
Abstract

Pedestrian detection for autonomous driving is a
challenging task that requires careful trade-off between
accuracy, storage, computation and energy requirements.
In our work, we extend the recent SqueezeNet [1]
architecture to pedestrian detection. We show how this
network can be modified to obtain detection performance
on the Caltech USA [2] pedestrian dataset that is
comparable in overall log-average miss rate to other
competing models while easily running at 30FPS on an
automotive processor with a model size of 3.24MB and
within a power envelope of 2W. The extension relies on
the observation that precise knowledge of bounding box
corners is not necessary to know the location of
pedestrians and their approximate size. Rather, a coarse
grid based localization is proposed here and acts as a kind
of heatmap of pedestrian locations, relying on only one
forward pass through the network. The number of new free
parameters introduced is small relative to the original
SqueezeNet model.

1. Introduction

In the era of autonomous vehicles and smart assist
vehicle computers, a robust and above all safe driving
system requires a model which can create an accurate
representation of the environment. Such systems rely on
sensors for its input, which can include laser, radar or
camera based solutions. Camera solutions offer a cheap
and simple input source for such systems.

For such camera dependent systems, the data needed to
train them is readily available, foregoing the necessity of
manual collection. The abundance of data is helpful, since
the state-of-the-art models for object detection and
classification are generally deep learning models which
have a large number of tunable parameters. A subset of
these deep models, convolutional neural networks
(CNN's), have been especially successful for a wide range
of image processing tasks, including segmentation,
classification and detection. However, the majority of
research in this area has focused on improving outright
performance and exploring the full design space of CNN
architectures while placing less emphasis on model size.

For an embedded system in an autonomous vehicle, this
emphasis is paramount, because models not only have to
be small in terms of run-time footprint, and therefore a
small footprint in power consumption, they also small in
total model parameters as changes to the model need to be
pushed over network links with limited bandwidth. The
decrease in footprint can help to reduce the run-time
computational requirements, as any pedestrian detection
system needs to ensure a processing speed sufficient for
performing avoidance as well. With a decrease in model
size also comes the tricky task of optimization to maintain
the same level of performance relative to existing,
unconstrained models. This is complicated by the fact that
autonomous vehicles systems need to maintain high levels
of recall and precision in order to be safely deployed.

In this paper we focus on approximating pedestrian
locations using a coarse grid-based approach. We do this
by adding an additional layer to an existing SqueezeNet
network. This layer performs a kind of weighted voting
scheme across the depth dimension of the previous
(convolutional) layer to determine whether a pedestrian is
present. Our approach introduces only a small number of
new parameters, with a tiny final model size of 3.24MB.
This model can run at 72FPS on a GTX Titan X GPU on
an RGB input of 681x227 and at 30FPS on dual APEX-2
low-power processors [16] with the entire system running
within a 2W power envelope. We estimate the accuracy of
the approach relative to other models trained on the
Caltech-USA dataset for a range of model and evaluation
settings and show it has comparable performance in terms
of log-average miss rate.

2. Related Work

Pedestrian detection is a special case of more general
object detection. Investigation in this area has produced a
wide range of solutions and a number of benchmark
datasets, including Caltech-USA, KITTI [6] and ETH [7]
among others. The most popular among these is arguably
Caltech-USA, which stands out because it is relatively
large, challenging and has a large number of solutions
which have been evaluated on it. These solutions include
variants of Viola&Jones [15], HOG [5], deformable part
models (DPM) [11] and various types of neural networks
including CNNs [19]. While the non CNN variants have

SqueezeMap: Fast Pedestrian Detection on a Low-power Automotive Processor

Using Efficient Convolutional Neural Networks

Rytis Verbickas1, Robert Laganiere2

University of Ottawa
Ottawa, ON, Canada
1rverb054@uottawa.ca

2robert@laganiere.name

Daniel Laroche, Changyun Zhu, Xiaoyin Xu,
Ali Ors

NXP Semiconductors
Ottawa, ON, Canada

{daniel.laroche,changyun.zhu,christina.xu,

ali.ors}@nxp.com

146

steadily improved over time, it is the CNN-based solutions
we are interested in due to their repeating, general
structure and operations which can be trained easily end-
to-end and consistently achieve state-of-the-art
performance.

