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Abstract

Object detection is a crucial task for autonomous driv-

ing. In addition to requiring high accuracy to ensure safety,

object detection for autonomous driving also requires real-

time inference speed to guarantee prompt vehicle control,

as well as small model size and energy efficiency to enable

embedded system deployment.

In this work, we propose SqueezeDet, a fully convolu-

tional neural network for object detection that aims to si-

multaneously satisfy all of the above constraints. In our

network we use convolutional layers not only to extract fea-

ture maps, but also as the output layer to compute bound-

ing boxes and class probabilities. The detection pipeline

of our model only contains a single forward pass of a neu-

ral network, thus it is extremely fast. Our model is fully-

convolutional, which leads to small model size and bet-

ter energy efficiency. Finally, our experiments show that

our model is very accurate, achieving state-of-the-art ac-

curacy on the KITTI [10] benchmark. The source code of

SqueezeDet is open-source released. 1

1. Introduction

A safe and robust autonomous driving system relies on

accurate perception of the environment. To be more spe-

cific, an autonomous vehicle needs to accurately detect cars,

pedestrians, cyclists, road signs, and other objects in real-

time in order to make the right control decisions that ensure

safety. Moreover, to be economical and widely deployable,

this object detector must operate on embedded processors

that dissipate far less power than powerful GPUs (Graph-

ics Processing Unit) used for benchmarking in typical com-

puter vision experiments.

Object detection is a crucial task for autonomous driving.

Different autonomous vehicle solutions may have different

combinations of perception sensors, but image based object

detection is almost irreplaceable. Image sensors are inex-

pensive compared with others such as LIDAR. Image data

(including video) are much more abundant than, for exam-

ple, LIDAR cloud points, and are much easier to collect and

1https://github.com/BichenWuUCB/squeezeDet

annotate. Recent progress in deep learning shows a promis-

ing trend that with more and more data that cover all kinds

of long-tail scenarios, we can always design more powerful

neural networks with more parameters to digest the data and

become more accurate and robust.

While recent research has been primarily focused on im-

proving accuracy, for actual deployment in an autonomous

vehicle, there are other issues of image object detection that

are equally critical. For autonomous driving some basic re-

quirements for image object detectors include the follow-

ing: a) Accuracy. More specifically, the detector ideally

should achieve 100% recall with high precision on objects

of interest. b) Speed. The detector should have real-time or

faster inference speed to reduce the latency of the vehicle

control loop. c) Small model size. As discussed in [18],

smaller model size brings benefits of more efficient dis-

tributed training, less communication overhead to export

new models to clients through wireless update, less energy

consumption and more feasible embedded system deploy-

ment. d) Energy efficiency. Desktop and rack systems

may have the luxury of burning 250W of power for neu-

ral network computation, but embedded processors target-

ing automotive market must fit within a much smaller power

and energy envelope. While precise figures vary, the new

Xavier2 processor from Nvidia, for example, is targeting a

20W thermal design point. Processors targeting mobile ap-

plications have an even smaller power budget and must fit

in the 3W–10W range. Without addressing the problems of

a) accuracy, b) speed, c) small model size, and d) energy

efficiency, we won’t be able to truly leverage the power of

deep neural networks for autonomous driving.

In this paper, we address the above issues by present-

ing SqueezeDet, a fully convolutional neural network for

object detection. The detection pipeline of SqueezeDet is

inspired by [24]: first, we use stacked convolution filters

to extract a high dimensional, low resolution feature map

for the input image. Then, we use ConvDet, a convolu-

tional layer to take the feature map as input and compute

a large amount of object bounding boxes and predict their

categories. Finally, we filter these bounding boxes to ob-

2https://blogs.nvidia.com/blog/2016/09/28/

xavier/
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tain final detections. The “backbone” convolutional neural

net (CNN) architecture of our network is SqueezeNet [18],

which achieves AlexNet level imageNet accuracy with a

model size of less than 5MB that can be further compressed

to 0.5MB. After strengthening the SqueezeNet model with

additional layers followed by ConvDet, the total model size

is still less than 8MB. The inference speed of our model can

reach 57.2 FPS3 (frames per second) with input image res-

olution of 1242x375. Benefiting from the small model size

and activation size, SqueezeDet has a much smaller mem-

ory footprint and requires fewer DRAM accesses, thus it

consumes only 1.4J of energy per image on a TITAN X

GPU, which is about 84X less than a Faster R-CNN model

described in [2]. SqueezeDet is also very accurate. One of

our trained SqueezeDet models achieved the best average

precision in all three difficulty levels of cyclist detection in

the KITTI object detection challenge [10].

