module of LCDet uses two convo-

lutional layers. The first one has 4096 kernels of size 3× 3
and the second one has 16 kernels of 1 × 1 size each. Irre-

Figure 6. Frame Rate Improvement for Fixed Point Model

spective the backend feature-extractor network, LCDet has

115× fewer parameters for only the detection part compar-

ing with YOLO as described in sec 3.3.

Next, we analyze and compare the performance of pro-

posed method with respect to the state-of-the-art deep neu-

ral network-based object detector simulated on a com-

mercially available Snapdragon platform such as in [22].

Hexagon DSP includes fixed-point vector extensions which

make it an attractive computing unit for computer vision ap-

plications and provides performance per power compared

to CPU and GPUs on mobile platforms. We quantized

our baseline YOLO model and also quantized the proposed

LCDet model, and compare their relative model sizes and

activation memory footprints for the same input resolution

size as shown in Table 3. In Figure 6, we compare the

achievable frame rate of the following methods: LCDet-

float, LCDet-8bit-fixed, and SSD300-8bit-fixed. In a fixed-

point implementation, activations and weights are imple-

mented in 8-bits and mapped to vector extension of DSP,

whereas in float implementation vector extension is not uti-

lized. By bringing down the model size and bandwidth

(BW) per layer, we achieve close to the 20× increase in

frame rate with respect to floating point implementation.

The average DDR bandwidth that our quantized model re-

quires is roughly 1 Gbps, whereas the instantaneous BW

has a wider range reaching close to 20 Gbps for some lay-

ers as shown in Figure 7. Typically, the DDR BW is throt-

tled when multiple applications are run on the embedded

systems and frame rate degrades because of stringent BW

constraints. This is depicted in Figure 8, where the frame

rate drops as DDR BW decreases from 6 Gbps to 1 Gbps.

4.4. Visual Results

We show visual detection results of the face detection

performed by the proposed LCDet. Detected faces are

marked as blue rectangle. Figure 9 to Figure 11 demon-

strate face detection results on FDDB dataset. These figures

99



Model Inference

Size FLOPs Speed Max

(MB) ×109 (FPS) TP

LCDet 250 20 17.55 93.0

YOLO* 1126 20.1 15.44 85.0

Faster-RCNN+VGG16 485 98 4.61 [2] 96.1 [13]

SSD300+VGG16[16, 19] 105 31.6 17.97[19] NA

Table 2. LCDet vs other methods. Inference speed on NVidia Tesla K40. YOLO* is our TF-implementation for Face Detection. Max TP

is the highest true positive rate value achieved in FDDB. SSD and Faster R-CNN running time use TF-SSD implementation [19] and TF

Faster RCNN implementation [2] respectively in different implementation platforms.

Activation

Model Memory

Size OPs Footprint

(MB) ×109 (MB)

Quantized YOLO 281 20.1 333

Quantized LCDet 62 20.0 88

Table 3. Performance analysis of Fixed-point LCDet in terms of OPs, Memory Activation Footprints

Figure 7. Layer-wise Bandwidth Requirement for LCDet-8bit-

fixed Point Implementation

show that LCDet detects multiple faces of different sizes

and poses accurately for a variety of illumination and scale

changes. Some of the difficult examples from the Wider-

face validation dataset are shown in Figure 12. In general,

LCDet performs well in detecting faces.

Current limitation of the model is that it struggles in

tightly localizing small objects in close proximity. Figure

13 demonstrates some of the examples where localization

might have failed as per strict 50% IoU criteria (marked

as yellow regions), however the detected faces are not false

positives for further face-based processing pipeline. The re-

gions marked in red shows missed detections.

Figure 8. Effect of available DDR BW on Frame Rate

Figure 9. Detected faces of different scales on FDDB.

100



Figure 10. Faces detected in black and white images on FDDB.

Figure 11. Multiple faces of frontal and side profiles on FDDB.

Figure 12. Successful face detection results of LCDet on challeng-

ing Widerface Validation images containing difficult examples in

pose variation, illumination changes, photograph styles, and dif-

ferent sizes.

5. Conclusions

We propose LCDet, a low-complexity fully-

convolutional neural network for object detection amenable

for embedded deployment. This is a unified localization

and classification model inspired by [23] that bypasses the

object proposals bottleneck. LCDet performs comparably

with state-of-the-art CNN-based face detection methods

on FDDB, while being one of the most computationally

effective method. We additionally perform 8-bit quanti-

zation on this TF-slim based LCDet model, and report

one of the first analysis of quantized model for regression.

The quantized LCDet model performs as good as floating

point model and reduces the memory footprint by 4×.

Quantization makes this model apt for implementation in

DSPs, or dedicated convolution accelerators. Although,

face detection is studied as a use case here, the network is

not optimized for face-specific detection only. It is easily

Figure 13. Localization challenges of LCDet on Widerface valida-

tion images. Faces marked as the yellow regions are considered

false positives as per 50% IoU criteria, but true positive for more

relaxed IoU criteria. The regions marked in red show missed de-

tections.

expendable for detecting any other categories of objects.

We are aware of the very recent work YOLO9000 [24]

that has become the state-of-the-art on standard object de-

tection datasets. YOLO9000 that is an improved version of

YOLO. Empirically, the accuracy of LCDet lies between

YOLO [23] and YOLO9000 [24]. On the other hand,

another recent work SqueezeDet [36] on low-complexity

CNN achieves state-of-the-art performance on KITTI ob-

ject detector. SqueezeDet appears to be the smallest object

detector by virtue of powerful but small backend network of

SqueezeNet [11]. At the time of writing, there is no reported

performance comparison for all these on the same dataset.

As a future work, we will evaluate the relative performance

of our proposed model comparing with these methods. It is

also interesting to explore SqueezeNet as the backend and

study performance of quantization.

Acknowledgments

The authors would like to thank Vikram Gupta and

Rakesh Nattoji Rajaram for extensive assistance and in-

sightful comments.

References

[1] K. Ashraf, B. Wu, F. N. Iandola, M. W. Moskewicz, and

K. Keutzer. Shallow networks for high-accuracy road object-

detection. CoRR, abs/1606.01561, 2016. 2

[2] F.-H. Chan. Faster rcnn tensorflow. https://github.

com/smallcorgi/Faster-RCNN_TF. 7

[3] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial archi-

tecture for energy-efficient dataflow for convolutional neural

networks. In Proceedings of the 43rd International Sympo-

sium on Computer Architecture, ISCA ’16, pages 367–379,

Piscataway, NJ, USA, 2016. IEEE Press. 2

101

https://github.com/smallcorgi/Faster-RCNN_TF
https://github.com/smallcorgi/Faster-RCNN_TF