A number of variants for this task which use a CNN as a
starting point have been proposed, including Region-based
CNN's (or R-CNN's) by Girshick et al. [10] and Fully-
convolutional networks (FCN's), which focus on semantic
segmentation, popularized by Long et al. [13] (including
variants such as R-FCN which focus on object detection).
The R-CNN strategy is to identify regions of interest as a
starting point for applying a CNN. Faster and more
computationally efficient variants are available, such as
Fast-RCNN [12] and Faster-RCNN [14], which share the
computation time for proposed regions. Overall, these
approaches can be slow without powerful GPU's. To
address the speed shortcoming, newer approaches such
and YOLO (You Only Look Once) [4] have been proposed
which combine classification and region proposals into a
single stage while estimating bounding boxes.

While region proposal based approaches have shown
good performance on Caltech-USA, we want to avoid
having to estimate the exact pixel-wise locations of
bounding box corners and instead have a cluster of
activation groups to indicate the approximate extent of a
pedestrian (while using a bare minimum of parameters to
do so). Thus instead of estimation of bounding box corners
or single pixel labeling, we focus on a coarser grid-based
level where a gridbox in the grid being 'on' indicates a
pedestrian feature is present within that gridbox.

3. Method Description

3.1. Network Structure

SqueezeNet is a small, recently developed, CNN
architecture (shown in Figure 1) that was constructed to
emphasize small model size while retaining classification
accuracy relative to popular CNN architectures like
AlexNet [9]. It is able to do this by following 3 strategies

which have either been shown experimentally to work well
or prevent an explosion of parameters:

1. Placing an emphasis on 1x1 convolutions
2. Restricting the number of input channels to filters

larger than 1x1
3. Delayed down-sampling throughout the network

The first 2 strategies are mainly aimed at parameter
reduction. By keeping the number of feature maps in
squeeze layers small, and with only 1x1 convolutions,
strategy 1 and 2 are achieved by saving parameters and by
supplying only a small number of channels to the 3x3
'expand' feature maps. Thus as we propagate through
consecutive fire modules we're repeatedly squeezing the
previous modules (expand layer, fireN) feature map output
through a small number of feature maps (squeeze layer,
fireN+1), followed by a larger number of feature maps
(expand layer, fireN+1). Strategy 3 is based on
observations made in prior experimental results [17],
which attempts to keep feature maps relatively large (to
the input) in an attempt to learn better features. The
intuition is that this should give higher accuracy (albeit at
higher computational cost and runtime memory footprint).
Since fire modules don't decrease the size of their input,
repeated propagations through multiple fire modules mean
the input is not downsampled, in the process helping to
fulfill strategy 3.

Layer
Name

Layer Size Filter
Size /
Stride

s1x1 e1x1 e3x3 Num.
params

Input 227x227x3

conv1 113x113x64 3x3/2 1792

pool1 56x56x64 3x3/2

fire2 56x56x128 16 64 64 11408

fire3 56x56x128 16 64 64 12432

pool3 27x27x128 3x3/2

fire4 27x27x128 32 128 128 45344

fire5 27x27x256 32 128 128 49440

pool5 13x13x256 3x3/2

fire6 13x13x384 48 192 192 104880

fire7 13x13x384 48 192 192 111024

fire8 13x13x512 64 256 256 188992

fire9 13x13x512 64 256 256 197184

hm0 13x13 1x1x512 86697

Total Parameters 809193

Total Size (MB) 3.237

Table 1: Summary of network parameters

Figure 1: A fire module used to construct a SqueezeNet network.
The squeeze layer is meant to show 4 FMs which each use 1x1
convolutional filters. The expand layer has 4 FMs which use 3x3
filters and 4 which use 1x1 filters.

147

Although SqueezeNet is amenable to compression
techniques (pruning, deep compression [18]), we do not
investigate this option due to the already small footprint of
the network and the overhead introduced in some of these
approaches. A summary of the network parameters is
shown in Table 1, inspired by a similar table in the original
SqueezeNet publication. Note the feature map dimensions
are slightly different in our TensorFlow implementation
than in the reference Caffe model.

We use SqueezeNet 1.1 as the base model, pre-trained
on the ImageNet 2012 dataset [8]. This model is an
extension of v1.0, achieving almost identical performance
on ImageNet while reducing the number of computations
by 2.4x through a small re-organization of the original
model. A summary of the required multiply-accumulate
(MAC) operations at each layer is shown in Table 2.