The rest of the paper is organized as follows. We first

review related work in section 2. Then, we introduce our

detection pipeline, the ConvDet layer, the training protocol

and network design of SqueezeDet in section 3. In section 4,

we report our experiments on the KITTI dataset, and dis-

cuss accuracy, speed, parameter size of our model. Due to

limited page length, we put energy efficiency discussion in

the supplementary material to this paper. We conclude the

paper in section 5.

2. Related Work

2.1. CNNs for object detection

From 2005 to 2013, various techniques were applied to

advance the accuracy of object detection on datasets such

as PASCAL [8]. In most of these years, variants of HOG

(Histogram of Oriented Gradients) + SVM (Support Vector

Machine) [6] or DPM (Deformable Part Models) [9] were

used to define the state-of-art accuracy on these datasets.

However, in 2013, Girshick et al. proposed Region-based

Convolutional Neural Networks (R-CNN) [12], which led

to substantial gains in object detection accuracy. The R-

CNN approach begins by identifying region proposals (i.e.

regions of interest that are likely to contain objects) and then

classifying these regions using a CNN. One disadvantage of

R-CNN is that it computes the CNN independently on each

region proposal, leading to time-consuming (≤ 1 fps) and

energy-inefficient (≥ 200 J/frame) computation. To rem-

edy this, Girshick et al. experimented with a number of

strategies to amortize computation across the region propos-

als [13, 19, 11], culminating in Faster R-CNN [25].Another

model, R-FCN (Region based Fully Convolutional Net-

work), is fully-convolutional and delivers accuracy that is

competitive with R-CNN. Its fully-convolutional architec-

3Standard camera frame rate is 30 FPS, which is regarded as the bench-

mark of the real-time speed.

ture allows it to amortize more computation across the re-

gion proposals.

There have been a number of works that have adapted

the R-CNN approach to address object detection for au-

tonomous driving. Almost all the top-ranked published

methods on the KITTI leader board are based on Faster R-

CNN. [2] modified the CNN architecture to use shallower

networks to improve accuracy. [4, 28] on the other hand

focused on generating better region proposals. Most of

these methods focused on better accuracy, but to our knowl-

edge, no previous methods have reported real-time infer-

ence speeds on KITTI dataset.

Region proposals are a cornerstone in all of the object

detection methods that we have discussed so far. How-

ever, in YOLO (You Only Look Once) [24], region propo-

sition and classification are integrated into one single stage.

Compared with R-CNN and Faster R-CNN based methods,

YOLO’s single stage detection pipeline is extremely fast,

making YOLO the first CNN based, general-purpose object

detection model that achieved real-time speed.

2.2. Small CNN models

Given a particular accuracy level on a computer vision

benchmark, it is natural to investigate the question: what is

the smallest model size that can achieve that level of accu-

racy? SqueezeNet [18] was the result of one such investiga-

tion. It achieved the same level of accuracy as AlexNet [20]

on ImageNet [7] image classification with less than 5MB of

parameters: a reduction of 50x relative to AlexNet. Af-

ter SqueezeNet, several works continued to search for more

compact network structures. ENet [23] explored spatial de-

composition of convolutional kernels. Together with other

techniques, ENet achieved SegNet [3] level accuracy for se-

mantic segmentation with 79X less parameters. Recently

MobileNet [17] explored channel-wise decomposition of

convolutional kernels, and was applied to several mobile

vision tasks including object detection, fine-grain classifi-

cation, face attributes and landmark recognition.

2.3. Fully convolutional networks

Fully-convolutional networks (FCN) were popularized

by Long et al., who applied them to the semantic segmen-

tation domain [22]. FCN defines a broad class of CNNs,

where the output of the final parameterized layer is a grid

rather than a vector. This is useful in semantic segmen-

tation, where each location in the grid corresponds to the

predicted class of a pixel.

FCN models have been applied in other areas as well.

To address the image classification problem, a CNN needs

to output a 1-dimensional vector of class probabilities.