Layer Name MACs

Input /

conv1 22064832

pool1 /

fire2 35323904

fire3 38535168

pool3 /

fire4 32845824

fire5 35831808

pool5 /

fire6 17651712

fire7 18690048

fire8 31842304

fire9 33226752

hm0 86528

Total 266.1M

Table 2: Summary of MAC operations for regular layers

We remove the conv10 layer entirely, since it was found
this does not impact performance. In the process we save
~500k parameters, leaving ~722.5k. After the addition of
our partially connected layer we have just under 810k
parameters or a model about 3.237MB in size. The
addition of batch normalization (BN) after fire9 introduces
2 parameters for each output in fire9, resulting in 810,217
parameters (a final size of 3.24MB). The choice of base
model is open and is not mandated by our approach. The
only other change we investigate to the base SqueezeNet
model is swapping the ReLU units after each
convolutional layer to exponential ReLU units, which
decay exponentially when the argument is less than 0, but
found no noticeable effect to ReLU's.

Our primary goal is similar to SqueezeNet, which is to
maintain a small number of parameters, while obtaining a

coarse estimate of pedestrian location and size. A standard
way to do this would be to introduce a fully connected
layer that has the same width and height as fire9, allowing
an estimate of the presence/absence of a pedestrian at each
pixel of the FM. However fully connected layers, while
much less computationally burdensome than convolutional
layers, are generally wasteful in terms of storage. State of
the art networks which have large fully connected layers
can usually be pruned of about 90% or more of their
parameters [18]. In addition, unless the scale of the
pedestrian is large enough to fill a large portion of the fire9
activations (the pedestrian is too close), our intuition is to
keep the number of connections across the width and
height of fire9 small and instead focus on the depth
dimension in fire9. The output of the partially connected
layer can (but doesn't need to) match the height and width
of the convolutional layer (given by H and W respectively)
it is connected to, connecting only across the depth
dimension (D). For a convolutional layer, each activation

can be indexed by (h,w,d) where each is in a range
from 0 to H, W, D respectively.

For an output in the heatmap layer, (h,w), its input is
computed as:

 (1)
The number of parameters is reduced from

H*W*(H*W*D+1) to H*W*(D+1). That means only
86,528 additional parameters for this layer in our case.

This scheme is essentially performing a weighted voting
along the depth dimension, for every pixel in the partially
connected layer (Figure 2). We could ask why we would
want to have different weight sets for voting at each output
pixel instead of applying the same set of weights
(essentially a kind of depth convolution). Taking this
further, majority pooling could be performed which will
activate an output if a majority of the inputs are 'on' (using
some fixed threshold) saving even more weights. The
benefit of having only one set of weights is tested by
experiment but we leave majority pooling for future work.

We add dropout between the fire9 and heatmap layers,
although we investigate its placement at other locations

Figure 2: Connectivity along the depth dimension between fire9
and the output layer

148

within the SN network, and experiment with various
dropout rates <= 50%. The effect of BN after fire9 is also
investigated, including placement before or after the
dropout layer. At the output layer, we use tanh as our
activation function although we did experiment with
exponential linear units (ELU's) at the output layer but
were not able to obtain consistent or comparable
performance. Preliminary experiments using the output of
layers upstream of fire9, followed by a heatmap layer,
have shown a decrease in performance although the extent
has not been fully investigated. For example, it may be
possible to further trim the network depth while remaining
close to the reference performance level when using the
fire9 layer.

3.2. Data Generation

For generating the training dataset we overlay a set of
227x227 patches over 640x480 images. Each overlay has a
13x13 grid embedded inside. To make the 13x13 grid fit
neatly we discard 3 columns of pixels on the left and right
sides of the image (resulting in 17x17 pixel gridboxes). A
ground truth bounding box, when intersected with the grid
in a patch will intersect with a set of gridboxes, S. We
leave the intersection percentage between the gridbox and
the ground truth bounding box as a tunable parameter
when generating our dataset. We experiment with values
in the range of 35% to 75%. An example of an overlaid
grid with ground truth bounding boxes is shown in Figure
3. The adjacent image shows the resulting gridboxes which
are deemed to be active after applying a 50% threshold.