One common approach is to have one or more fully-

connected layers, which by definition output a 1D vector

– 1×1×Channels (e.g. [20, 26]). However, one alterna-

tive approach used in FCN models (e.g. [18, 21]) is to have
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the final parameterized layer be a convolutional layer that

outputs a grid (H×W×Channels), and to then use average-

pooling to downsample the grid to a vector of class prob-

abilities with the shape of 1×1×Channels. Finally, the R-

FCN method that we mentioned earlier in this section is also

a fully-convolutional network.

3. Method Description

3.1. Detection Pipeline

Inspired by YOLO [24], we also adopt a single-stage

detection pipeline in which region proposal and classifica-

tion is performed by one single network simultaneously. As

shown in Fig.1, a convolutional neural network first takes an

image as input and extracts a low-resolution, high dimen-

sional feature map from the image. Then, the feature map

is fed into the ConvDet layer to compute bounding boxes

centered around W ×H uniformly distributed spatial grids.

Here, W and H are number of grid centers along horizontal

and vertical axes.

Filtering	ConvDet	

feature	

map	

Bounding	

boxes	
Final	

detec9ons	

Input	

image	

Figure 1. SqueezeDet detection pipeline. A convolutional neural

network extracts a feature map from the input image and feeds it

into the ConvDet layer. The ConvDet layer then computes bound-

ing boxes centered around W ×H uniformly distributed grid cen-

ters. Each bounding box is associated with 1 confidence score and

C conditional class probabilities. Then, we keep the top N bound-

ing boxes with highest confidence and use NMS (Non-Maximum

Suppression) to filter them to get the final detections.

Each bounding box is associated with C + 1 values,

where C is the number of classes to distinguish, and the

extra 1 is for the confidence score. Similarly to YOLO [24],

we define the confidence score as Pr(Object) ∗ IOU
pred
truth.

The Pr(Object) encodes the probability that an bounding

box contains an object. IOU
pred
truth is the intersection-over-

union between the predicted bounding box and the ground

truth bounding box. A high confidence score implies a high

probability that an object of interest does exist and that the

overlap between the predicted bounding box and the ground

truth is high. The other C scalars represents the condi-

tional class probability distribution given that the object ex-

ists within the bounding box. More formally, we denote the

conditional probabilities as Pr(classc|Object), c ∈ [1, C].
We assign the label associated with the highest conditional

probability to this bounding box and we use

max
c

Pr(classc|Object) ∗ Pr(Object) ∗ IOU
pred
truth

as the metric to estimate the confidence of the bounding box

prediction.

Finally, we keep the top N bounding boxes with the

highest confidence and use Non-Maximum Suppression

(NMS) to filter redundant bounding boxes to obtain the final

detections. During inference, the entire detection pipeline

consists of only one forward pass of one neural network

with minimal post-processing.

3.2. ConvDet

The SqueezeDet detection pipeline is inspired by

YOLO [24]; however, as we will describe in this section, the

design of the ConvDet layer enables SqueezeDet to gener-

ate tens-of-thousands of region proposals with many fewer

model parameters compared to YOLO.

ConvDet is essentially a convolutional layer that is

trained to output bounding box coordinates and class prob-

abilities. It works as a sliding window that moves through

each spatial position on the feature map. At each posi-

tion, it computes K × (4 + 1 + C) values that encode the

bounding box predictions. Here, K is the number of ref-

erence bounding boxes with pre-selected shapes. 1 is for

the confidence score and 4 is the number of bounding box

coordinates. Using the notation from [25], we call these

reference bounding boxes as anchors. Each position on

the feature map corresponds to a grid center in the origi-

nal image, so each anchor can be described by 4 scalars as

(x̂i, ŷj , ŵk, ĥk), i ∈ [1,W ], j ∈ [1, H], k ∈ [1,K]. Here

x̂i, ŷi are spatial coordinates of the reference grid center

(i, j). ŵk, ĥk are the width and height of the k-th refer-

ence bounding box. We used the K-means based method

described by [2] to select reference bounding box shapes to

match the data distribution.

For each anchor (i, j, k), we compute 4 relative coor-

dinates (δxijk, δyijk, δwijk, δhijk) to transform the anchor

into a predicted bounding box, as shown in Fig. 2. Follow-

ing [14], the transformation is described by

xp
i = x̂i + ŵkδxijk, ypj = ŷj + ĥkδyijk,

wp
k = ŵk exp(δwijk), hp

k = ĥk exp(δhijk),
(1)

where xp
i , y

p
j , w

p
k, h

p
k are predicted bounding box coordi-

nates.
ConvDet is similar to the last layer of RPN in Faster R-

CNN [25]. The major difference is that, RPN is regarded

as a “weak” detector that is only responsible for detecting

whether an object exists and generating bounding box pro-

posals for the object. The classification is handed over to
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Conf:	0.75	
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Bounding	box	

transforma9on	
Detec9ons	

Figure 2. Bounding box transformation. Each grid center has K

anchors with pre-selected shapes. Each anchor is transformed to

its new position and shape using the relative coordinates computed

by the ConvDet layer. Each anchor is associated with a confidence

score and class probabilities to predict the category of the object

within the bounding box.

fully connected layers, which are regarded as a “strong”

classifier. However, we exploit that fact that convolutional

layers are “strong” enough to detect, localize, and classify

objects at the same time.

For simplicity, we denote the detection layers of

YOLO [24] as FcDet (only counting the last two fully con-

nected layers). Compared with FcDet, the ConvDet layer

has orders of magnitude fewer parameters and is still able

to generate more region proposals with higher spatial res-

olution. The comparison between ConvDet and FcDet is

illustrated in Fig. 3.

Assume that the input feature map is of size

(Wf , Hf ,Chf ), Wf is the width of the feature map, Hf

is the height, and Chf is the number of input channels to

the detection layer. Denote ConvDet’s filter width as Fw

and height as Fh. With proper padding/striding strategy,

the output of ConvDet keeps the same spatial dimension as

the feature map. To compute K × (4 + 1 + C) outputs for

each reference grid, the number of parameters required by

the ConvDet layer is FwFhChfK(5 + C).

The FcDet layer described in [24] is comprised of two

fully connected layers. Using the same notation for the in-

put feature map and assuming the number of outputs of the

fc1 layer is Ffc1, then the number of parameters in the fc1
layer is WfHfChfFfc1. The second fully connected layer

in [24] generates C class probabilities as well as K×(4+1)
bounding box coordinates and confidence scores for each

of the Wo × Ho grids. Thus, the number of parameters

in the fc2 layer is Ffc1WoHo(5K + C). The total num-

ber of parameters in these two fully connected layers is

Ffc1(WfHfChf +WoHo(5K + C)).

In [24], the input feature map is of size 7x7x1024.

RP cls #Parameter

RPN X ✗ ChfK(4 + 1)
ConvDet X X FwFhChfK(5 + C)

FcDet X X Ffc1(WfHfChf +WoHo(5K + C))

Table 1. Comparison between RPN, ConvDet and FcDet. RP

stands for region proposition. cls stands for classification.

Ffc1 = 4096, K = 2, C = 20, Wo = Ho = 7, thus the

total number of parameters required by the two fully con-

nected layers is approximately 212 × 106. If we keep the

feature map sizes, number of output grid centers, classes,

and anchors the same, and use 3x3 ConvDet, it would only

require 3×3×1024×2×25 ≈ 0.46×106 parameters, which

is 460X smaller than FcDet. The comparison of RPN, Con-

vDet and FcDet is illustrated in Fig. 3 and summarized in

Table 1.

3.3. Training protocol

Unlike Faster R-CNN [25], which deploys a (4-step) al-

ternating training strategy to train RPN and detector net-

work, our SqueezeDet detection network can be trained

end-to-end, similarly to YOLO [24]. To train the ConvDet

layer to learn detection, localization, and classification si-

multaneously, we define a multi-task loss function:

λbbox

Nobj

W∑

i=1

H∑

j=1

K∑

k=1

Iijk[(δxijk − δxG
ijk)

2 + (δyijk − δyGijk)
2

+(δwijk − δwG
ijk)

2 + (δhijk − δhG
ijk)

2]

+

W∑

i=1

H∑

j=1

K∑

k=1

λ+

conf

Nobj

Iijk(γijk − γG
ijk)

2 +
λ−

conf

WHK −Nobj

Īijkγ
2
ijk

+
1

Nobj

W∑

i=1

H∑

j=1

K∑

k=1

C∑

c=1

Iijkl
G
c log(pc).