We experiment with various ways to overlay the
227x227 input over the original 640x480 images. The
most important region of the input images is just above
(~200 pixels from the top of the image) the horizontal
centerline of the image as described in [2]. We focus on
the following sampling regimes for our training data:

1. Sample 3 227x227 regions along the horizontal
centerline.

2. Sample 6 227x227 regions, 3 along the centerline
and 3 samples offset upwards by ¼ of the
sampling region height

Figure 4: Example of sampled regions for '3pos'

We allow one column of gridboxes to overlap when
transitioning horizontally between one grid to the next. An
example of sampling for Case 1 is shown in Figure 4, with
the extent of the 3 regions overlaid (red, green and blue).
When generating the evaluation dataset, we follow the
process detailed in [2], of generating samples every 30
frames (starting with the 30th). We investigate a number of
sampling schemes for building the evaluation dataset and
report performance for all:

1. Sample 3 227x227 regions along the horizontal
centerline (sampling scheme named '3pos')

2. Sample 6 227x227 regions, 3 horizontally spaced
starting at the top left of the image and 3 spaced
similarly starting at (227,0) (named '6hilo')

3. Sample 9 227x227 regions, 3 along the horizontal
centerline, 3 offset upwards to (0,0) which places
3 sampling regions along the top of the image and
3 offset downwards to (411,0) which places the
last 3 regions along the bottom of the image
(named '9pos')

The first scheme focuses on our main area of interest
along the horizontal centerline. The second scheme
attempts to cover as much of the image as possible starting
along the top and is closest to achieving unique coverage
over the original 640x480 image. The third scheme
attempts to maintain the horizontal centerline while also
covering as much of the image as possible.

3.3. Training Procedure

We use an L2 loss function to train our network.
Although we experiment with L2 regularization, we found
that skipping it generally produces better performing
networks. During training, we apply exponential averaging
to the network weights and to the computed loss, using
rates of 0.9999 and 0.9 respectively. We experimented
with a number of optimizers, including vanilla gradient

Figure 3: A grid overlaid on an image patch with ground truth
bounding boxes shown (left) and the resulting target gridboxes
after using a 50% threshold

149

descent, Adam, Adagrad and RMSProp. Overall, we found
RMSProp to work best (in terms of resulting performance
and also for speed of convergence) and most consistently.

3.4. Evaluation

The evaluation scheme for the Caltech Pedestrians
dataset is extensive but focuses on bounding boxes as the
unit of measure for the extent of pedestrians. Although our
approach specifically foregos bounding box estimation, we
still want to estimate our performance relative to other
approaches applied to this dataset.

To do this we use the ground truth bounding boxes for
an input image and, with the output from the heatmap
layer, perform a voting procedure to estimate the bounding
box predictions. This process allows us to estimate the true
positive (TP), false negative (FN) and false positive (FP)
rates for pedestrian detection, which then allows us to
estimate the log average miss rate of our method. The log
average miss rate is a measure of miss rate (false negative
rate) versus the false positives per image (FPPI) over a
range of FPPI values (evenly spaced in the log domain
between 0.01 and 1). To obtain a set of miss rate values,
we apply a range of thresholds over the range [-1, 1] to our
output layer.

By introducing a number of parameters to control this
estimation, we can obtain a kind of performance envelope
with the 2 extremes corresponding to a difficult evaluation
and an easy one. These parameters include:

• POBB: The percentage overlap between a gridbox

and a ground truth bounding box

• PACT: Percentage of gridboxes belonging to a

ground truth bounding box which must be on to
consider the bounding box detected

• BINDIV: Whether to count activations not within

ground truth bounding boxes individually or to
use 8-way connected components

• BOCC: Whether to use the full bounding boxes or

the unoccluded portion of each for the ground
truth

• BIG: Whether to use 'ignore' ground truth

bounding boxes which fulfill certain criteria,
including a minimum height of 20px for ground
truth bounding boxes, filtering 'people' and
'person?' annotations and ignoring bounding
boxes truncated by image boundaries.

Ideally, the most difficult parameter setting should yield
performance comparable to the best performers on the
Caltech benchmark. The evaluation process proceeds as
follows (illustrated with concrete dimensions for clarity).
For each desired activation threshold at the output layer,

, and the next 640x480 input image, I:

1. Extract the desired set of 227x227 grid overlays

from I, as in Figure 4, to get a set of overlay
regions, R.

2. For each overlay region, Rk, remap the ground
truth bounding boxes in I relative to each overlay
region. This produces a set of bounding boxes,
GTBBk for each overlay region.

3. Intersect the 13x13 grid in each overlay region
with the remapped ground truth bounding boxes.
Keep the gridboxes whose percent overlap with
each ground truth bounding box exceeds POBB.
These are the ground truth target gridboxes,
GTTGk,n, and each overlay, k, will have some
number of sets of resulting target gridboxes (one
set for each bounding box in GTBBk) whose
number we index as a single 'n' here for
simplicity.

4. If BIG is 'on', the bounding boxes which don't
satisfy the mentioned criteria and are meant to be
ignored have their target gridboxes computed in a
similar manner and are aggregated into a set,
GTIG. Otherwise we leave GTIG empty.

5. For each overlay region, k, apply the current
threshold T to our network output to produce a set
of gridboxes of where pedestrians are predicted to
be. Call this set, ACTk.

6. For each overlay, k, iterate each set of target
gridboxes in GTTGk,n and compute the set
intersection with ACTk. This is computing which
gridboxes for each ground truth bounding box are
predicted 'on' by our network. If the percentage is
greater then PACT we count this as a TP.
Otherwise it is a FN. Remove the current set of
target gridboxes from ACTk.

7. The remaining gridboxes in ACTk, are those for
which our network activated but were not in a
target bounding box. We remove entries from this
set which are in GTIG to yield ACT2k. These are
all of the gridboxes which the network activated
for that were either incorrect predictions or were
in an ignore region.

8. If counting individual entries (BINDIV is 'on'), the
size of set ACT2k is the number of FP's otherwise
we use connected components to group the
activations and count the number of components
as the number of FPs.

Note that after removing each set of target gridboxes,
GTTGk,n, from ACTk in step 6, we may be left with a
number of gridbox activations along the perimeter of the
ground truth bounding box. The more our model confines
its output to each bounding box region the less of a
problem this kind of overestimating of pedestrian location
will be. How much of an impact this has can be controlled
by whether connected components are used or by
controlling PACT; both when performing the evaluation and
also when we are generating the training data and
determining the target activations for an input image. As

150

our approach is not meant to distinguish between occluded
and unoccluded pedestrians, we must be careful when
comparing the result to the benchmark. This is because the
evaluation is based on the full bounding boxes and not just
the unoccluded portions. To be fair we evaluate
performance on both sets of bounding boxes (using the
BOCC parameter) and show a small performance difference
between the 2 cases.

4. Experimental Results

4.1. Runtime Performance

This section details the run-time evaluation we
performed on our models. We use TensorFlow [3] for our
model training and benchmark our model on 3 different
systems, one of which is an embedded architecture:

• A laptop with an i3-6100U @ 2.3GHz, 16GB of

RAM and a Samsung 850 EVO SSD

• A desktop with an i7-4790 @ 3.6GHz, 24GB of

RAM, a GTX Titan X and a Samsung 850 EVO
SSD

• S32V234 automotive processor

The S32V234 is a high-performance, ultra low power,
automotive grade processor which supports a range of
applications in vision and sensor fusion. It includes Quad
ARM Cortex-A53 cores @ 1GHz, 4MB of on chip system
RAM, 3D GPU and Dual APEX-2 image cognition
processor cores. We evaluate and report the overall frame-
rate of our model on the APEX-2 processors. In Table 3,
we give the observed performance on the laptop and
desktop when forward propagating 3 samples (from the
'3pos' sampling scheme) which is effectively a 681x227
input region. Note that there is overhead in our
unoptimized implementation. As such we show both the
raw frames/sec which is the time for forward propagating
the 681x227 region through our full network and also the
full frames/sec which include overhead processing time of
extracting and preparing frames and other overhead of the
processing code.

Laptop Desktop Dual APEX-2

Time (ms) / 3
patches

96.4 4.9 /

Raw Frames / sec 10.3 205 /

Time (ms) / frame 115.1 13.8 33

Full Frames / sec 8.6 72.4 30

Table 3: Summary of frames per second performance

When evaluating the '3pos' scheme, with a non BN
network, on the APEX-2 processor, we observe a frame

rate of 15FPS on one processor and 30FPS on both
processors. The addition of BN is expected to have a
negligible impact on performance, allowing for the same
framerate. For our application, the entire S32V234 SoC
requires about 2W with approximately 800mW for both
APEX processor cores. This power is achieved because all
CNN inference computations are performed by the APEX
processors at 30 FPS, with minimum control by the ARM
core, and the GPU is not in use in this case.