(2)

The first part of the loss function is the bounding box

regression. (δxijk, δyijk, δwijk, δhijk) corresponds to the

relative coordinates of anchor-k located at grid center-(i, j).
They are outputs of the ConvDet layer. The ground truth

bounding box δGijk, or (δxG
ijk, δy

G
ijk, δw

G
ijk, δh

G
ijk), is com-

puted as:

δxG
ijk = (xG − x̂i)/ŵk, δyGijk = (yG − ŷj)/ĥk,

δwG
ijk = log(wG/ŵk), δhG

ijk = log(hG/ĥk).
(3)

Note that Equation 3 is essentially the inverse transforma-

tion of Equation 1. (xG, yG, wG, hG) are coordinates of

a ground truth bounding box. During training, we com-

pare ground truth bounding boxes with all anchors and as-

sign them to the anchors that have the largest overlap (IOU)

with each of them. The reason is that we want to select the

“closest” anchor to match the ground truth box such that the
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Wf

Hf

Chf

Hf

Wf

K × (4 + 1)

Feature	map	

1x1	conv	

Region	proposals	

K × (4 + 1)

(a) Last layer of Region Proposal Network (RPN) is a 1x1 convolution with

K × (4 + 1) outputs. 4 is the number of relative coordinates, and 1 is the

confidence score. It’s only responsible for generating region proposals. The

parameter size for this layer is Chf ×K × 5.

Wf

Hf

Chf

Hf

Wf

K × (4 + 1 + C)

Feature	map	

																	convolu9on	

Detec9on	

output	

K × (4 + 1 + C)

Fw × Fh

(b) The ConvDet layer is a Fw × Fh convolution with output size of

K × (5 + C). It’s responsible for both computing bounding boxes

and classifying the object within. The parameter size for this layer is

FwFhChfK(5 + C).

Wf

Hf

Chf

Feature	map	 FC1	 FC2	

K × (4 + 1) + C

Detec9on	

output	

Hf

Wf

FC1	output	

Ffc1 Ffc1

Ffc1

Ho

Wo

WoHo(K(4 + 1) + C)

(c) The detection layer of YOLO [24] contains 2 fully connected lay-

ers. The first one is of size WfHfChfFfc1. The second one is of size

Ffc1WoHoK(5 + C).

Figure 3. Comparing RPN, ConvDet and the detection layer of

YOLO [24]. Activations are represented as blue cubes and layers

(and their parameters) are represented as orange ones. Activation

and parameter dimensions are also annotated.

transformation needed is reduced to minimum. Iijk evalu-

ates to 1 if the k-th anchor at position-(i, j) has the largest

overlap with a ground truth box, and to 0 if no ground truth

is assigned to it. This way, we only include the loss gener-

ated by the “responsible” anchors. As there can be multiple

objects per image, we normalize the loss by dividing it by

the number of objects.

The second part of the loss function is confidence score

regression. γijk is the output from the ConvDet layer, rep-

resenting the predicted confidence score for anchor-k at

position-(i, j). γG
ijk is obtained by computing the IOU of

the predicted bounding box with the ground truth bounding

box. Same as above, we only include the loss generated

by the anchor box with the largest overlap with the ground

truth. For anchors that are not “responsible” for the detec-

tion, we penalize their confidence scores with the Īijkγ
2
ijk

term, where Īijk = 1− Iijk. Usually, there are much more

anchors that are not assigned to any object. In order to bal-

ance their influence, we use λ+

conf and λ−

conf to adjust the

weight of these two loss components. By definition, the

confidence score’s range is [0, 1]. To guarantee that γijk
falls into that range, we feed the corresponding ConvDet

output into a sigmoid function to normalize it.

The last part of the loss function is just cross-entropy

loss for classification. lGc ∈ {0, 1} is the ground truth label

and pc ∈ [0, 1], c ∈ [1, C] is the probability distribution

predicted by the neural net. We used softmax to normalize

the corresponding ConvDet output to make sure that pc is

ranged between [0, 1].

The hyper-parameters in Equation 2 are selected empir-

ically. In our experiments, we set λbbox = 5, λ+

conf =

75, λ−

conf = 100. This loss function can be optimized di-

rectly using back-propagation.

3.4. Neural Network Design

So far in this section, we described the single-stage de-

tection pipeline, the ConvDet layer, and the end-to-end

training protocol. These parts are universal and can work

with various CNN architectures, including VGG16[27],

ResNet[16], etc. When choosing the “backbone” CNN

structure, our focus is mainly on model size and energy ef-

ficiency, and SqueezeNet[18] is our top candidate.