With regard to automotive safety, the current
implementation is not 'aliasing' any intermediate tensor
buffers. For processing a single patch, the overall required
memory is 1.86 MiB which fits into the 4 MiB SRAM of
on-chip memory. We note the APEX vector processing
unit usage is 86%. Our GPU implementation was tested
with 32-bit floating point weights and activations while
our S32V234 implementation was quantized to 8-bit for
everything (input, output and weights) except the tanh
activations which were left as floating-point. If the desired
threshold is small enough, the tanh could be substituted
with a linear approximation allowing it to be 8-bit as well.

4.2. Detection Performance

Our target reference point is around 65% LAMR,
putting us in the middle of the 'Overall' benchmark on the
Caltech Testing data as shown in Figure 5. This includes,
for example, RPN+BF at a LAMR of 65% which is a
region proposal network followed by a boosted forest.
Although our approach is not yet able to match the
performance of SA-FastRCNN (a scale aware fast-RCNN)
at 63% [20] and MS-CNN (multi-scale CNN) at 61% [21],
we note that these approaches rely on significantly larger
models with orders of magnitude more parameters and
framerates lower by several multiples.

In general we found that increasing the dropout rate (we
experimented with 0-50%) mainly helps as we began to
sample positive and negative frames more frequently to
build the training dataset (positive frames <= every 5th

frame and negative frames <= every 10th frame). This
makes sense as an increase in data redundancy should be
helped by a larger dropout rate. However, in general the
performance when oversampling in this manner was
generally poor regardless of whether BN was used or not.

The effects of large batch sizes were observed to be
negative. Going up from 32 samples per batch generally
meant a small increase in training time while increasing
batch sizes beyond 64 (up to 128) meant increasing the
time to convergence and decreasing the performance of the
best model achieved by about 8%.

Without BN, the training is sensitive to class imbalance
between positive and negative frames. The number of
negative frames in this case should be about 1/2 to 2/3 of
the number of positive frames. This may have to do with
the large number of target gridboxes which end up being
off with increasing numbers of negative frames. We don't
observe this class imbalance issue when using BN. When

151

using shared weights at the partially connected layer, the
best network was found to be just over 1% higher LAMR
than the best network trained without shared weights.

We generally found training to be fast, requiring no
more than 10 epochs to converge (training time of ~10-
20min) when using 45K 227x227 training patches. In
general, the training time when using BN was 3-5X faster
than without, also allowing for a wider set of learning
schedules to be used. We observe the performance curve
shown in Figure 6 when running a batch normalized
network on the test set, trained using:

• A dropout rate of 40%

• A dataset generated using a positive frame sample

delay of 6 frames, a negative frame delay of 20
(sampling scheme 2 for training data) and a 50%
POBB value when generating the data

• An exponential learning rate of 0.02 decayed at

0.9 every epoch

• Using the full ground truth bounding boxes

(instead of taking the unoccluded subregions) as
our target

• Sampling scheme '6hilo'

We can see in both cases, as we restrict POBB to be
larger, a smaller number of gridboxes cover the perimeter
of the ground truth bounding boxes. Note that switching to
the unoccluded subregions of ground truth bounding boxes
as the target results in a decrease of the LAMR by ~0.01
for each POBB value. Thus using the harder case of full
bounding boxes does not have much impact on
performance. For POBB=2/3, with BINDIV set to True, we
have a LAMR of 0.712. In general, decreasing PACT below
50% gives an increasing boost in performance. For
example, decreasing to 35% for the same network with
POBB=2/3 and BINDIV on (original LAMR of 0.721) gives a

LAMR of 0.7009 while at 25% it is 0.6764. We aim to
keep this threshold at 50% in the spirit of the evaluation
benchmark. When using the 3pos or 9pos sampling
schemes, at POBB=2/3 (BINDIV on) we see a LAMR value of
0.7281 and 0.7238 respectively. A performance curve is
shown in Figure 7 for POBB=2/3 and BINDIV on.

We show some example in Figures 8, 9 and 10,
including results for the test dataset and a frame from the
(unseen) ETH dataset for sequence LOEWENPLATZ.
Note the variation in scale which seems to be captured
quite well. Overall, we notice consistent performance in
negative regions of the image, showing non pedestrian
patterns are captured well. We do notice some moderate
difficulty in regions such as trees or at the edges of cars
(where people getting out of cars tend to be). The blue
region is the sampling region generated by the '3pos'
sampling scheme and the red boxes are the active
gridboxes which have detected a pedestrian.