Model size. SqueezeNet is built out of Fire Modules,

which are comprised of a squeeze layer as input, and two

parallel expand layers as output[18]. The squeeze layer is

a 1x1 convolutional layer that compresses an input tensor

with large channel size to one with the same batch and spa-

tial dimension, but smaller channel size. The expand layer

is a mixture of 1x1 and 3x3 convolution filters that takes the

compressed tensor as input, retrieves the rich features and

outputs an activation tensor with large channel size. The

alternating squeeze and expand layers effectively reduces

parameter size without losing too much accuracy.

Energy efficiency. Different operations involved in neu-

ral network inference have varying energy needs. The most

expensive operation is off-chip DRAM access, which uses

100 times more energy than an on-chip SRAM access and

floating point operations [15]. Thus, we want to reduce off-

chip DRAM accesses as much as possible.

The most straightforward strategy to reduce off-chip
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DRAM accesses is to use small models which reduce mem-

ory accesses for parameters. An effective way to reduce

parameter size is to use convolutional layers instead of fully

connected layers when possible. Convolution parameters

can be accessed once and reused across all neighborhoods

of all data items (if batch>1) of the input data. However,

fully-connected layers only exposes parameter reuse oppor-

tunities in the “batch” dimension, and each parameter is

only used on one neighborhood of the input data. Besides

model size, another important aspect is to control the size

of intermediate activations. Assume the on-chip SRAM size

of the computing hardware is 16MB, the SqueezeDet model

size is 8MB. If the size of activation output of any two con-

secutive layers is less than 8MB, then all the memory ac-

cesses can be completed in SRAM, no DRAM accesses are

needed. A detailed energy efficiency discussion will be pro-

vided as supplementary material to this paper.

In this paper, we adopted two versions of the SqueezeNet

architecture. The first one is the SqueezeNet v1.1 model4

with 4.72MB of model size and > 80.3% ImageNet top-5

accuracy. The second one is a more powerful SqueezeNet

variation with squeeze ratio of 0.75, 86.0% of ImageNet

accuracy and 19MB of model size [18]. In this paper, we

denote the first model as SqueezeDet and the second one as

SqueezeDet+. We pre-train these two models for ImageNet

classification, then we add two fire modules with randomly

initialized weight on top of the pretrained model, and con-

nect to the ConvDet layer.

4. Experiments

We evaluated our model on the KITTI [10] object de-

tection dataset, which is designed with autonomous driving

in mind. We analyzed our model’s accuracy measured by

average precision (AP), recall, speed and model size, and

then compare with other top ranked methods on the KITTI

leader board. Next, we analyzed the trade-off between ac-

curacy and cost in terms of model size, FLOPS and acti-

vation size by tuning several key hyperparameters. We im-

plemented our model’s training, evaluation, error analysis

and visualization pipeline using Tensorflow [1], compiled

with the cuDNN [5] computational kernels. The energy ef-

ficiency experiments of our model will be reported in the

supplementary material.

4.1. KITTI object detection

Experimental setup. In our experiments, unless speci-

fied otherwise, we scaled all the input images to 1242x375.

We randomly split the 7381 training images in half into

a training set and a validation set. Our average precision

(AP) results are on the validation set. We used Stochas-

tic Gradient Descent with momentum to optimize the loss

4https://github.com/DeepScale/SqueezeNet/

function. We set the initial learning rate to 0.01, learn-

ing rate decay factor to 0.5 and decay step size to 10000.

Instead of using a fixed number of steps, we trained our

model all the way until the mean average precision (mAP)5

on the training set converges, and then evaluate the model

on the validation set. Unless specifically specified, we used

batch size of 20. We adopted data augmentation techniques

such as random cropping and flipping to reduce overfitting.

We trained our model to detect 3 categories of object, car,

cyclist, pedestrian and used 9 anchors for each grid in our

model. At the inference stage, we only kept the top 64 de-

tections with highest confidence, and use NMS to filter the

bounding boxes. We used NVIDIA TITAN X GPUs for our

experiments.

Average Precision. The detection accuracy, measured

by average precision is shown in Table 2. Our proposed

SqueezeDet+ model achieved the best AP in all three diffi-

culty levels of cyclist detection on the KITTI leader board.

Its mean average precision of all 3 difficulty levels in 3 cat-

egories outperforms the top published methods [28, 4]. To

evaluate whether ConvDet can be applied to other backbone

CNN architectures, we appended ConvDet to the convolu-

tional trunk of the VGG16 and ResNet50 models. In Ta-

ble 2, observe that both of these models achieved competi-

tive AP especially on car and cyclist detection. Example of

error detections in different types are visualized in Fig. 4.

Recall. Recall is essential for the safety of autonomous

vehicles, so we now analyze the recall of our proposed

models. For each image with resolution of 1242x375,

SqueezeDet generates in total 15048 bounding box predic-

tions. It’s intractable to perform non-maximum suppres-

sion (NMS) on this many bounding boxes because of the

quadratic time complexity of NMS with respect to number

of bounding boxes. Thus we only kept the top 64 predic-

tions to feed into NMS. An interesting question to ask is,

how does the number of bounding boxes kept affect recall?

We tested this with the following experiment: First, we col-

lect all the bounding box predictions and sort them by their

confidence. Next, for each image, we choose the top Nbox

bounding box predictions, and sweep Nbox from 8 to 15048.

Then, we evaluate the overall recall for all difficulty lev-

els of all categories. The Recall-Nbox curve is plotted in

Fig. 5. As we could see, for SqueezeDet and its strength-

ened model, the top 64 bounding boxes’ overall recall is

already larger than 80%. If using all the bounding boxes,

the SqueezeDet models can achieve 91% and 92% overall

recall. Increasing the image size by 1.5X, the total number

of bounding boxes increased to 35, 190 and the maximum

recall using all bounding boxes increases to 95%.

Speed. Our models are the first to achieve real-time in-

ference speed on KITTI dataset. To better understand the

5Mean of average precision in 3 difficulty levels (easy, medium, hard)

of 3 categories (car, cyclist, pedestrian).
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car cyclist pedestrian mAP model size speed

method E M H E M H E M H (MB) (FPS)

SubCNN [28] 90.8 89.0 79.3 79.5 71.1 62.7 83.3 71.3 66.4 77.0 - 0.2

MS-CNN [4] 90.0 89.0 76.1 84.1 75.5 66.1 83.9 73.7 68.3 78.5 - 2.5

PNET⋆ 81.8 83.6 74.2 74.3 58.6 51.7 77.2 64.7 60.4 69.6 - 10

Pie⋆ 89.4 89.2 74.2 84.6 76.3 67.6 84.9 73.2 67.6 78.6 - 0.83

FRCN+VGG16 [2] 92.9 87.9 77.3 - - - - - - - 485 1.7

FRCN+Alex [2] 94.7 84.8 68.3 - - - - - - - 240 2.9

SqueezeDet (ours) 90.2 84.7 73.9 82.9 75.4 72.1 77.1 68.3 65.8 76.7 7.9 57.2

SqueezeDet+ (ours) 90.4 87.1 78.9 87.6 80.3 78.1 81.4 71.3 68.5 80.4 26.8 32.1

VGG16 + ConvDet (ours) 93.5 88.1 79.2 85.2 78.4 75.2 77.9 69.1 65.1 79.1 57.4 16.6

ResNet50 + ConvDet (ours) 92.9 87.9 79.4 85.0 78.5 76.6 67.3 61.6 55.6 76.1 35.1 22.5

Table 2. Summary of detection accuracy, model size and inference speed of different models on KITTI object detection challenge. Our

average precision results are on the validation set. ⋆ denotes that it is from an anonymous submissions, thus citation is not available.

(a) Example of a background error. The detector is confused

by a car mirrored in the window.

(b) Classification error. The detector predicts a cyclist to be a

pedestrian.

(c) Localization error. The predicted bounding box doesn’t

have an IOU > 0.7 with the ground truth.

(d) Missed object. The missed car is highly truncated and over-

lapped with other cars.

Figure 4. Example of detection errors.
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Figure 5. Overall recall vs Nobj for SqueezeDet and SqueezeDet+

models. We also tried to re-scale the input image by 1.5X and

0.75X. SqueezeDet and SqueezeDet+ model achieved the best re-

call of 0.91 and 0.92 with all bounding boxes. SqueezeDet with

1.5X image resolution achieved 0.95. SqueezeDet with 0.75X im-

age resolution achieved 0.90.

landscape, we collected statistics of 40 submissions of cy-

clist detection on the KITTI dataset, plotted their inference

speed vs mean average precision of three difficulty levels of

the cyclist category in Fig.6(a). At the time when this paper

was written, the fastest model on the KITTI leader board

is an anonymous submission named PNET with 10FPS of

inference speed. Our proposed SqueezeDet model achieved

57.2 FPS with much better accuracy compared with PNET.

With the stronger SqueezeDet+ model, we still obtained a

speed of 32.1 FPS. With the VGG16 and ResNet50 mod-

els, augmented by ConvDet, the inference speed is slightly

slower, but still faster than all the existing KITTI submis-

sions, as can be seen in Table 2 and Fig.6(a).