Figure 6: Plot of POBB values and the corresponding LAMR rate
observed on the testing set with BINDIV on (top/blue line) and
using connected components/BINDIV off (bottom/red line) for
sampling scheme '6hilo'

Figure 7: Example LAMR performance curve with POBB=2/3
and BINDIV on

Figure 5: Top 13 (+ VJ and HOG) Results on the 'Overall'
Caltech Pedestrian Testing Dataset [22]

152

Figure 8: Sampled frame from the Caltech-USA testing dataset

Figure 9: Sampled frame from the Caltech-USA testing dataset

5. Future Work

We've mentioned majority pooling as an extension,
however the immediate goals are to incorporate scale
information and to compute heatmaps for multiple classes
(cars, pedestrians, road signs, etc.). Scale information can
be incorporated by heatmap layers for a particular class
connected at different depths in the network, each
responsible for a particular scale. On the other hand,
multiple classes could be incorporated by simply having
multiple heatmaps at the same layer. The former extension
should bring about a decrease in overall log-average miss
rate while the latter extension will expand the models
capability.

Figure 10: Sampled frame from ETH LOEWENPLATZ

6. Conclusion

In this work, we introduce an extension to the
SqueezeNet architecture for performing pedestrian
detection. This extension uses partially connected neurons
to mimic a weighted voting scheme for the location of
pedestrians, resulting in a kind of heatmap of their
location. In the process, we end up with a small 3.24MB
model which can run in real-time at 30FPS on an
automotive processor operating within a 2W envelope.
The performance of the model is comparable to state of the
art models on the Caltech pedestrian testing dataset.

References

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. SqueezeNet: Alexnet-level accuracy
with 50x fewer parameters and <0.5MB model size.
arXiv:1602.07360, 2016.

[2] P. Dollár, C. Wojek, B. Schiele and P. Perona. Pedestrian
Detection: An Evaluation of the State of the Art. In PAMI,
2012.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.
Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R.
Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D.
Mané, M. Schuster, R. Monga, S. Moore, D. Murray, C.
Olah, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.
Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow.org.

[4] J. Redmon, S. K. Divvala, R.B. Girshick, and A. Farhadi.
You Only Look Once: Unified, Real-Time Object
Detection. In CVPR, 2016.

[5] N. Dalal, and B. Triggs. Histograms of Oriented Gradients
for Human Detection. In CVPR, 2005.

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite.
In CVPR, 2012.

153

[7] A. Ess, B. Leibe, and L. Van Gool. Depth and appearance
for mobile scene analysis, in ICCV, 2007.

[8] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-scale Hierarchical Image Database. In
CVPR, 2009.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks.
In NIPS, 2012.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In CVPR, 2014.

[11] P. F. Felzenszwalb, R. Girshick, D. McAllester, and D.
Ramanan. Object Detection with Discriminatively Trained
Part-based Models. In PAMI, 2010.

[12] R. Girshick. Fast R-CNN. In ICCV, 2015.
[13] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. In CVPR, 2015.
[14] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal
Networks. In NIPS, 2015.

[15] P. A. Viola and M. J. Jones. Robust real-time face detection.
Intl. Journal of Computer Vision, vol. 57, no. 2, pp. 137–
154, 2004.

[16] NXP Research, S32V Whitepaper.
http://cache.freescale.com/files/ automotive/ doc/
white_paper/ S32V230WP.pdf

[17] K. He and J. Sun. Convolutional neural networks at
constrained time cost. In CVPR, 2015

[18] S. Han, H. Mao, and W. Dally. Deep compression:
Compressing DNNs with pruning, trained quantization and
huffman coding. arXiv:1510.00149, 2016.

[19] R. Beneson, M. Omran, J. Hosang, and B. Schiele. Ten
Years of Pedestrian Detection, What Have We Learned? In
ECCV, 2014.

[20] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan. Scale-
aware Fast R-CNN for Pedestrian Detection.
arXiv:1510.08160, 2015.

[21] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos. A Unified
Multi-scale Deep Convolutional Neural Network for Fast
Object Detection. In ECCV, 2016.

[22] P. Dollar. Caltech Pedestrian Benchmark.
http://www.vision.caltech.edu/Image_Datasets/CaltechPede
strians/

154