Model size. As model size is not reported on the KITTI

leader board, We compare our proposed models with Faster-

RCNN based models from [2]. We plotted the model size

and their mean average precision for 3 difficulty levels of

the car category in Fig. 6(b) and summarized them in Ta-

ble 2. As can be seen in Table 2, the SqueezeDet model is

61X smaller than the Faster R-CNN + VGG16 model, and

it is 30X smaller than the Faster R-CNN + AlexNet model.

In fact, almost 80% of the parameters of the VGG16 model

are from the fully connected layers. Thus, after we replace

the fully connected layers and RPN layer with ConvDet, the

model size is only 57.4MB. Compared with YOLO [24]
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Activation

Model Memory

mAP Speed FLOPs Size Footprint

DSE (%) (FPS) ×109 (MB) (MB)

SqueezeDet 76.7 57.2 9.7 7.9 117.0

scale-up 72.4 31.3 22.5 7.9 263.3

scale-down 73.2 92.5 5.3 7.9 65.8

16 anchors 66.9 51.4 11.0 9.4 117.4

SqueezeDet+ 80.4 32.1 77.2 26.8 252.7

Table 3. Design space exploration for SqueezeDet. Different ap-

proaches with their accuracy, FLOPs per image, inference speed,

model size and activation memory footprint. The speed, FLOPS

and activation memory footprint are measured for batch size of

1. We used mean average precision (mAP) to evaluate the overall

accuracy on the KITTI object detection task.

which is comprised of 24 convolutional layers, two fully

connected layers with a model size of 753MB, SqueezeDet,

without any compression, is 95X smaller.
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(a) Inference speed vs mean average precision for cyclist detection. Each
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Figure 6. Comparison of different methods’ model size, inference

speed, and accuracy on the KITTI dataset.

4.2. Design space exploration

We conducted design space exploration to evaluate the

influence of some key hyper-parameters on our model’s

overall detection accuracy (measured in mAP). Meanwhile,

we also investigated the “cost” of these variations in terms

of FLOPs, inference speed, model size and memory foot-

print. The results are summarized in Table 3, where

the first row is our SqueezeDet architecture, subsequent

rows are modifications to SqueezeDet, and the final row is

SqueezeDet+.

Image resolution. For object detection, increasing im-

age resolution is often an effective approach to improve de-

tection accuracy [2], but larger images lead to larger acti-

vations, more FLOPs, longer training times, etc. To eval-

uate some of these tradeoffs, in our experiments we scaled

the image resolution by 1.5X and 0.75X receptively. With

larger input images, the training becomes much slower, so

we reduced the batch size to 10. As we can see in Table 3,

scaling up the input image actually decreases the mAP and

also leads to more FLOPs, lower speed, and larger memory

footprint. We also performed an experiment with decreas-

ing the image size. Scaling down the image leads to an im-

pressive 92.5 FPS of inference speed and a smaller memory

footprint, though it suffers from a 3 percentage point drop

in mean-average precision.

Number of anchors. Another hyper-parameter to tune is

the number of anchors. Intuitively, the more anchors used,

the more bounding box proposals are generated, and this

should result in a better accuracy.In our experiments illus-

trated in Table 3, using more anchors actually leads to lower

accuracy; however, it also shows that for models that use

ConvDet, increasing the number of anchors only modestly

increases the model size, FLOPs, and memory footprint.

Model architecture. As we discussed before, by using a

more powerful backbone model with more parameters sig-

nificantly improved accuracy (See Table 3), but this mod-

ification also costs substantially more in terms of FLOPs,

model size and memory footprint.

5. Conclusion

We proposed SqueezeDet, a fully convolutional neural

network for real-time object detection. We integrated the

region proposition and classification into ConvDet, which is

orders of magnitude smaller than its fully-connected coun-

terpart. With the constraints of autonomous driving in mind,

our proposed SqueezeDet and SqueezeDet+ models are de-

signed to be small, fast, energy efficient, and accurate. On

all of these metrics, our models advance the state-of-the-art.
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